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Introduction

This report introduces into the research program DIFEM at the Department of Stochas-
tic Informatics planned for the period 2005�2009. This program consist of a theoretical
characterization, algorithmization, programming and experimental veri�cation of selected
class of advanced methods of statistical analysis of discrete data. It is a part of the chapter
DECISION PROCESSES AND CLASSIFICATION of the Research Program DAR sup-
ported by the Ministry of Education of the Czech Republic. The aim of research program
is to provide a user-friendly package of computer programs applying to concrete data the
statistical methods proposed by the Department and recently published or accepted for
publishing in renowned international mathematics journals. The publication in this type
of journals guarantees the novelty and e¢ ciency of these methods. The recent date of
publication insures against their eventual appearance in the existing packages of statistical
programs.

The general schedule of this program is as follows:

1. Theoretical research (publications and/or research reports, 2005�2009).

2. Algorithmization and programming ( 2005�2009).

3. Experiments with simulated data (publications and/or research reports, 2006�2009).

4. User-friendly �nalization of programs (2008�2009).

A common feature of the statistical methods dealing with stochastic data and proposed
by Department of Stochastic Informatics is that they are based on divergences D(P; bP )
between hypothetical stochastic models P from a apriori given classes P and empirical
stochastic models bP obtained from the data. One of the internationally respected sci-
enti�c achievements of the Institute are the results concerning properties of divergences
of statistic models. The divergence-based statistical methods are thus a natural exten-
sion of these achievements. These methods can be classi�ed and roughly characterized as
follows:
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a. Estimation of a model from a given class P

eP = argmin
P2P

D(P; bP )
b. �-size testing of a simple hypothesis H � P:
Reject if

D(P; bP ) > Dcritical(�); 0 < � < 1:

c. �-size testing of a composite hypothesis H � P:
Reject if

min
P2P

D(P; bP ) > Dcritical(�); 0 < � < 1:

d. Classi�cation under an etalon class P = fP1; P2; : : : ; Png:

eP = argmin
P2P

D(P; bP ):
If D(P; bP ) is the classical logarithmic divergence (known also as a relative entropy of

P with respect to bP , or the Kullback divergence) then the estimation or classi�cation
are the classical maximum likelihood estimation or classi�cation respectively. Similarly
the testing of a simple or composite hypothesis is in this case the classical likelihood
ratio or generalized likelihood ratio testing respectively. If D(P; bP ) is not the classical
logarithmic divergence then the estimators, classi�ers of the tests of hypotheses di¤er
from the maximum likelihood classics.
Since various divergences of models P and bP are not mutually isotone (they are only

"approximately isotone") the estimators, classi�ers or tests obtained from various diver-
gencies usually di¤er slightly. To give a hint how to choose the most e¢ cient among
these slightly di¤erent solutions we propose special methods of empirical optimization of
estimators, classi�ers and �-size tests based on the approaches published in the recent pa-
pers of the Department. Details are deferred to the special reports dealing with concrete
divergence-depending estimators, classi�ers and tests.
The activities of research program DIFEM planned for 2005 consisted of theoretic

characterization, algorithmization and programming of compound statistical hypotheses
based the previous papers of the Department dealing with such hypotheses. Section 1.1
introduces into the testing of hypotheses based on �-divergence statistics and its robusti-
�cation using more general �-disparity statistics. Section 1.2 characterizes and illustrates
the compound statistical hypotheses studied previously in the department. Section 1.3
summarizes a basic theory on which is based the computer program COMPOTEST the
algorithm of which is given in Section 1.4. This report contains also the algorithm of the
subprogram EOTEST for empirical optimization of the �-disparity test (the subprogram
D in Section 1.4).
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1 Testing of compound hypotheses
(program COMPOTEST)

1.1 Preliminaries

A common statistical situation is that there is given a complete system of mutually ex-
clusive events

E = fE1; E2; : : : ; Erg (1.1)

which are outcomes of a random experiment with probability distribution P . The problem
is to test the hypothesis

H : (P (E1); P (E2); : : : ; P (Er)) = p (1.2)

for a given probability distribution

p = (p1; p2; : : : ; pr);
rY
j=1

pj > 0: (1.3)

The testing is based on the empirical evidence given by a system

Y = (Y1; Y2; : : : ; Yr) (1.4)

of frequencies of the events E1; E2; : : : ; Er observed in

n = Y1 + Y2 + � � �+ Yr (1.5)

independent realizations of the experiment. Namely, the empirical probability distribution

bp(n) = (bp1(n); bp2(n); : : : ; bpr(n)) 4= �Y1
n
;
Y2
n
; : : : ;

Yr
n

�
(1.6)

is compared with the hypothetical distribution (1.3).

