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ABSTRACT
Content-based image retrieval (CBIR) systems, target data-
base images using feature similarities with respect to the
query. We introduce fast and robust image retrieval mea-
sures that utilise novel illumination invariant features ex-
tracted from three different Markov random field (MRF)
based texture representations. These measures allow re-
trieving images with similar scenes comprising colour textur-
ed objects viewed with different illumination brightness or
spectrum.

The proposed illumination insensitive measures are com-
pared favourably with the most frequently used features
like the Local Binary Patterns, steerable pyramid and Ga-
bor textural features, respectively. The superiority of these
new illumination invariant measures and their robustness to
added noise are empirically demonstrated in the illumination
invariant recognition of textures from the Outex database.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models; I.4.7 [Image Pro-
cessing and Computer Vision]: Feature Measurement—
Texture,Invariants; I.5.1 [Pattern Recognition]: Mod-
els—Statistical ; G.3 [Probability and Statistics]: Markov
processes

General Terms
Algorithms, Theory, Measurement
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1. INTRODUCTION
Content-based image retrieval systems typically query lar-

ge image databases based on some automatically generated
colour and textural features. Optimal robust features should
be geometry and illumination invariant. Although image re-
trieval has been an active research area for many years [24]
this difficult problem is still far from being solved and pro-
posed solutions are still very immature. Simpler methods
based only on colour features achieve illumination invari-
ance by normalising colour bands or using the colour ratio
histogram [4], [9]. However, colour based methods rarely
perform sufficiently well in natural visual scenes because
they cannot detect similar objects in different location, back-
grounds or illumination.

Textures are important clues to specify objects present in
a visual scene. Unfortunately, the appearance of natural tex-
tures is highly illumination dependent. As a consequence,
most recent natural texture based classification or segmen-
tation methods require multiple training images captured
under a full variety of possible illumination and viewing con-
ditions for each class [25], [14]. Such learning is obviously
clumsy and very often even impossible if required measure-
ments are not available. Authors [3] allow a single training
image per class, but they require surfaces of uniform albedo,
smooth and shallow relief and most seriously the knowledge
of illumination direction for all involved textures. It was
demonstrated [15],[2] that for grey image of an object with
Lambertian reflectance there are no discriminative functions
that are invariant to change of illumination direction.

Colour constancy algorithms, represented by [5], attempt
to recover the image illuminated by some standard illumina-
tion, which is an unnecessarily complex task and it induces
additional assumptions on a recognised scene. The normal-
isation of an image before the recognition proposed in [6] is
able to cancel changes of illuminated colour, lighting changes
caused by the object geometry and even a power (gamma)
function, which is usually applied to image data during the
coding process. However, since the method normalises light-
ing changes caused by the geometry it completely wipes out
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the structure of rough textures and therefore it destroys the
possibility to recognise such textures. Simultaneously, the
invariants to geometry introduced lighting changes tend to
be unstable because of nonlinear transformations usually
involved. An interesting approach of quasi-invariants [26]
releases the condition of full invariance and therefore it is
less sensitive to noise. Parameters of Weibull-distribution of
image edges [8] are proposed as insensitive to illumination
brightness. Authors [12], [27] employ properties of correla-
tion functions between different spectral channels to achieve
invariance to illumination spectrum changes. Authors [13],
[7] introduced a method based on the logarithm of Gabor
filter responses together with new Gaussian colour model.
However, the Gaussian colour model of RGB texture is im-
plemented as a simple matrix multiplication and invariance
to any linear transformation of texture values is inherent
part of the illumination invariant features proposed in the
rest of this article.

We introduce three methods based on simple parametric
measures, which are invariant to illumination brightness and
spectrum changes and which do not require any knowledge
of illumination spectrum. They can be applied for textured
object retrieval if only single illumination training image is
available for each class.

The paper is organised as follows: Assumptions about
illumination model are reviewed in Section 2. Texture model
description and derivation of illumination invariant features
follow in Section 3. Experimental results are presented in
Section 4 and Section 5 concludes the paper.

