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Abstract

This paper presents a new approach to the blind deconvolution and superresolution problem

of multiple degraded low-resolution frames of the original scene. We do not assume any prior

information about the shape of degradation blurs. The proposed approach consists of building a

regularized energy function and minimizing it with respect to the original image and blurs, where

regularization is carried out in both the image and blur domains. The image regularization based

on variational principles maintains stable performance under severe noise corruption. The blur

regularization guarantees consistency of the solution by exploiting differences among the acquired

low-resolution images. Several experiments on synthetic and real data illustrate the robustness and

utilization of the proposed technique in real applications.

Index Terms

Image restoration, multichannel blind deconvolution, resolution enhancement, superresolution,

polyphase decomposition, regularization

I. I NTRODUCTION

Imaging devices have limited achievable resolution due to many theoretical and practical

restrictions. An original scene with a continuous intensity functiono(x, y) warps at the

camera lens because of the scene motion and/or change of the camera position. In addition,

several external effects blur images: atmospheric turbulence, camera lens, relative camera-

scene motion, etc. We will call these effectsvolatile blurs to emphasize their unpredictable

and transitory behavior, yet we will assume that we can model them as convolution with an

unknown point spread function (PSF)v(x, y). Finally, the CCD discretizes the images and

produces digitized noisy imagez(i, j) (frame). We refer toz(i, j) as alow-resolution (LR)

image, since the spatial resolution is too low to capture all the details of the original scene.

In conclusion, the acquisition model becomes

z(i, j) = D[v(x, y) ∗ o(W (x, y))] + n , (1)
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where n is additive noise andW denotes the geometric deformation (warping).D[·] =

S[g ∗ ·] is thedecimation operatorthat models the function of the CCD sensors. It consists

of convolution with thesensor PSFg(x, y) followed by thesampling operatorS, which we

define as multiplication by a sum of delta functions placed on a evenly spaced grid. The

above model for one single observationz(i, j) is extremely ill-posed. To partially overcome

this difficulty, we assume that multiple LR observations of the original scene are available.

Hence we write

zk(i, j) = D[vk(x, y) ∗ o(Wk(x, y))] + nk , (2)

where k is the acquisition index andD remains the same in all the acquisitions. In the

perspective of this multiframe model, the original sceneo(x, y) is a single input and the

acquired LR imageszk(i, j) are multiple outputs. The model is therefore called a single

input multiple output (SIMO) model. The upper part of Fig. 1 illustrates the multiframe LR

acquisition process. To our knowledge, this is the most accurate, state-of-the-art model, as it

takes all possible degradations into account.

Superresolution (SR) is the process of combining a sequence of LR images in order to

produce a higher resolution image or sequence. It is unrealistic to assume that the super-

resolved image can recover the original sceneo(x, y) exactly. A reasonable goal of SR

is a discrete version ofo(x, y) that has a higher spatial resolution than the resolution of

the LR images and that is free of the volatile blurs (deconvolved). In the sequel, we will

refer to this superresolved image as ahigh resolution (HR) imageu(i, j). The standard

SR approach consists of subpixel registration, overlaying the LR images on an HR grid,

and interpolating the missing values. The subpixel shift between images thus constitutes the

essential assumption. We will demonstrate that introduction of the volatile blurs brings about

a more general and robust technique, with the subpixel shift being a special case thereof.

The acquisition model (2) embraces three distinct cases frequently encountered in literature.

First, we face a registration problem, if we want to resolve the geometric degradationWk.

Second, if the decimation operatorD and the geometric transformWk are not considered,

we face amultichannel(or multiframe)blind deconvolution(MBD) problem. Third, if the

volatile blur vk is not considered or assumed known, andWk is suppressed up to a subpixel

translation, we obtain a classical SR formulation. In practice, it is crucial to consider all three

cases at once. We are then confronted with a problem ofblind superresolution(BSR), which

is the subject of this investigation.
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Figure 1: Low-resolution acquisition (top) and reconstruction flow (bottom).

Proper registration techniques can suppress large and complex geometric distortions (usu-

ally just up to a small between-image shift). There have been hundreds of methods proposed;

see e.g. [1] for a survey. So we can assume in the sequel that the LR images are partially

registered and thatWk reduces to a small translation.