As explained in Menéndez, Morales, Pardo and Vajda [4], the goodness-of-�t of bp(n)
and p can be measured by the �-disparity statistics

bT� = rX
j=1

pj�

�bpj(n)
pj

�
(1.7)

for � : (0;1) 7! R which is twice continuously di¤erentiable in neighbourhood of 1 with
�(1) = 0; �00(1) > 0 and with e�(t) 4= �(t)� �0(1)(t� 1) monotone on the intervals (0; 1)
and (1;1). Since �00(1) > 0, this means that e�(t) is decreasing (nonincreasing) on (0; 1)
and increasing (nondecreasing) on (1;1). This also means that the limit

�(0) = lim
u#0
�(u) 2 (�1;1]

exists and can be used as a substitution in (1.7) when bpj(n) = 0
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Let � be the class of the above considered functions � and e� its subclass restricted
to � 2 � with additional property �0(1) = 0. Since the above de�ned e� belongs to � if �
does so and (1.7) implies that bTe� = bT�;
we may assume without less of generality that � of (1.7) belongs to e� which is the class
of functions � : (0;1) 7! [0;1) nonincreasing on (0; 1), nondecreasing on (1;1) and
twice continuously di¤erentiable in a neighbourhood of 1 with �(1) = 0; �00(1) > 0. This
implies that the �-disparity statistics (1.7) are nonnegative, equal zero if and only if the
distributions bp(n) and p coincide.
Well known examples of functions from e� are the strictly convex functions

�(a)(t) =
ta � at+ a� 1
a(a� 1) ; a 2 R; a 6= 0; a 6= 1 (1.8)

and their limits
�(1)(t) = t ln t� t+ 1; �(0)(t) = � ln t+ t� 1 (1.9)

leading to the power statistics

bT (a) = 1

a(a� 1)

"
rX
j=1

bpj(n)ap1�aj � 1
#
; a 2 R; a 6= 0; a 6= 1 (1.10)

and their limits

bT (1) = rX
j=1

bpj(n) ln bpj(n)
pj

; bT (0) = rX
j=1

pj ln
pjbpj(n) : (1.11)

We see that 2nbT (1) is the log-likelihood ratio statistic and 2nbT (0) the reversed log-
likelihood ratio statistic. Further,

2nbT (2) = n" rX
j=1

bpj(n)2
pj

� 1
#
= n

rX
j=1

(bpj(n)� pj)2
pj

(1.12)

is the well-known Pearson statistic and

2nbT (0) = n" rX
j=1

p2jbpj(n) � 1
#
= n

rX
j=1

(bpj(n)� pj)2bpj(n) (1.13)

is the well-known Neyman statistic. Finally,

2nbT (1=2) = 8n"1� rX
j=1

qbpj(n)pj# = 4n rX
j=1

�qbpj(n)�ppj�2 (1.14)

is the Freeman�Tukey statistic.
As argumented in Lindsay [2], from the point of robustness it is desirable to use the �-

disparity statistics with the derivatives �0(t) bounded on (0;1). In the above considered
examples the derivative �0a(t) are unbounded on (0;1) for all real a. On other hand,