2. ILLUMINATION MODEL
Illumination conditions can change due to various rea-

sons. In our approach we allow changes of brightness and
spectrum of illumination sources. We assume fixed positions
of viewpoint and illumination sources. Moreover, the illu-
mination sources are supposed to be far from the texture
surface to produce uniform illumination. Furthermore, we
assume planar textured Lambertian surfaces with varying
albedo and surface texture normal.

Let us denote a multiindex r = (r1, r2) where r1 is the
row and r2 the column index, respectively. Value acquired
by the j−th sensor at the location r can be expressed as

Yr,j =

Z
ω

E(λ)S(r, λ)Rj(λ) dλ ,

where E(λ) is the spectral power distribution of a single
illumination, S(r, λ) is a Lambertian reflectance coefficient
at the position r, Rj(λ) is the j−th sensor response func-
tion, and the integral is taken over the visible spectrum ω.
The Lambertian reflectance term S(r, λ) depends on surface
normal, illumination direction, and surface albedo.

Following the work [5], we approximate the surface re-
flectance S(r, λ) by a linear combination of a fixed basis

S(r, λ) =
PC

c=1 dc sc(λ) . Provided that j = 1, . . . , C
sensor measurements are available and the illumination and
view point positions are the same, the images acquired with
different illumination spectra can be transformed to each
other by the linear transformation:

Ỹr = B Yr ∀r , (1)

where Ỹ , Y are texture images with different illumination,
and B is a C×C transformation matrix. The formula (1)

is valid even for several illumination sources with variable
spectra provided that the spectra of all sources are the same
and the positions of the illumination sources remain fixed.

If we assume further diagonal transformation (1), then the
invariance to illumination colour change can be achieved by
the spectral planes normalisation:

Y ′
r,j =

Yr,jP
s Ys,j

∀j = 1, . . . , C . (2)

Since neither of our method requires this type of normali-
sation, it is applied to Gabor features, which are used for
comparison purposes, only.

3. TEXTURE REPRESENTATION
Let us assume each texture to be composed of C spec-

tral planes measured by corresponding sensors. The spectral
planes are either modelled by 3-dimensional Markov ran-
dom field (MRF) model or mutually decorrelated by the
Karhunen-Loeve transformation (Principal Component Ana-
lysis) and subsequently modelled using a set of C 2-dimen-
sional MRF models. Each spectral plane is factorised into
K levels of the Gaussian pyramid and subsequently each
pyramid level is modelled by a dedicated MRF model. All
C spectral planes are factorised using the same pyramid
thus the corresponding multispectral pixels for every pyra-
mid level have C components Yr = [Yr,1, . . . , Yr,C ]T .

3.1 CAR Model
The CAR representation assumes that the multispectral

texture pixel Yr at the k−th Gaussian pyramid level can
be locally modelled by an adaptive simultaneous Causal Au-
toregressive Random (CAR) field model. We denote the
Cη × 1 data vector

Zr = [Y T
r−s : ∀s ∈ Ir]

T (3)

with a multiindex r = (r1, r2) and similarly the multi-
indices s, t. The multiindex changes according to the chosen
direction of movement on the image plane e.g. t − 1 =
(t1, t2−1), t−2 = (t1, t2−2), . . .. Some selected contextual
causal or unilateral neighbour index shift set is denoted Ir

and η = cardinality(Ir) . The matrix form of an adaptive
CAR model is:

Yr = γZr + εr , (4)

where γ = [A1, . . . , Aη] is the C×C η unknown parameter
matrix with matrices As. In the case of C 2D CAR models
stacked into the model equation (4) the parameter matrices
As are diagonal otherwise they are full matrices for general
3D CAR models. The white noise vector εr has zero mean
and constant but unknown covariance matrix Ω. Moreover,
we assume the probability density of εr to have the nor-
mal distribution independent of previous data and being the
same for every position r. Additionally for 2D CAR model,
we assume uncorrelated noise vector components, i.e.,

E{εr,iεr,j} = 0 ∀r, i, j, i �= j .