The MBD problem has recently attracted considerable attention. First blind deconvolution

attempts were based on single-channel formulations, such as in [2]–[5]. Kunduret al. [6]

provide a good overview. The problem is extremely ill-posed in the single-channel framework

and lacks any solution in the fully blind case. These methods do not exploit the potential

of the multichannel framework, i.e., the missing information about the original image in

one channel is supplemented by the information in other channels. Research on intrinsically

multichannel methods has begun fairly recently; refer to [7]–[12] for a survey and other

references. Such MBD methods brake the limitations of previous techniques and can recover

the blurring functions from the input channels alone. We further developed the MBD theory

in [13] by proposing a blind deconvolution method for images, which might be mutually
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shifted by unknown vectors.

A countless number of papers address the standard SR problem. A good survey is for

example in [14], [15]. Maximum likelihood (ML), maximum a posteriori (MAP), the set

theoretic approach using POCS (projection on convex sets), and fast Fourier techniques can

all provide a solution to the SR problem. Earlier approaches assumed that subpixel shifts are

estimated by other means. More advanced techniques, such as in [16]–[18], include the shift

estimation of the SR process. Other approaches focus on fast implementation [19], space-

time SR [20] or SR of compressed video [17]. In general, most of the SR techniques assume

a priori known blurs. However, few exceptions exist. Authors in [21], [22] proposed BSR

that can handle parametric PSFs, i.e., PSFs modeled with one parameter. This restriction is

unfortunately very limiting for most real applications. To our knowledge, first attempts for

BSR with an arbitrary PSF appeared in [23], [24]. The interesting idea proposed therein is the

conversion of the SR problem from SIMO to multiple input multiple output (MIMO) using

so-called polyphase components. We will adopt the same idea here as well. Other preliminary

results of the BSR problem with focus on fast calculation are given in [25], where the authors

propose a modification of the Richardson-Lucy algorithm.

Current multiframe blind deconvolution techniques require no or very little prior infor-

mation about the blurs, they are sufficiently robust to noise and provide satisfying results

in most real applications. However, they can hardly cope with the downsampling operator

since this case violates the standard convolution model. On the contrary, state-of-the-art SR

techniques achieve remarkable results in resolution enhancement in the case of no blur. They

accurately estimate the subpixel shift between images but lack any apparatus for calculating

the blurs.

We propose a unifying method that simultaneously estimates the volatile blurs and HR

image without any prior knowledge of the blurs or the original image. We accomplish this

by formulating the problem as a minimization of a regularized energy function, where the

regularization is carried out in both the image and blur domains. The image regularization

is based on variational integrals, and a consequent anisotropic diffusion with good edge-

preserving capabilities. A typical example of such regularization is total variation. However,

the main contribution of this work lies in the development of the blur regularization term.

We prove that, under very mild conditions, the blurs can be recovered from the LR images

up to small ambiguity. One can consider this as a generalization of the results proposed for

blur estimation in the case of MBD problems. This fundamental observation enables us to
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build a simple regularization term for the blurs even in the case of the SR problem. To tackle

the minimization task, we use an alternating minimization approach (see Fig. 1), consisting

of two simple linear equations.

Since the BSR problem requires complex matrix and vector manipulations, we dedicate

the next section to notation used in the sequel. The rest of the paper is organized as follows.

Section III states the acquisition model in the discrete case. Section IV reformulates the

acquisition model using polyphase components. The fundamental theorems that provide

solution to the BSR problem appear in Section V. The proposed regularized energy function

together with the alternating minimization algorithm is described in Section VI. Performance

of the proposed method under different conditions is demonstrated in the experimental

Section VII and Section VIII concludes the paper.

II. N OTATION

Our formulation of the BSR problem confines to the discrete domain with images of

rectangular support and we use the following conventions throughout the sequel:

u(i, j) discrete image, lowercase letters

Su := (Su
1 , Su

2 ) size of the imageu(i, j) : (i, j) ∈ 〈0, Su
1 − 1〉 × 〈0, Su

2 − 1〉
U(ξ1, ξ2) :=

∑
0≤(i,j)≤Su ξi

1ξ
j
2u(i, j), z-transform1 of u

u := [u(0, 0), u(1, 0), . . . , u(Su
1−1, 1), u(0, 1), . . . , u(Su

1−1, Su
2−1)]T image

column vector, lowercase bold letters

C matrix, uppercase bold letters

SC := (SC
1 , SC

2 ) size of the matrixC

[·]F operation inZF , i.e., in the group of integers moduloF

d·e round up to the closest integer

(·)+ (x)+ = x for x ≥ 0, and(x)+ = 0 for x < 0

‖ · ‖ l2 norm

In order to shorten the notation, we define the following operators on the size pair (Su):

“+”, “−” defined in a standard way

(i, j) + k := (i, j) + (k, k)

(i, j) := ij

(i, j) < (k, l) := {i < k∧j < l} and similarly other binary relations “>”, “ =”,

etc.
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Let us define convolution with a variable output support. We follow the definition in [7].