�a(t) = 1� exp
�
�a(t� 1)2

	
; a > 0 (1.15)
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are examples of functions belonging to e� with the derivatives �0a(t) bounded on (0;1)
for all a > 0.
Let us now return back to general statistic bT� of (1.7) which is a nonnegative measure

of disparity between the empirical distribution bp(n) and the hypothetical distribution p.
If this statistic exceeds certain critical value c� > 0 then the hypothesis (1.2) is rejected.
If we want to achieve the probability of the decision error (test size) equal to a given
0 < � < 1,then the critical value must depend on �, i. e. c� = c�(�). It is well-known
that if n ! 1 and r is �xed then the Pearson statistic 2nbT (2) tends in law to the �2-
distributed random variable �2r�1 with r � 1 degrees of freedom.
More generally (see Morales, Pardo and Vajda [5]),

lim
n!1

2n

�00(1)
bT� L
= �2r�1 (1.16)

so that asymptotically (for n ! 1 and r �xed) �-size test is obtained by the (1 � �)-
quantile

c�(�) = �
2
r�1(1� �) (1.17)

of the standardized �-disparity statistic

2nbT�
�00(1)

: (1.18)

Our aim is to provide a test of a given size 0 < � < 1 for several simultaneous hypotheses
of the type (1.2), including the case when the number k of such hypotheses is very large.
If several simple hypotheses are considered simultaneously then we speak about com-

pound hypotheses. Testing of compound hypotheses of the type (1.2) is described in the
next section.

1.2 Compound multinomial hypotheses

Let us now consider the situation more realistic than that of Section 1.1 in the sense
that instead of one complete system E = fE1; E2; : : : ; Erg of mutually exclusive events
considered in (1.1) there are k independent systems

Ei = fEi1; Ei2; : : : ; Eirig; 1 � i � k: (2.1)

The problem is to test the compound hypothesis

H : (P (Ei1); P (Ei2); : : : ; P (Eiri)) = pi; 1 � i � k (2.2)

for given probability distributions

pi = (pi1; pi2; : : : ; piri); 1 � i � k (2.3)

with pij > 0
The testing is based on the empirical evidence given by systems

Y i = (Yi1; Yi2; : : : ; Yiri); 1 � i � k (2.4)
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of frequencies of the events Ei1; Ei2; : : : ; Eiri observed in

ni = Yi1 + Yi2 + � � �+ Yiri

independent realizations of the experiment characterized by a probability distribution P
�guring in (2.2) with the sum

n = n1 + n2 + � � �+ nk: (2.5)

Namely the empirical probability distributions

bpi(ni) = (bpi1(ni); bpi2(ni); : : : ; bpiri(ni)) 4= �Yi1ni ; Yi2ni ; : : : ; Yirini
�

(2.6)

for 1 � i � k are jointly compared with the corresponding hypothetical distributions pi
given in (2.3). The comparison is based on the compound �-disparity statistics.

bT� = kX
i=1

wi bT�;i (2.7)

where
wi =

ni
n

(2.8)

are the weights proportional to the sample sizes ni and

bT�;i = riX
j=1

pij�

�bpij(ni)
pij

�
(2.9)

are the �-disparities of distributions bpi(ni) and pi de�ned for the � 2 � in accordance
with (1.7).
To obtain the critical values c�(�) of statistics (2.7) corresponding to the asymp-

totically �-size tests, we need to know the asymptotic distributions of these statistics.
Free parameters of the presented model are the number of classes k, the sample sizes
n1; n2; : : : ; nk and the distribution sizes r1; r2; : : : ; rk. Therefore the �rst problem is to
�nd the combinations of free parameters for which it is reasonable to study the asymp-
totics of compound �-disparity statistics. The empirical approach suggests the solution
of this problem based on concrete examples.

Example 2.1. Let the electoral preferences among men and women of Prague be studied
by a telephonic questioning of n1 men and n2 women. Hereminfn1; n2gmay be very large,
of the order of 103, while the number of classes k = 2 is small. The distribution sizes r1
and r2 coincide and they are given by the number of elected political parties which is a
relatively small number of the order of 10.