The task consists in finding the parameter conditional
density p(γ |Y (t−1)) given the known process history Y (t−1),

Y (t−1) = {Yt−1, Yt−2, . . . , Y1, Zt, Zt−1, . . . , Z1} and taking
its conditional mean as the textural feature representation.
Assuming normality of the white noise component εt, condi-
tional independence between pixels and the normal-Wishart



parameter prior, we have shown [11] that the conditional
mean value is:

E[γ |Y (t−1)] = γ̂t−1 . (5)

The following notation is used in (5):

γ̂T
t−1 = V −1

zz(t−1)Vzy(t−1) ,

Vt−1 = Ṽt−1 + V0 ,

Ṽt−1 =

„Pt−1
u=1 YuYu

T Pt−1
u=1 YuZu

TPt−1
u=1 ZuYu

T Pt−1
u=1 ZuZu

T

«

=

„
Ṽyy(t−1) Ṽ T

zy(t−1)

Ṽzy(t−1) Ṽzz(t−1)

«
,

λt−1 = Vyy(t−1) − V T
zy(t−1)V

−1
zz(t−1)Vzy(t−1) (6)

and V0 is a positive definite matrix. It is easy to check (see
[11]) also the validity of the following recursive parameter
estimator:

γ̂T
t = γ̂T

t−1 +
V −1

zz(t−1)Zt(Yt − γ̂t−1Zt)
T

(1 + ZT
t V

−1
zz(t−1)Zt)

, (7)

and λt can be evaluated recursively too. For numerical re-
alisation of the model statistics (5)-(7) see discussion in [11].
The optimal contextual neighbourhood Ir can be found an-
alytically by maximising the corresponding posterior prob-
ability [11].

Textural features for each texture resolution level k is
represented by the parametric matrix γ̂(k) k = 1, . . . ,K.
These parametric estimates are combined into the resulting
parametric matrix:

Θ = [γ̂(k) ∀k] . (8)

This matrix contains estimations of the multiresolution CAR
model (a set of either 2D or 3D CAR models) parameters.
Illumination invariants are subsequently derived from these
parameters.

Because the CAR models analyse a texture in some fixed
movement direction, we have experimented with additional
directions to capture supplementary texture properties. In
that case, the texture is optionally analysed in two orthog-
onal directions: row-wise and column-wise. Subsequently,
the estimated features for both directions are concatenated
into a common feature vector.

3.2 GMRF Factor Model
The alternative representation assumes that spectral pla-

nes of the k−th resolution level are locally modelled using
a 2D Gaussian Markov random field model (GMRF). This
model is obtained if the local conditional density of the MRF
model is Gaussian:

p(Yr,j |Ys,j ∀s ∈ Ir) =

1

σj

√
2π

exp

j
− (Yr,j − γjZr,j)

2

2σ2
j

ff
, (9)

where Yr,j are mean centered values and j is the spectral
plane index j = 1 . . . C. The data vector is redefined as
Zr,j = [Yr+s,j ∀s ∈ Ir]

T and the parameter vector is
γj = [as,j ∀s ∈ Ir]. The contextual neighbourhood Ir is
non-causal and symmetrical. An optimal neighbourhood is
detected using the correlation method [10] favouring neigh-
bours locations corresponding to large correlations over those

with small correlations. The GMRF model for centered val-
ues Yr,j can be expressed also in the matrix form (4), but
the driving noise correlation structure (diagonal Σ) is now
more complex:

E{εr,iεr−s,j} =

8><
>:
σ2

j if (s)=(0,0) and i=j,

−σ2
jas,j if (s) ∈ Ir and i=j,

0 otherwise.

(10)

σj , as,j ∀s ∈ Ir are unknown parameters. The parame-
ter estimation of the GMRF model is complicated because
either Bayesian or ML estimate requires an iterative min-
imisation of a nonlinear function. Therefore we use the
pseudo-likelihood estimator which is computationally sim-
ple although not efficient. The pseudo-likelihood estimate
for as,j parameters evaluated for an image index lattice I
has the form

γ̂T
j = [as,j ∀s ∈ Ir]

T

=

"X
∀s∈I

Zs,jZ
T
s,j

#−1 X
∀s∈I

Zs,jYs,j , (11)

σ̂2
j =

1

|I |
X
∀s∈I

(Yr,j − γ̂jZr,j)
2 , (12)

where j = 1 . . . C. Single spectral plane parameters are set
up using the direct sum

γ̂(k) = diag(γ̂1, . . . , γ̂C) = ⊕C
j=1 γ̂j (13)

and the resulting parametric matrix is again (8).