Let h and u be two images of sizeSh := (Sh
1 , Sh

2 ) and Su := (Su
1 , Su

2 ), respectively, and

A := (a1 +1, a2 +1), B := (b1 +1, b2 +1) define an arbitrary output rectangle, whereA ≤ B.

Separateh column-wise and address individual columns ash(0), . . . ,h(Sh
2 −1). We denote a

convolution matrix with a variable output support byCA,B
Su {h}. It is a Toeplitz-block-Toeplitz

(TBT) matrix of size(B − A + 1, Su) such thatCA,B
Su {h}u gives the concatenatedA × B

rectangle ofh ∗ u. More specifically

CA,B
Su {h} :=




Da1,b1
Su

1
{h(a2)} . . . Da1,b1

Su
1
{h(a2 − Su

2 + 1)}
Da1,b1

Su
1
{h(a2 + 1)} . . . Da1,b1

Su
1
{h(a2 − Su

2 + 2)}
...

.. .
...

Da1,b1
Su

1
{h(b2)} . . . Da1,b1

Su
1
{h(b2 − Su

2 + 1)}




︸ ︷︷ ︸
Su

2 blocks

(3)

and

Da,b
s {h(j)} :=




h(a, j) h(a− 1, j) . . . h(a− s + 1, j)

h(a + 1, j) h(a, j) . . . h(a− s + 2, j)
...

...
.. .

...

h(b, j) h(b− 1, j) . . . h(b− s + 1, j)




whereDa,b
s {h(j)} is of size(b− a + 1, s) andh(i, j) = 0 if (i, j) is outside theh support.

Two important cases of different output size are: “full” convolutionC1,Su+Sh−1
Su {h} and

“valid” convolution CSh,Su

Su {h}. We have adopted the Matlab naming convention here. The

abbreviated formCSu{h} will always denote full convolution.

For further discussion, it is necessary to define notation for downsampled images and

special submatrices. LetF denote a positive integer step (downsampling factor) and letSi
m

be a 1-D sampling matrix of size(d(m − i)/F e,m), wherei = 0, . . . , F − 1. Each row of

the sampling matrix is a unit vector whose nonzero element is at the appropriate position so

that, if the matrix is multiplied by a vector of size(m, 1), the result is everyF -th element of

the vector starting from the(i + 1)-th element. In the 2-D case, the(d(Su − (i, j))/F e, Su)

sampling matrix for the image sizeSu is defined by

Sij
Su := Si

Su
1
⊗ Sj

Su
2
, (4)

1We use thez-transform with positive powers to simplify the notation.
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Figure 2: Polyphase decomposition forF = 2: Original image u decomposes into 4

downsampled images.

where⊗ denotes the matrix direct product (Kronecker product operator). Then on the image

u we define the downsampled image in the vector form as

uij := Sij
Suu , (5)

which is equivalent to

uij := [u(i, j), u(i + F ), j), u(i + 2F, j), . . . , u(i, j + F ), u(i + F, j + F ), . . . ]T .

We have thusF 2 distinct downsampled versions of one image; see Fig. 2. In thez-domain

we refer to the downsampled imagesuij as polyphase componentsU ij(ξ1, ξ2) and one can

readily see that

U ij(ξ1, ξ2) :=
∑

0≤(x,y)≤Su−1

ξx
1 ξy

2u(Fx + i, Fy + j) . (6)

In the sequel we will often calluij polyphase components as well and from the context it

will be clear whether we refer to the components in thez-domain or in the image domain.