Example 2.2. Health states (e.g. diagnoses or anamnestic data) Ei1; Ei2; : : : are spec-
i�ed in a large ensemble of ni individuals distinguished by a given i-th combination of
symptoms. Here the range 1 � i � k of possible combinations of symptoms is typically
large too. The states Ei1; Ei2; : : : ; Eiri including their total numbers ri, strongly depend
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on the combinations of symptoms 1 � i � k. The numbers r1; r2; : : : ; rk themselves may
be large or small �this depends on the concrete medical research. For example, we have
r1 = r2 = � � � = rk = 2 if the medical screening is interested only in Ei1 = "normal body
temperature" and Ei2= "increased body temperature" for all combinations of symptoms
1 � i � k. On the other hand, ri will be large and varying with combinations of symp-
toms 1 � i � k if the medical research concentrates on anamnestic data Ei1; Ei2; : : : ; Eiri
detected in the class of patients with the combinations of symptoms 1 � i � k.

Example 2.3. Relatively small numbers n1; n2; : : : ; nk of skeletons of hominids living
in subsequent millenia 1; 2; : : : ; k are providing a fossilized evidence su¢ cient to describe
presence or absence of a given 32 skeletal antropologic features. In this case r1 = r2 =
� � � = rk is a constant equal 5=log232 while k may be large, of the order of 103.

Motivated by these examples, we shall consider the following separate cases. Note
that these cases are mutually disjoint but not exhaustive, i. e. their union does not cover
all possible situations.

Case A: maxfk; r1; r2; : : : ; rkg � minfn1; n2; : : : ; nkg. Mathematically, this means that
k and r1; r2; : : : ; rk (as well as the vectors p1,p2,. . . ,pk) are �xed and

minfn1; n2; : : : ; nkg ! 1: (2.10)

This case is illustrated by Example 2.1.

Case B: k � minfr1; r2; : : : ; rkg;maxfr1; r2; : : : ; rkg � minfn1; n2; : : : ; nkg. Mathe-
matically, this means that k is �xed and

minfr1; r2; : : : ; rkg ! 1; max

�
r21
n1
; : : : ;

r2k
nk

�
! 0: (2.11)

This case is illustrated by Example 2.2 when maxfr1; r2; : : : ; rkg is much smaller than
minfn1; n2; : : : ; nkg.

Case C: k � minfr1; r2; : : : ; rkg; fr1; r2; : : : ; rkg � fn1; n2; : : : ; nkg. Mathematically,
this means that k is �xed and

minfr1; r2; : : : ; rkg ! 1;
�
r1
n1
; : : : ;

rk
nk

�
! (
1; : : : ; 
k) (2.12)

where 0 < 
i <1 for all 1 � i � k. This case is illustrated by Example 2.2 when ri are
comparable to ni for all 1 � i � k.

Case D: maxfr1; r2; : : : ; rk; n1; n2; : : : ; nkg � k. Mathematically, this means that
r1; r2; : : : ; rk; n1; n2; : : : ; nk are uniformly bounded and

k !1: (2.13)

This case is illustrated by Example 2.3.
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1.3 Theoretical background

In this section we present results about asymptotic distributions of the compound �-
disparity statistics bT� de�ned in (2.7). Unless otherwise stated, these results were proved
in Morales, Pardo and Vajda [5]. The relation

lim bT� L
= X (3.1)

means the convergence of bT� in distribution to a random variable X. The interpretation
of the convergence (3.1) in the above speci�ed Cases A�D are intuitively clear �for a
rigorous de�nition we refer to pp. 339�340 in Morales, Pardo and Vajda [5].

Theorem 3.1. In the Case A

lim
2nbT�
�00(1)

L
= �2r�k (3.2)

for n given by (2.5) and
r = r1 + r2 + � � �+ rk: (3.3)

Proof. See a more general variant of (3.2) in Theorem 2.2 of Morales, Pardo and Vajda
[5]. That variant is established under local alternatives

P (Eij) = pij +
cijp
n
; 1 � j � ri; 1 � i � k (3.4)

where ci1 + ci2 + � � �+ ciri = 0 for all 1 � i � k.

Theorem 3.2. If in the Case B

lim inf min
1�i�k

ri min
1�j�ri

pij > 0 (3.5)

then

lim
1p
2r

"
2nbT�
�00

� r
#
L
= N(0; 1) (3.6)

for n given by (2.5) and r given by (3.3).