3.3 MRF Illumination Invariant Features
Illumination invariant feature vectors can be derived from

the estimated MRF statistics such as (8), which is composed
of the model parameter matrices Am. On the condition that
two images Y, Ỹ under different illumination are related
by Ỹr = B Yr (see (1)), the model data vectors are also

related by the linear transformation Z̃r = ∆Zr, where ∆
is the Cη × Cη block diagonal matrix with blocks B on
the diagonal. By substituting Ỹr, Z̃r into the parameter
estimate of the CAR model (4), (6), (7) we can derive that

Ãm = BAmB
−1, λ̃r = B λrB

T . (14)

The matrices Ãm, Z̃r, λ̃r are related to the model of the
same texture, but with different illumination. The similar
substitution into the GMRF parameter estimate (4), (11),
(12) produces equations

Ãm = BAmB
−1, ˆ̃Σ = B Σ̂BT . (15)

It is easy to prove that the following features are illumi-
nation invariant for both models:

1. trace: trAm, m = 1, . . . , η K

2. eigenvalues: νm,j of Am, m = 1, . . . , η K, j = 1, . . . , C

for each CAR model (for 2D CAR models the invariants
α1, α2, α3 are computed for each spectral plane separately):

3. α1: 1 + ZT
r V

−1
zz Zr ,

4. α2:
qP

r (Yr − γ̂Zr)
T λ−1 (Yr − γ̂Zr) ,

5. α3:
qP

r (Yr − µ)T λ−1 (Yr − µ) ,

µ is the mean value of vector Yr,



and for each GMRF model with centered Yr,j :

6. α4:
qP

r σ̂
−2
j (Yr,j − γ̂jZr,j)

2 ,

7. α5:
qP

r σ̂
−2
j (Yr,j)

2 .

The feature vector is formed from these illumination invari-
ants. For CAR models we use traces, eigenvalues, α1, α2,
and α3 features because they can be easily evaluated during
the parameters estimation process. For GMRF models we
use trace, eigenvalues, α4, and α5 features, respectively.
As a texture retrieval measure, the feature vectors distance
between two textures T, S is computed using the L1 norm
or alternatively using L1σ norm:

L1(T, S) =

pX
i=0

˛̨̨
f

(T )
i − f

(S)
i

˛̨̨
, (16)

L1σ(T, S) =

pX
i=0

˛̨̨
˛̨f (T )

i − f
(S)
i

σ(fi)

˛̨̨
˛̨ , (17)

where σ(fi) is the standard deviations of a feature fi

computed over all database, and p is the size of the feature
vector.

3.4 Alternative Features
Our proposed measures are compared with the most fre-

quently used features in image retrieval applications such
as the Gabor features, steerable pyramid features and Local
Binary Patterns (LBP).

The Gabor filters [1], [22] can be considered as orienta-
tion and scale tunable edge and line detectors and statis-
tics of Gabor filter responses in a given region are used to
characterise the underlying texture information. A two di-
mensional Gabor function g(r) : R

2 → C can be specified
as

g(r) =
1

2πσr1σr2

exp

»
−1

2

„
r21
σ2

r1

+
r22
σ2

r2

«
+ 2πiV r1

–
,

where σr1 , σr2 , V are filter parameters. The convolution of
the Gabor filter and a texture image extracts edges of given
frequency and orientation range. The whole filter set was ob-
tained by four dilatations and six rotations of the function
g(r), the filter set is designed so that Fourier transforma-
tions of filters cover most of image spectrum, see [18] for
details. The Gabor features [18] are defined as the mean µj

and the standard deviation σj of the magnitude of filter
responses computed separately for each spectral plane and
concatenated into the feature vector. These feature vectors
are compared in the L1σ norm (17).