On the convolution matrixH = CA,B
Su {h} for A, B given above andC = B − A + 1, we

define a submatrixHij,kl by

Hij,kl := Sij
CH(Skl

Su)T (7)

The matricesHij,kl’s are still TBT as the originalH and one can verify that each performs

convolution with the polyphase componenth[i−k+a1]F ,[j−l+a2]F .
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III. M ATHEMATICAL MODEL

Let us assume we haveK different LR frames{zk} (each of equal sizeSz) that represent

degraded (blurred and noisy) versions of the original scene. Our goal is to estimate the HR

representation of the original scene, which we denoted as the HR imageu. The LR frames are

linked with the HR image through a series of degradations similar to those betweeno(x, y)

and zk in (2). First u is geometrically warped (Wk), then it is convolved with an volatile

PSF (Vk) and finally it is decimated (D). The formation of the LR images in vector-matrix

notation is then described as

zk = DVkWku + nk , (8)

wherenk is additive noise present in every channel. The decimation matrixD = SG simulates

the behavior of digital sensors by performing first convolution with the sensor PSF (G) and

then downsampling (S). The Gaussian function is widely accepted as an appropriate sensor

PSF and it is also used here. Its justification is experimentally verified in [26]. We assume

that the downsampling factor (or SR factor, depending on the point of view), denoted byF ,

is the same in both directions. Note thatF is a user-defined parameter. IfF is an integer

thenS is equivalent to (4) and is of size(Sz, F 2Sz). The variance of the sensor PSF together

with the downsampling factorF characterize the digital sensor in use and fully define the

decimation matrix. In principle,Wk can be a very complex geometric transform that must be

estimated by image registration or motion detection techniques. We have to keep in mind that

sub-pixel accuracy is necessary for SR to work. Standard image registration techniques can

hardly achieve this and they leave a small misalignment behind. Therefore, we will assume

that complex geometric transforms are removed in the preprocessing step andWk reduces

to a small translation. HenceVkWk = Hk, whereHk performs convolution with the shifted

version of the volatile PSFvk, and the acquisition model becomes

zk = DHku + nk = SGHku + nk . (9)

In our formulation we know the LR images{zk} and we want to estimate the HR image

u supposing that onlyG is known on the right hand side of the equation. To avoid annoy-

ing boundary effects, we assume that each observationzk captures only part ofu, which

can be done by implementingHk and G as “valid” convolution matricesCSh,Su

Su {hk} and

CSg ,Su−Sh+1
Su−Sh+1

{g}, respectively.

In the case ofF = 1, the downsamplingS is not present and we face a standard MBD

problem that has been solved elsewhere [7], [13]. Here we are interested in the case of
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F > 1, when the downsampling occurs. Can we estimate the blurs like in theF = 1 case?

The presence ofS prevents us to use results in [7], [13] directly. In the next section we

use the polyphase formulation, transfer the problem from SIMO to MIMO and end up with

a formulation of (9) withoutS. We then show that similar conclusions obtained for MBD

apply here as well.

IV. POLYPHASE FORMULATION

Polyphase components, as defined in (5) and illustrated in Fig. 2, consider only integer SR

factors (2,3,...). This is a limiting fact since it has been shown in [27] that in real situations

SR above 2 is problematic and that non-integer SR factors between 1 and 2 are required. We

first derive polyphase formulation for integer SR factors and then by a simple trick extend

it to any rational SR factor.

A. Integer downsampling factorF

Let us consider a simple convolution equationy = h ∗ u, in the vector-matrix notation

y = Hu , (10)

Let P be a matrix defined as

PSy := [(S0,0
Sy )T , . . . , (SF−1,0

Sy )T , (S0,1
Sy )T , . . . , (SF−1,F−1

Sy )T ]T , (11)

whereSi,j
Sy is the sampling matrix in (4). Note thatPS is a permutation matrix and therefore

PT
SPS = PSP

T
S = IS. Multiplying (10) by PSy , we get

PSyy = (PSyHPT
Su)PSuu (12)

and using the polyphase notation



y00

y10

...

y(F−1)(F−1)




=




H
00,00

H
00,10

. . . H
00,(F−1)(F−1)

H
10,00

H
10,10

. . . H
10,(F−1)(F−1)

...
...

. ..
...

H
(F−1)(F−1),00

H
(F−1)(F−1),10

. . . H
(F−1)(F−1),(F−1)(F−1)







u00

u10

...

u(F−1)(F−1)




(13)

Similar decomposition was proposed, e.g., in [28]. To avoid long notation with the permuta-

tion matrix PS, we will use a more compact form

yP (F ) = HP (F )uP (F ) , (14)
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where yP (F ) = PSyy, uP (F ) = PSuu and HP (F ) = (PSyHPT
Su). Let us denote the row

submatrices ofHP (F ) as H(ij,:) := [Hij,00, . . . ,Hij,(F−1)(F−1)] and column submatrices as

H(:,ij) := [(H00,ij)T , . . . , (H(F−1)(F−1),ij)T ]T . Every H(ij,:) (and likewiseH(:,ij)) comprises

F 2 convolution matricesHij,kl and each convolution matrix performs convolution with one

polyphase component of the PSFh. To get a better insight into the structure ofHP (F ),

we provide two statements easily verifiable:H(ij,:) first performs convolution withh shifted

by (−i,−j) and then downsamples the result byF ; H(:,ij) first upsamples the input byF ,

performs convolution withh shifted by (−i,−j) and then shuffles the result to separate

polyphase components.