Proof. This statement follows from Theorem 3.1 of Morales, Pardo and Vajda [5] proved
under the local alternatives (3.4) but with the second condition of (2.11) replaced by the
stronger

max

�
r21 ln

2 n1
n1

; : : : ;
r2k ln

2 nk
nk

�
! 0:

The possibility to arrive at the desired end under the weaker condition considered in (2.11)
is o¤ered by replacing the central limit theorem of Inglot, Jurlewicz and Ledwina [3] used
in the proof of Morales, Pardo and Vajda [5] by the central limit theorem of Györ� and
Vajda [1].
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Remark 3.4. The condition (3.5) is automatically satis�ed under the uniform com-
pound hypothesis

H : pi = p
(ri); 1 � i � k (3.7)

where p(r) is the r-size uniform distribution,

p(r) =

�
1

r
;
1

r
; : : : ;

1

r

�
; r � 1: (3.8)

In the rest of the paper

EX; varX and cov(X; Y )

denote the expectation and variance of a random variable X and the covariance of X and
Y . Further, we put

�i = ED� (bpi(n);pn) = E riX
j=1

pij�

�
Yij
npij

�
(3.9)

and
�2i = varD� (bpi(n)�;pi) (3.10)

for the multinomialy distributed observations

Y i = (Yi1; Yi2; : : : ; Yiri) �Mri(ni;pi) (3.11)

introduced in (2.4). If ~pi(n) are the relative frequencies (2.6) obtained for the indepen-
dently Poisson distributed

~Y i =
�
~Yi1; ~Yi2; : : : ; ~Yiri

�
�

riN
j=1

Poisson(�ij) (3.12)

with the intensities
�ij = nipij; 1 � j � ri; 1 � i � k (3.13)

then we put

~�i = ED� (~pi(n);pi) = E

riX
j=1

pij�

 
~Yij
�ij

!
(3.14)

~�2i = varD� (~pi(n);pi) (3.15)

and

~s2i = n~�
2
i �

"
riX
i=1

cov

 
Yij; pij�

 
~Yij
�ij

!!#2
: (3.16)

The next theorem was proved in Morales, Pardo and Vajda [5].
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Theorem 3.5. If in the Case C in addition to (3.5)

lim sup max
1�i�k

ri max
1�j�ri

pij <1 (3.17)

and ~s21; : : : ; ~s
2
k are bounded, and bounded away from zero, then

lim

p
n(bT� � ~�)
~s

= N(0; 1) (3.18)

for n given by (2.5) and

� =
kX
i=1

wi~�i; ~s2 =

kX
i=1

wi~s
2
i (3.19)

de�ned by means of the weights (2.8), and for the same � 2 � as in the previous theorems
satisfying the additional conditions

lim
t#0
�(t) <1; lim

t!1

ln�(t)

t
<1: (3.20)

Remark 3.6. Under the uniform compound hypotheses (3.7) the conditions (3.5) and
(3.17) hold. The power functions �(a) 2 � de�ned by (1.8), (1.9) satisfy (3.20) for all
a > 0. It is clear from the next example that for �(2) 2 � the parameters ~s21; : : : ; ~s2k are in
the Case C bounded, and bounded away from zero, as required by Theorem 3.5.

Example 3.7. For � = �(2) de�ned by (1.8) we obtain from (3.14)

~�i = E

riX
j=1

pij �
(2)

 
~Yij
�ij

!

=
1

2ni

2X
j=1

E( ~Yij � �ij)2
�ij

= rij

=
1

2ni

riX
j=1

1 =
ri
2ni
:

Hence, by (2.12),
~�i = 
i; 1 � i � k: (3.21)

Further, by (3.15),

~�i =
1

4n2i

riX
j=1

var( ~Yij � �ij)2

�2ij

=
1

4n2i

riX
j=1

�ij(1 + 2�ij)

�2ij

=
1

4n2i

"
riX
j=1

1

npij
+ 2ri

#
:
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Since

cov

 
Yij; pij�

2

 
~Yij
�ij

!!
=

1

2n2i�ij
cov
�
Yij; (Yij � �ij)2

�
=

1

2ni
;

we get from (3.16)