The Opponent Gabor features [16] are extension to colour
textures, which analyses also relations between spectral chan-
nels. The monochrome part of these features is:

ηi,m,n =

sX
r

W 2
i,m,n(r) ,

where Wi,m,n is the response to Gabor filter of orientation
m and scale n, i is i−th spectral band of the colour
texture T , while the opponent part of features is:

ψi,j,m,m′ ,n =

vuutX
r

„
Wi,m,n(r)

ηi,m,n
− Wj,m′,n(r)

ηj,m′,n

«2

,

for all i, j with i �= j and |m − m′| ≤ 1. The distance
between textures T, S using the Opponent Gabor features
is measured as the sum

L2σ(T, S) =

vuut pX
i=0

 
f

(T )
i − f

(S)
i

σ(fi)

!2

, (18)

where σ(fi) is again the standard deviations of feature fi

computed over all database, and p is the size of feature vec-
tor. In order to achieve illumination invariance, it is possible
to normalise spectral channels using (2) normalisation prior
to computation of features. We have tested Gabor features
and Opponent Gabor Features, the both options with and
without the normalisation.

The steerable pyramid [23] is an over complete wavelet
decomposition similar to the Gabor decomposition. The
pyramid is built up of responses to steerable filters, which
are oriented complex analytic filters that are polar separable
in the Fourier domain. Each level of pyramid extracts cer-
tain frequency range and all levels (except the highest and
the lowest one) are further decomposed to different orienta-
tions. Our steerable pyramids are composed of 4 orientation
bands and 4 pyramid levels, which is in accordance with [23].
We use steerable pyramid features skewness, kurtosis, mean,
variance, minimum and maximum values of image func-
tion, and scale-based auto-correlations and subband cross-
correlations of filter responses, respectively, which were pro-
posed for texture synthesis in [23]. The feature vectors are
compared using the L1σ norm (17). Again, we have tested
steerable pyramid features with and without the channel
normalisation.

Local Binary Patterns (LBP) [20] are histograms of tex-
ture micro patterns. For each pixel, a circular neighbour-
hood around the pixel is sampled, P is the number of
samples and R is the radius of the circle. Sampled points
values are thresholded by a central pixel value and the pat-
tern number is formed as follows:

LBPP,R =
P−1X
s=0

sign (Ys − Yc) 2s, (19)

where sign is the signum function, Ys is a grey value of
the sampled pixel, and Yc is a grey value of the central
pixel. Subsequently, the histogram of patterns is computed.
Because of thresholding, the features are invariant to any
monotonic grey scale change. The multiresolution analysis
is done by growing the circular neighbourhood size. How-
ever, complex patterns do not have enough occurrences in
a texture, therefore uniform LBP features LBPu2 comprise
only a subset of these patterns. Moreover, the features can
be also made rotation invariant (see [20]). All LBP his-
tograms were normalised to have a unit L1 norm. The
similarity between texture feature vectors T, S is defined as

LG(T, S) =

pX
i=1

f
(T )
i log

f
(T )
i

f
(S)
i

. (20)

We have tested features: LBP8,1+8,3 and LBPu2
16,2 which

demonstrated the best performance in the test with illumi-
nation changes [17], [21] (test set Outex 14). We have also
comprised rotation invariant feature LBPriu2

16,2 . The features
were computed either on grey-scale images or on each spec-
tral plane separately and concatenated to form the feature



Table 1: Size of feature vectors. Further, feature
vectors with normalisation have the same length and
feature vectors of CAR models computed in two di-
rections (denoted as 2x) have double length.

experiment
method 1 2
Gabor f. 144 144
Gabor f., grey img. 48 48
Opponent Gabor f. 252 252
Steerable pyramid 2904 2904
LBP8,1+8,3 1536 1536
LBPu

16,2 729 729
LBP8,1+8,3, grey img. 512 512
LBPu

16,2, grey img. 243 243
LBPu

16,2, grey img., rotinv 18 18
2CAR-KL, α1α2α3 204 54
2CAR-KL, α1α3 192 48
2CAR-KL, α1 180 42
GMRF-KL, α4α5 192 48
GMRF-KL, α5 180 42
GMRF-KL 168 36
3CAR, α1α2α3 180 48
3CAR, α1α3 176 44
3CAR, α1 172 40

vector. Normalisation to change of illumination brightness
or spectrum change is not necessary.