We see that (14) is just a permutation of rows and columns of (10). The advantage of the

polyphase formulation resides in the fact that downsampling is equivalent to considering only

a section of (14), e.g.,y00 = H(00,:)uP (F ) = S0,0
Sy Hu. To conclude this part, we reformulate

the acquisition model (9) using polyphase components and obtain

zk = G(00,:)H
P (F )
k uP (F ) + nk , (15)

whereG(00,:) is analogous toH(00,:). Any G(ij,:) can be used here but they are all equivalent

from the reconstruction point of view, since they correspond to different translations of the

original HR imageu. The downsampling matrixS is gone but at the cost of transforming the

problem into the MIMO model. We haveK output channels as before butF 2 input channels

(polyphase components ofu).

B. Rational downsampling factorF = p/q

Integer SR factors are too limiting. From the practical point of view, we would like to

have non-integer SR factors as well. We can extend the above results to factors that can

be expressed as a fractionp/q wherep and q are positive integers andp > q (p and q are

reduced so that they do not have any common factor).

Let F = p/q and the sampling frequency of the LR imageszk be q, then the sampling

frequency of the HR imageu will be p. From each LR imagezk we generateq2 polyphase

components. We can consider these polyphase components as new output (low-LR) images

with the sampling frequency1 and we arrive to a SR problem withF = p. In other words, in

order to get an integer SR factor we downsample the LR images and thus artificially increase

the number of output channels. However, the number of unknown PSFshk remains the same.
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Figure 3: Rational downsamplingF = 3/2 in 1-D: We have LR signals (middle row) with

the sampling frequency 2 and we want to obtain a HR signal (top row) with the sampling

frequency 3. We convert this scenario to the one with the integer SR factor by considering

every second sample of the LR signal and thus creating from each LR signal two signals

(bottom row) of half size. These low-LR signals are then used in the SR problem with the

integer factor 3.

We still haveK PSFs since every pack ofq2 low-LR images contains the same blur. An

illustrative diagram of the process in 1-D forF = 3/2 is given in Fig. 3.

Similarly to (15), we reformulate the acquisition model (9) using polyphase components

and write

z
P (q)
k =




G(00,:)

...

G((q−1)(q−1),:)


H

P (p)
k uP (p) + nk , (16)

whereq2 submatricesG(00,:), . . . ,G((q−1)(q−1),:) are fromGP (p). We see that the rational SR

factors can be expressed in a similar fashion as the integer factor. Only in this case, the

resulting MIMO problem hasKq2 output channels andp2 input channels.

It remains to gloss the discretization of convolution with the sensor PSFg in the case of

fractional SR factors. Sincep is not divisible byq, the productSG is shift-variant and it

depends on a relative shift between the HR and LR pixels. One can readily see that the relative

shift repeats everyq-th pixels (in both directions x and y) of the LR image and therefore we

haveq2 distinct PSF discretizations. The configuration forF = 3/2 is illustrated in Fig. 4.

In the above model (16), each submatrixG(ij,:) thus performs convolution with one of the
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HR pixel
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 g
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LR pixel

size of
LR pixel
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HR pixel

(a)

1 2 3 4 5 6 7 8 9 10
HR pixel
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 P
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 g

1 2 3 4 5 6 7
LR pixel

(b)

Figure 4: Sensor PSF discretization for the SR factor of3/2: Different discretizations of the

PSF reside in a varying relative shift between LR and HR pixels. If the LR pixels is1.5×
the size of the HR pixel, then two distinct discretizations (a) and (b) show up in 1-D (in

2-D we have 4 discretizations). The plotted curves depict the sensor PSF in the continuous

domain at different locations and the bar plots the discrete version of the PSF.

q2 discretizations ofg and downsamples the result byp.