~s2i =
1

4ni

"
riX
j=1

1

nipij
+ 2ri

#
� 1
4

"
riX
i=1

1

ni

#2

=
ri
2ni

 
1 +

1

2ri

riX
j=1

1

nipij
� ri
2ni

!
:

Taking again into account (2.2) we get

~s2i =

i
2

�
1 + 
iD

(2)
�
p(ri);pi

��
; 1 � i � k (3.22)

where p(ri) is the ri-valued uniform distribution de�ned by (3.8) and

D(2)(p; q) =
1

2

rX
i=1

(pi � qi)2
qi

=
1

2

 
rX
i=1

p2i
qi
� 1
!

is the Pearson-type �-disparity obtained for �(t) = �(2)(t) given by (1.8). Thus the
parameters ~s2i are in the Case C positive and �nite, increasing from 
i=2 when pi is
uniform to 1 when at least one coordinate of pi is approaching zero.

Example 3.8. Let us consider the bounded disparity function

�(t) =
�
1� t e1�t

� �
e; t > 0 (3.23)

belonging to the class � with the bounded derivative

�0(t) = (t� 1) e�t; t > 0: (3.24)

Here bT�;i = 1

e

 
1�

riX
j=1

bpij(n) exp�qij � bpij(n)
pij

�!
(3.25)

are the components (2.9) of the compound statistic bT� given as the linear combination
(2.7) with the weights (2.8). By (3.14),

~�i =
1

e

 
1�

riX
j=1

pij

1X
k=1

k

�ij
exp

�
1� k

�ij

�
�kij
k!
e��ij

!

=
1

e

 
1�

riX
j=1

pij exp

�
1� �ij �

1

�ij

� 1X
k=1

~�
k�1
ij

(k � 1)!

!
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for
~�ij = �ij e

�1=�ij :

Therefore

~�i =
1

e

 
1�

riX
j=1

pij exp

�
�ij e

�1=�ij + 1� �ij �
1

�ij

�!
where �ij = ni pij. If pi = p

(r), i. e., if pij = 1=ri, then �ij = 1=
i for 
i given in (2.12)
and all 1 � i � k. Hence in this case

~�i =
1

e

�
1� exp

�
e�
i � 1

i

+ 1� 1


i

��
; 1 � i � k: (3.26)

Similarly we can evaluate e�2i (3.27)

and es2i (3.28)

In the following theorem we use for the above considered function � = �(2) belonging
to � and the expectations �i and variances �

2
i de�ned by (3.9) and (3.10). We obtain for

all 1 � i � k

�i =
1

2n2i

riX
j=1

E(Yj � nipij)2
pij

=
ri � 1
2ni

(3.29)

and

�2i =
1

4n4i

n riX
j=1

E(Yj � nipij)4
p2ij

+

riX
` 6=j

E[(Yj � nipij) (Y` � npi`)]
pij i`

o
�
�
ri � 1
2ni

�2
=

ri
2n2i

�
niri � ni � ri + 1

niri
+
ri
ni
D(2)(p(ri);pi)

�
; (3.30)

where D(2)(p(ri);pi) is the same Pearson-type measure of non-uniformity of pi as that
considered in Example 3.7.

Theorem 3.9. Let in the CaseD the probabilities pij be bounded away from 0 uniformly
for all i and j and let pi be bounded away from the uniform distribution p(ri) uniformly
for all i such that ni = 1. Then

lim
bT (2) � �
�

L
= N(0; 1) (3.31)

where bT (2) = kX
i=1

wi bT (2)i (3.32)

for wi given by (2.8) and the Pearson type disparities

bT (2)i =
ni
2

riX
j=1

(bpij(n)� pij)2
pij

(cf. (1.12));
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and

� =
kX
i=1

wi�i; �2 =
kX
i=1

wi�
2
i (3.33)

for �i; �
2
i de�ned by (3.29), (3.30).