4. EXPERIMENTS
We demonstrate the performance of the proposed illumi-

nation invariant MRF features on the Outex database [19],
which consists of texture images acquired, under three dif-
ferent illuminations. The illumination sources were 2856K
incandescent CIE A light source, 2300K horizon sunlight,
and 4000K fluorescent TL84, the illumination positions are
very close. Additionally, all the textures were acquired with
a fixed camera position.

We tested three proposed MRF models: 2CAR (2-dimen-
sional), 3CAR (3-dimensional) and GMRF. All models were
computed over K levels of the Gaussian pyramids, which
were built on C spectral planes or spectral planes decor-
related by the Karhunen-Loeve transformation. The CAR
models were tested with and without additional features
α1, α2, α3 in their feature vectors. Similarly, the GMRF
model was tested for feature vectors with and without ad-
ditional features α4, α4 (see Section 3.3). Moreover, due to
the directionality of CAR models, we have also tested CAR
models estimated in two orthogonal directions (in tables de-
noted by 2x suffix).

The proposed measures were compared with the follow-
ing alternatives: Gabor features, Opponent Gabor features,
Steerable pyramid features, all with and without spectral
channels normalisations, and also the LBP features (see de-
tails in Section 3.4). The grey value based features as Gabor
features and LBP were computed not only on grey images,
but also separately on each spectral plane of colour images
and concatenated subsequently. Tab. 1 compares the sizes
of feature vectors used in our experiments.

4.1 Experiment 1
The first experiment is an illumination invariant texture

retrieval based on the Outex texture database. The test set
consists of all 318 textures, each with 3 different illumina-
tions, without any rotation and with 100 dpi resolution. All
textures were cropped to size 512 × 512.

We have tested texture retrieval using every texture from
the test set. The relevant textures were defined as the same
texture with the other two illuminations, regardless any tex-
ture classes. Therefore there were 2 relevant images present
in the test set for each of retrieved textures, a total amount
of 3 textures were retrieved. Furthermore, images were de-
graded with added Gaussian noise to test the robustness of
the features. The retrieval performance was measured using
recall rate

rr =
retrieved and relevant

all retrieved
,

the results are summarised in Tab. 2.
In this test, the proposed illumination invariant MRF fea-

tures achieved retrieval recall rates over 89%, which clearly
present their insensitivity to illumination spectrum varia-
tions. The MRF models were computed with the sixth order
hierarchical neighbourhood and four levels of the Gaussian
pyramid. The LBP features also show their illumination in-
variance property with 83% recall rate. However, their per-
formance swiftly drops as the standard deviation of additive
noise increases. This results also demonstrate that the spec-
tral channel normalisation is essential for Gabor and steer-
able pyramid features, nevertheless, any variant of Gabor or
steerable pyramid features did not performed satisfactory
in this test. Exceptional results, over 94% recall rate, were
achieved by MRF feature compared in L1σ norm, however
in the following experiment their results are slightly worse
than with L1 norm.

Some examples of retrieved textures are presented in Fig. 1.
The results without additive noise are all correct. How-
ever, more interesting textures are retrieved at the third
and fourth positions. We can observe that features recog-
nise visual similarity of seeds with sand, barley-rice or quartz
(the second and the fourth row). In the first and fourth row,
there is obvious that the MRF features with pyramids prefer
overall structure to micro patterns (such as lines) preferred
by the LBP features. This also implies the noise sensitivity
of LBP features, as it is shown in the lower half of Fig. 1.