V. RECONSTRUCTION OF THE VOLATILE BLURS

We have the MIMO polyphase formulation for integer SR factors in (15) and its gen-

eralization for any rational factor in (16). The aim of this section is to use the polyphase

formulation and derive fundamental theorems that will allow us to reconstruct the volatile

PSFshk. We show that in the ideal case without any noise one can determinehk solely

from LR imageszk. Subsection V-A considers integerF , for which some ambiguity in the

solution ofhk is inevitable. Subsection V-B discusses rationalF , for which perfect solution

is possible but only if the sensor blurg is known. Reducing the ambiguity of the solution is

the topic of Subsection V-C. The last subsection addresses an issue of efficient calculation.

First, let us define notions of persistently exciting and co-primeness for polyphase com-

ponents.

Definition 1 (Polyphase persistently exciting):The imageu is calledF -polyphase persis-

tently excitingfor sizeSh iff all F 2 polyphase components ofCSh,Su

Su {h}u are nonzero for

all h 6= 0 of sizeSh.
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This assumption is very mild and it is satisfied for all common images as long as the image

size is sufficiently larger than the PSF size.

Definition 2 (Polyphase co-primeness):Consider a set of PSFs{hk}K
1 , their z-transforms

{Hk(ξ1, ξ2)}K
1 and polyphase components{H ij

k (ξ1, ξ2)}K
1 , i, j ∈ {0, . . . , F − 1}. They are

F -polyphase co-primeiff for every (i, j) there does not exist a common factorC(ξ1, ξ2) 6= 1

: H ij
k (ξ1, ξ2) = C(ξ1, ξ2)H̃

ij
k (ξ1, ξ2), ∀k = 1, . . . , K.

The definition of co-primeness expresses precisely the disparity between different observation

channels that is necessary in order to recover the volatile blurs.

In addition, we will assume in the following discussion that polyphase components of the

PSFs are linearly independent across channels:

Assumption A1:For the given set of PSFs{hk}K
1 and SR factorF it holds that

∑
i,j

αij




hij
1

...

hij
K


 = 0 iff αij = 0, ∀i, j = 0, . . . , (F − 1) ,

wherehij
k are polyphase components ofhk.

A. Integer downsampling factor

The estimation of the volatile blurshk proceeds in two steps. First, we construct from the

LR imageszk a convolution matrixZ with a predetermined nullity. Second, we take the null

space of this matrix and construct a new matrixN , which then contains the true PSFs in its

null space. The first step in its nature is similar to the procedure proposed in [9], [29] for

solving the MBD problem.

We need to slightly rearrange the acquisition model in (15). LetSθ be the size of “nullify-

ing” filters. The meaning of this name will be clear later. LetSh be the maximum size

of the PSFs{hk}K
1 . Define “full” convolution matricesHk := CF (Sθ−1)+1{hk}, G :=

CF (Sθ−1)+Sh{g} and “valid” convolution matricesU := C
F (Sθ−1)+Sg+Sh−1,Su

F (Sθ−1)+Sg+Sh−1
{u}, Zk :=

CSθ,Sz

Sθ {zk}. Further define

Z := [Z1, . . . ,ZK ] and

H := [H
(:,00)
1 , . . . ,H

(:,00)
K ]

of size(Sz − Sθ + 1, KSθ) and(F (Sθ − 1) + Sh, KSθ), respectively. The degradation model

(15) for the integer SR factorF becomes

Z = U(00,:)GP (F )H (17)
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Lemma 1:The null space ofZ is bounded from below withnullity(Z) ≥ (KSθ −
F (Sθ − 1) + Sh)+.

Proof: The dimensions ofH in (17) imply the lower bound. If it has more columns

then rowsnullity(Z) ≥ SH2 − SH1 = KSθ − F (Sθ − 1) + Sh elsenullity(Z) ≥ 0.

We know that sinceG is a convolution matrix that has more rows than columns, it has

full column rank (see proof in [7] for general convolution matrices). We assume thatU is

F -polyphase persistently exciting for sizeF (Sθ−1)+Sg +Sh−1, which implies thatU(00,:)

has full column rank. This is almost certainly true for real images ifU(00,:) has at least as

many rows as columns. If the assumption holds,Null(Z) ≡ Null(H). SetN := Null(Z).

In accordance with the above lemma the size ofN is SN = (KSθ, N), where we assume

N ≥ KSθ − F (Sθ − 1) + Sh > 0. We visualize the null space as

N =




θ1,1 . . . θ1,N

...
.. .

...