Proof. Clear from Theorem 4.1 in Morales, Pardo and Vajda [5]. �

1.4 Program COMPOTEST

Inputs parameters:

a. Natural numbers k; r1; r2; : : : ; rk; n1; n2; : : : ; nk.

b. Nonnegative integers 0 � Yij � ni for 1 � j � ri and 1 � i � k.

c. Rational numbers 0 � pij � 1 for 1 � j � ri and 1 � i � k. They de�ne compound
hypothesis.

d. Rational number 0 < � < 1. It de�nes the described test size.

e. A capital from set {A,B,C,D,E}. The choice from the subset {A,B,C,D} means
a manual speci�cation of one of the cases A,B,C,D speci�ed above. The choice
E means an automatic speci�cation of one of these cases. This speci�cation is
described in the point E below.

f. Subset A � A0 [ A1 where

A0 = f�2;�3=2;�1;�1=2; 0; 1=2; 1; 3=2; 2; 5=2; 3g

and
A1 = f10; 20; 30g

The set A speci�es the class of compound statistics bT� used by the program. If
a 2 A0 then T� = bT (a) is the compound power divergence statistic de�ned by (2.7)�
(2.9) for � = �(a) given by (1.7)�(1.8). If a = 10 then bT� is de�ned by (2.7)�(2.9)
for � given by (3.23). If a = 20 then bT� is de�ned by (2.7)�(2.9) for � given by a
special subprogram. Finally, a = 30 means an empirical choice of bT� from the class
a 2 A [ f10; 20g.

Subprograms:

A. Evaluation of bT (a) for a 2 A0. Here the compound statistics bT (a) are evaluated
for the input parameters a 2 A using the formulas (2.7)�(2.9) with � = �(a) of
(1.8), (1.9) inserted in (2.9). In other words, these statistics are evaluated by the
formula bT (a) = 1

n

kX
i=1

ni bT (a)i (4.1)
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where n and ni are the input parameters and bT (a)i are the power divergence statistics
given by (1.10), (1.11) with pj replaced by the input parameters pij and the empirical
probabilities bpj(n) by the rations

bpij(ni) = Yij
ni

(4.2)

of the input parameters Yij and ni as it is required by (2.6).

B. Evaluation of bT (a) for a = 10. Here the compound �-divergence statistic bT� is
evaluated by the formulas (2.7)�(2.9) for � given by (3.23). In other words,

bT� = 1

n

kX
i=1

riX
j=1

nipij�

�bpij(ni)
pij

�
(4.3)

where n, ni and pij are the input parameters, bpij(ni) are given by (4.2) for the input
parameters Yij and ni and

�(t) =
1� te1�t

e
; t � 0: (4.4)

C. Evaluation of bT (a) for a = 20. Here the compound �-divergence statistic bT� is
evaluated by the formulas (4.3) for � given by a special input subprogram. The
function �(t) must satisfy the assumptions presented in Section 1.1.

D. Evaluation of the empirically optimal bT� when a = 30. In this case the compound
�-divergence statistic bT� is selected from the class fbT (a) : a 2 Ag where the set
A is the input parameter. In this class bT (a) denotes the power divergence statistic
evaluated by the subbprogram A if a 2 A0, bT (10) denotes the statistic evaluated by
the subprogram B if a = 10 belongs to A and, similarly, bT (20) denotes the statistic
evaluated by the subprogram C if a = 20 belongs to A. The selection is done by a
program EOTEST (Empirically Optimized Test) described in the next step.

The EOTEST program has as input parameters natural number M > 1 (typically
a multiple of the above mentioned input parameter n) N (typically N = 104) and
a sequence �1; �2; : : : of independent uniformly distributed binary digits. For every
1 � m �M and 1 � i � k the program proceeds as follows.

(a) Using random digits �1; �2; : : : �ni which do not coincide (i. e. �j1 6= �j2 for at
least one pair 1 � j1 < j2 � ni) the support set Si = f1; 2; : : : ; nig is randomly
splitted in two subsupports Si;A and Si;B. Put

pi;A =
X
j2Si;A

pij; pi;B =
X
j2Si;B

pij (4.5)

and

�i;A = min

�
1;
1� pi;A
pi;A

�
; �i;B = min

�
1;
1� pi;B
pi;B

�
: (4.6)
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Since pij is assumed to be positive for all 1 � j � ni, it holds