4.2 Experiment 2
Our second experiment was performed on the Outex clas-

sification test set number 14 [19]. In this test set, 68 selected
textures from the Outex database were treated in the follow-
ing manner. Twenty subsamples with size 128 × 128 were
extracted from each texture image. The train set consists
of 10 samples per texture, all illuminated with the 2586K
incandescent CIE A light source. The test set consists of 10
remaining subsamples from each texture, all of them illumi-
nated with 2300K horizon sunlight and 4000K fluorescent
TL84. Consequently, the train set consists of 680 images,
while the test set is composed of 1360 images. The classifi-
cation was performed using 3 nearest neighbours as in [17],
[21].

The highest reported classification accuracy on the test set
[17] was 69% for LBPu2

16,2 features, which outperformed Ga-
bor features with 66% of accuracy (unfortunately we reached
only 54.5%, see the Tab. 3), both features were computed on



Table 2: Illumination invariant texture retrieval
from the Outex texture database. Performance is
measured as recall rate [%] of 3 retrieved images.

added noise σ
method 0 2 4 8
Gabor f. 14.0 13.9 13.6 13.4
Gabor f., grey img. 42.8 42.6 42.3 42.4
Opponent Gabor f. 38.8 37.2 33.8 30.5
Steerable pyramid 19.4 19.1 18.9 18.9
Gabor f., norm. 40.4 38.0 33.1 27.5
Gabor f., grey img, norm. 53.4 58.1 58.7 56.1
Opponent Gabor f., norm. 46.9 45.0 40.9 37.8
Steerable pyramid, norm. 41.2 41.0 40.5 39.4
LBP8,1+8,3 51.5 34.8 25.9 20.0
LBPu

16,2 47.3 28.4 19.6 11.7
LBP8,1+8,3, grey img. 83.1 66.0 56.0 50.3
LBPu

16,2, grey img. 80.6 62.0 49.7 40.8
LBPu

16,2, grey img., rotinv. 61.5 40.0 29.6 21.3
2CAR-KL, α1α2α3 89.7 86.6 81.1 68.6
2CAR-KL, α1α3 89.7 86.6 81.1 68.6
2CAR-KL, α1 92.4 89.2 84.4 75.1
GMRF-KL, α4α5 82.7 78.2 70.1 56.5
GMRF-KL, α5 82.7 78.3 70.1 56.4
GMRF-KL 87.7 81.7 75.5 65.3
3CAR, α1α2α3 83.9 81.5 76.1 65.6
3CAR, α1α3 83.9 81.4 76.1 65.6
3CAR, α1 85.4 81.8 75.7 65.0
2CAR-KL 2x, α1α2α3 89.2 86.3 80.5 68.7
2CAR-KL 2x, α1α3 89.2 86.3 80.5 68.7
2CAR-KL 2x, α1 91.8 89.4 83.7 74.7
3CAR 2x, α1α2α3 85.1. 82.6 77.5 66.4
3CAR 2x, α1α3 85.1 82.6 77.5 66.5
3CAR 2x, α1 87.2 83.9 77.5 66.3
2CAR, α1α2α3, L1σ 98.1 97.9 96.3 92.7
GMRF, α5, L1σ 92.4 89.4 86.0 83.8
3CAR, α1α2α3, L1σ 87.8 85.7 79.2 67.0
2CAR-KL, α1α2α3, L1σ 94.1 91.9 88.6 81.6
2CAR-KL 2x, α1α2α3, L1σ 94.2 92.9 89.2 81.7
3CAR-KL 2x, α1α2α3, L1σ 90.3 88.3 81.8 69.2

grey-scale texture images. Moreover, [21] reported 68.4% ac-
curacy for LBP8,1+8,3 also on grey-scale images, and 53.3%
of accuracy achieved by Opponent Gabor features on colour
images preceded by comprehensive colour normalisation.

In addition to the previously described experiment, we
have also added Gaussian noise to the test set images. Be-
cause of small image size, the MRF models have to be re-
stricted to two levels of the Gaussian pyramid and the third
order hierarchical neighbourhood. As a consequence the fea-
ture vector 2CAR-KL 2x, α1α3 is about five times smaller
than the vector of LBP8,1+8,3 features. The best result on
the original test set was achieved with LBP8,1+8,3 on grey
images with 71.6% followed by the best of MRF features
with 67.5% of classification accuracy. However, the results
change dramatically with added noise, the LBP8,1+8,3 fea-
tures drop down to 38.6% showing their vulnerability to
added noise. The MRF based features are not so noise sen-
sitive, because Gaussian noise is inherent part of the model.
All versions of Gabor features performed better than in the
previous experiment, however in most of the cases still worse
than the MRF features.