θK,1 . . . θK,N


 , (18)

whereθkn is the vector representation of the nullifying filterθkn of size Sθ, k = 1, . . . , K

and n = 1, . . . , N . Let θ̃kn of size F (Sθ − 1) + 1 denote upsampledθkn by factor F such

that θ̃00
kn = θkn and θ̃ij

kn = 0, ∀(i, j) 6= (0, 0), i.e., θ̃kn = (S00
F (Sθ−1)+1

)T θkn. Then, we define

N :=




CSh{θ̃1,1} . . . CSh{θ̃K,1}
...

.. .
...

CSh{θ̃1,N} . . . CSh{θ̃K,N}


 (19)

and conclude that

Nh = 0 , (20)

whereh = [hT
1 , . . . ,hT

K ]T . This equation is a potential solution to the blur estimation problem.

Unfortunately, since it was derived from (17), which is of the MIMO type, the ambiguity

of the solution is high. It has been shown in [30] that the solution of the blind 1-D MIMO

case is unique apart from a mixing matrix of input signals. The same holds true here and it

is summarized in the next theorem that determines the nullity ofN .

Theorem 1:Assume thatSθ satisfies

N := KSθ − F (Sθ − 1) + Sh > 0 (21)

and

NF (Sθ − 1) + Sh ≥ KSh . (22)
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Further assume that the HR imageu is F -polyphase persistently exciting for sizeF (Sθ −
1)+Sg +Sh−1. For every polyphase index(i, j), let there exist a common factorCij(ξ1, ξ2)

of sizeScij : H ij
k = Cij(ξ1, ξ2)H̃

ij
k (ξ1, ξ2), ∀k = 1, . . . , K. It then holds that

nullity(N ) =
∑

0≤(i,j)≤(F−1)

F 2Scij (23)

For the proof see Appendix.

It has been shown in [7] that the assumption of co-primeness is mild, and that generically,

any two common deterministic discrete filters are co-prime. The same holds true for polyphase

co-primeness2. If this is the case, the following corollary applies.

Corollary 1: Suppose thatSθ satisfies (21) and (22). If the HR imageu is F -polyphase

persistently exciting for sizeF (Sθ − 1) + Sg + Sh− 1 and the PSFs{hk}K
1 areF -polyphase

co-prime thennullity(N ) = F 4.

Proof: If {hk}K
1 are F -polyphase co-prime then the only common factorsCij(ξ1, ξ2)

are scalars that are of sizeScij = 1 and the result follows directly from Theorem 1.

The conclusion of the theorem and corollary may seem to be pessimistic (e.g., forF = 2

the nullity is at least16; however forF = 3 the nullity is already81). Nevertheless, we will

show in Section VI thatN plays an important role in the regularized restoration algorithm

and its ambiguity is not a serious drawback.

Up to this point we have assumed that the maximum size of the volatile PSFs (Sh) is known

or correctly estimated. In many real cases this is seldom true and one should analyze the

dependence ofnullity(N ) on blur-size overestimation. LetSĥ denote the overestimated blur

size such thatSĥ−Sh = (L1, L2) ≥ 0. It holds that the blur-size overestimation is equivalent

under thez-transform to multiplying the original blurs by a spurious factor of degree at most

(L1, L2), i.e., the spurious factor in the image domain will be of size(L1, L2). Therefore,

one can apply Theorem 1 also to blur-size overestimation and derive the next corollary.

Corollary 2: Let (L1, L2) = (Sĥ − Sh) ≥ 0. Suppose thatSθ satisfies (21) and (22), in

which Sĥ substitutesSh. If the HR imageu is F -polyphase persistently exciting for size

F (Sθ − 1) + Sg + Sĥ − 1 and the original PSFs{hk}K
1 are F -polyphase co-prime then

nullity(N ) = F 2(L1, L2) + 1.

Proof: If the blur size is overestimated by(L1, L2) pixels then for the size of the

spurious factorsCij(ξ1, ξ2) holds
∑

0≤(i,j)≤(F−1) Scij = (L1, L2) + 1 and the result follows

directly from Theorem 1.