0 < pi;A�i;A = (1� pi;A)�i;B < 1: (4.7)

Therefore the numbers

qij = f
pij(1 + �i;A) for j 2 Si;A
pij(1� �i;B) for j 2 Si;B

(4.8)

are nonnegative. We shall prove that if

qi;A =
X
j2Si;A

qij; qi;B =
X
j2Si;B

qij

then
qi;A + qi;B = 1 (4.9)

i. e. that qi = (qij : 1 � j � ri) is a probability distribution. By (4.5), (4.8)
and (4.9),

qi;A + qi;B = pi;A(1 + �i;A) + (1� pi;A)(1� �i;B)
= 1 + pi;A�i;A � (1� pi;A)�i;B
= 1 +minfpi;A; 1� pi;Ag �minfpi;A; 1� pi;Ag
= 1

so that (4.9) holds. The sets A;B and consequently, the parameters �i;A and
�i;B depend on the n-th block of the random variables �1; �2; : : : ; �ni, i. e. they
depend on 1 � m � M . The program evaluates for every 1 � m � M the
local alternatives to the distributions pi de�ned by

p
(m)
i =

�
1� 1

p
ni

�
pi +

1
p
ni
q
(m)
i (4.10)

where q(m)i are the distributions de�ned by (4.8) for A = A(m) and B = B(m).
Instead of (4.10) we can use the equivalent formula

p
(m)
ij = f

pij(1 +
�i;Ap
ni
) for j 2 Si;A

pij(1�
�i;Bp
ni
) for j 2 Si;B

(4.11)

From here we see that in the random subsupport A = A(m) the local alterna-
tives slightly increase the values pij and in the random complement B = B(m)

they slightly decrease these values. At the same time we see that the local
alternatives are random.

(b) For every 1 � m � M , the program simulates N independent random re-
alizations of the input data Yij generated by the models fp1; : : : ;pkg and
fp(m)1 ; : : : ;p

(m)
k g and evaluates the corresponding relative frequencies �(bT (a); �)

and �m(bT (a); �) of rejections of the compound hypothesis H given in (2.2) by
the �-size test using the compound statistics bT (a) for given input parameters
a 2 A and 0 < � < 1.
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(c) The program evaluates the weighted absolute distances of the local alternatives
p
(m)
i from the hypotheses pi,

L1;m =
kX
i=1

ni
n

niX
j=1

jpij � p(m)ij j

=
kX
i=1

ni
n

1
p
ni

h
p
(m)
i;A �

(m)
i;A + p

(m)
i;B �

(m)
i;B

i
=

2

n

kX
i=1

p
ni minfp(m)i;A (1� p

(m)
i;B )g (4.12)

(d) The program evaluates empirically optimized statistic

bT� 4
= argmax

1

M

MX
m=1

�(bT (a)� ; �)� �m(bT (a)� ; �)

L1;M
(4.13)

where the maximization extends over the input class of statistics fbT (a) : a 2 Ag
and �(bT (a); �), �m(bT (a); �) de�ned in (b). The actual size of the bT�-based test
of the compound hypothesis H of (2.2) can be estimated by

b� = �(bT�; �) (4.14)

and the power of this test under local alternatives of type

Am : (P (Ei1); P (Ei2); : : : ; P (Eiri)) = p
(m)
i ; 1 � i � k (4.15)

can be estimated by

b� = 1

M

MX
m=1

�m(bT�; �): (4.16)

(e) The program prints aopt 2 A de�ned by

bT (aopt) = bT�
for bT� given by (4.13), i. e. aopt indicates the empirically optimal statistic in the
input set fbT (a) : a 2 Ag. It also prints the estimates b� and b� of the actual size
and power of the empirically optimized test corresponding to this statistics.

E. Automatic speci�cation of the case. This subprogram will be proposed later after
collecting experience with the programs A-D.

F. Control of the statistics which are at the disposal for the given case (similarly as
the subprogram E, this subprogram will be proposed later).

G. Evaluation of the quantiles �2m(1� �) for 1 � m � r1 + r2 + : : : rk:

H. Evaluation of the standard normal quantiles F (1� �):
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