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ABSTRACT

Here, a new view on models with bounded errors is presented. These model are standardly estimated by min-max algorithms
without statistical interpretation. Here the Bayesian approach is used to estimate their parameters. The autoregressive model
with uniform innovations is defined for this purpose. If also unobservable quantities (states) are considered, the state model
with uniform innovations is introduced. An approximation of the posterior probability density for both models is proposed so
the estimation can run recursively as required in many application.

1. ARX MODEL WITH UNIFORM INNOVATIONS

1.1. Description

The parameterized model of the system with a single output yt is described by the probability density function (pdf):

f(yt|ψt,Θ) ≡ Uyt
(θ′ψ, r) ≡ χyt

(−r ≤ yt − θ′ψt ≤ r)
2r

(1)

where

ψt is regression vector made of past observed data d(t − 1) = d1, . . . , dt−1, di ≡ (yi, ui) and the current system input ut;
ψ′t ≡ [u′t, dt−1, . . . , dt−∂ , 1] with the model order ∂ ≥ 0,

θ is vector of regression coefficients,

r > 0 is a positive scalar half-width of the range of the innovations et ≡ yt − θ′ψt,

Θ ≡ (θ, r) are unknown parameters of the model,

Uy(µ, r) is a uniform pdf of y given by expectation µ and half-width r > 0,

χx(x∗) is an indicator function of the set x∗ evaluated at value x; it equals 1 if x ∈ x∗ and it is zero otherwise.

1.2. Parameter estimation

Parameters are described by the posterior pdf

f(Θ|d(t)) ∝ 1
rνt

χr(r ≥ r ≥ 0)χΘ(−1νt
r ≤Wt[−1, θ′]′ ≤ 1νt

r)

its statistics evolve

νt = νt−1 + 1, ν0 ≥ Ψ̊ + 1 is chosen a priori (data counter)

W ′
t =

[
W ′

t−1,Ψt

]
, W0 is chosen a priori (data matrix)

where

∝ denotes proportionality,
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Ψt is data vector; Ψ′
t ≡ [yt, ψ

′
t],

1νt
is column vector consisting of νt units,

r is a sure upper bound on r, ∞ ≥ r ≥ 0.

Methods used:
Point estimation - maximum likelihood (ML) estimate ≈ linear programming (LP)

1.3. Approximation

The dimension of Wt is time increasing therefore the recursive estimation needs an approximation. The original statistic Wt is
replaced by the approximate one Vt.

Problems to be solved:

• Choice of the dimension of the matrix Vt ⇔ memory length k

• Update and subsequent approximation
Vt−1 + new data vector Ψt → Vt (Kullback-Leibler divergence used as an approximation measure)

The best option minimizes the upper bound r ∈ (0, r).

Statistics in time t:

• Vt = {Vt−1,
1V, . . . , iV, . . . , kV }

• νt = {νt−1, νt−1 + 1}

1.4. Algorithm

Initialization

- Select the model structure (size of Ψt) + the dimension of the statistic V .

- Select lower and upper bounds on the estimated parameters and noise boundary (prior information).

- Construct V0, choose ν0 and set t = 0.

Recursive mode

1. Set t = t+ 1, acquire data dt and create the data vector Ψt.

2. Update the matrix Vt−1 to the matrix Vt by Ψt.



3. If Vt = Vt−1, then set νt = νt−1 and preserve the point estimate Θ̂t ≡ Θ̂t−1 of parameters Θ
otherwise set νt = νt−1 + 1 and update point estimates Θ̂t. Increase r if the above LP fails.

4. Go to the step 1. while data are available.

1.5. Illustrative example

The system described by the model (1) was simulated
with ψt = [yt−1, yt−2, yt−3, 1], r = 1, θ′ = [2.85,−2.7075, 0.8574, 0].
Parameters of the uniform ARX model were estimated using 100 data samples for memory length k = 5.
Prediction errors and the trajectories of ρt ≡ (θ̂t − θ)′(θ̂t − θ) are on the following figures:

2. STATE MODEL WITH UNIFORM INNOVATIONS

2.1. Description

The state model with single output yt and vector state xt is described by the following pdf’s

f(xt|A,B, xt−1, ut) ≡ Uxt
(Axt−1 +But, R) ≡ χxt (−R≤xt−Axt−1−But≤R)Qdim(R)

i 2Ri

f(yt|C,D, xt, ut) ≡ Uyt
(Cxt +Dut, r) ≡ χyt (−r≤yt−Cxt−Dut≤r)

2r

(2)

where
A, B, C, D are model parameters, matrices of appropriate dimensions,
R > 0 is a positive vector half-widths of the range of innovations wt ≡ xt −Axt−1 −But,
r > 0 is a positive scalar half-width of the range of innovations et ≡ yt − Cxt −Dut.

Joint pdf f(d(t), x(t)|A,B,C,D,R, r) can be constructed from conditional pdfs (2)

2.2. Parameters a state estimation

Tasks to be solved:

• Point estimation of the state xt and the noise boundaries R, r (known A, B, C, D)

• Point estimation of the model parameters A,B,C,D, and the noise boundaries R, r (known states)

• Complete point estimation of the state and parameters (Taylor expansion used)

Methods used:
Point estimation - maximum likelihood (ML) estimate ≈ linear programming (LP)



2.3. Approximation

The method of the "sliding window" is used here - LP uses only a finite number past data items.

3. CONCLUSIONS

• An alternative to the deterministic model with bounded errors is proposed.

• Exploitation in the cases when the models with unbounded support do not suite.

• Possibility of the noise-boundary estimation.

• The approximation of the posterior pdf allows the recursive run.

• Restriction on the states decreases parameterization ambiguity.

4. FUTURE PLANS

• Choice of the optimal memory length.

• Search for more expediential expansion point.

• Extension to the multi-dimensional data.

• Application to the traffic data.

The ARX model with uniform innovations is described in [2].
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