Table 3: Results [%] of the Outex classification test
set number 14. The classification was performed
using three nearest neighbours.

added noise σ
method 0 2 4 8
Gabor f. 37.5 37.0 36.2 35.6
Gabor f., grey img . 44.3 43.3 43.2 41.3
Opponent Gabor f. 50.7 49.3 45.3 37.3
Steerable pyramid 37.5 35.9 34.9 32.6
Gabor f., norm. 57.0 59.9 60.3 57.1
Gabor f., grey img, norm. 54.5 61.3 63.3 62.9
Opponent Gabor f., norm. 56.7 55.8 54.3 47.9
Steerable pyramid, norm. 45.5 45.4 46.8 47.2
LBP8,1+8,3 66.8 56.6 48.8 36.7
LBPu

16,2 62.0 52.9 41.2 28.7
LBP8,1+8,3, grey img. 71.6 62.2 54.6 38.6
LBPu

16,2, grey img. 67.6 60.4 49.8 32.9
LBPu

16,2, grey img., rotinv 56.9 45.2 34.2 19.7
2CAR-KL, α1α2α3 66.3 64.1 61.8 55.3
2CAR-KL, α1α3 66.3 64.1 61.8 55.3
2CAR-KL, α1 59.8 59.1 56.5 51.8
GMRF-KL, α4α5 61.3 60.2 57.1 49.2
GMRF-KL, α5 61.2 60.3 57.0 49.0
GMRF-KL 55.1 51.8 48.5 45.7
3CAR, α1α2α3 58.9 57.5 56.0 49.8
3CAR, α1α3 58.6 57.5 56.0 49.8
3CAR, α1 53.7 52.4 49.5 44.6
2CAR-KL 2x, α1α2α3 67.5 65.2 61.8 56.4
2CAR-KL 2x, α1α3 67.5 65.2 61.8 56.4
2CAR-KL 2x, α1 62.4 61.1 57.1 54.5
3CAR 2x, α1α2α3 61.6 59.1 57.0 50.7
3CAR 2x, α1α3 61.5 59.0 57.0 50.7
3CAR 2x, α1 57.6 55.4 52.3 46.8
2CAR, α1α2α3, L1σ 63.5 61.5 59.4 55.1
GMRF, α5, L1σ 60.8 60.2 57.2 51.8
3CAR, α1α2α3, L1σ 55.6 54.3 52.2 44.0
2CAR-KL, α1α2α3, L1σ 62.9 61.1 59.0 55.6
2CAR-KL 2x, α1α2α3, L1σ 64.0 63.4 63.4 57.9
3CAR-KL 2x, α1α2α3, L1σ 58.5 57.6 52.7 46.3

5. CONCLUSIONS
We have proposed new illumination invariant features for

content based image retrieval systems. These features are
derived from the underlying Markov random field texture
representation and they are invariant to variations of bright-
ness and spectrum of illumination sources. We have experi-
mentally verified that proposed features are simultaneously
robust to image degradation by the additive Gaussian noise.

The proposed methods were compared with Gabor fea-
tures, Opponent Gabor features, steerable pyramid and LBP
features, respectively. Although the LBP features confirmed
their illumination spectrum invariance, they had significant
difficulties with textures degraded by an additive noise. The
best results were achieved with invariants based on the 2-
dimensional CAR model with decorrelated spectral planes.
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Figure 1: Examples of texture retrieval from the Outex database. The upper half shows retrieval of original
textures, the 1st and 2nd row are results of “2CAR-KL, α1α3”, while the 3rd and 4th row are from “LBPu

16,2,
grey img.” method. The lower half shows the same retrievals on the textures with additive noise σ = 8.
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