2Note that co-primeness does not imply polyphase co-primeness and vice versa.
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B. Rational downsampling factor

Now we consider the rational downsampling factorF = p/q and start the analysis by

rearranging the acquisition model in (16). Again, letSθ be the size of nullifying filters and

Sh the maximum size of the PSFshk’s. In accordance with the discussion in the previous

section, we haveq2 distinct discretizations of the sensor PSFg that depend on the relative shift

between HR and LR pixels. Letgij (i, j = 0, . . . , q−1) denote such discretizations. Similarly,

we define “full” convolution matricesHk := Cp(Sθ−1)+1{hk}, Gij := Cp(Sθ−1)+Sh{gij} and

“valid” convolution matricesU := C
p(Sθ−1)+Sg+Sh−1,Su

p(Sθ−1)+Sg+Sh−1
{u}, Zk := CqSθ,Sz

qSθ {zk}. Then define

Z ′ := [Z
(00,:)
1 , . . . ,Z

(00,:)
K ] ,

G := [G
P (p)
00 , . . . ,G

P (p)
(q−1)(q−1)] and

H′ := [Iq2 ⊗H
(:,00)
1 , . . . , Iq2 ⊗H

(:,00)
K ]

of size (d(Sz − qSθ + 1)/qe, Kq2Sθ), (p(Sθ − 1) + Sg + Sh − 1, q2p(Sθ − 1) + Sh) and

(q2p(Sθ − 1) + Sh, Kq2Sθ), respectively. Note thatZ(00,:)
k is taken fromZ

P (q)
k , whilst H(:,00)

k

from H
P (p)
k . The degradation model for the rational SR factorF = p/q in (16) becomes

Z ′ = U(00,:)GH′ (24)

The integer SR factor is a special case of this equation. By settingq = 1 we obtain (17).

In analogy with the derivation steps that led to (18), (19) and finally to (20), we proceed

as follows. SetN′ := Null(Z ′). The size ofN′ is (KqSθ, N ′), where we assumeN ′ ≥
KqSθ − p(Sθ − 1) + Sh + Sg − 1 > 0. We visualize the null space as

N′ =




θ1,1 . . . θ1,N

...
.. .

...

θq2,1 . . . θq2,N

...
.. .

...

θKq2,1 . . . θKq2,N




, (25)

whereθkn is the vector representation of the nullifying filterθkn of sizeSθ. Let θ̃kn denote

upsampledθkn by factorp. Then

N ′ :=




CSg+Sh−1{θ̃1,1} . . . CSg+Sh−1{θ̃Kq2,1}
...

. ..
...

CSg+Sh−1{θ̃1,N} . . . CSg+Sh−1{θ̃Kq2,N}


× IK ⊗




CSh{g00}
...

CSh{g(q−1)(q−1)}


 (26)
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and we conclude that

N ′h = 0 , (27)

Theorem 2:Assume thatSθ satisfies

N ′ := Kq2Sθ − p(Sθ − 1) + Sh + Sg − 1 > 0 (28)

and

N ′p(Sθ − 1) + Sh + Sg − 1 ≥ KSh . (29)

If the HR imageu is p-polyphase persistently exciting for sizep(Sθ − 1) + Sg + Sh− 1 and

the PSFs{hk}K
1 arep-polyphase co-prime thennullity(N ′) = 1.

For the proof see Appendix. The solution to (27) is unique apart from a scalar, but this

magnitude ambiguity can be resolved by stipulating that the brightness of the image is

preserved. While the conclusion of the above theorem is very optimistic, one should realize

an important detail that distinguishesN ′ from N . The matrixN does not depend ong

and therefore the reconstruction ofhk for integerF , though ambiguous, can be carried out

even without the knowledge of the sensor PSF. On the other hand,N ′ containsq2 distinct

discretizations of the sensor PSF and the reconstruction ofhk for rationalF can fail if the

sensor PSF is incorrectly estimated.

We can derive some interesting corollaries from conditions (28) and (29) in Theorem 2.3

Corollary 3: The minimum necessarySθ decreases with decreasingSh and/or with in-

creasingK.

Proof: The conclusion directly follows from conditions (28) and (29).

The dependence ofSθ on F , Sh andK is illustrated in Fig 5.

Corollary 4: If Sh + Sg − 1 ≥ F 2 thenK > F 2.

Proof: If Sh + Sg − 1 ≥ F 2 = (p
q
)2 it follows from (28) thatKq2Sθ >

p(Sθ − 1) + Sh + Sg − 1 > p(Sθ − 1) + Sh + Sg − 1 > p2(Sθ − 1 + 1
q2 ) ⇒ K > F 2.

The total support of the sensor and volatile blur should extend over the size of one LR

pixel, otherwise the SR reconstruction is problematic. Therefore the necessary condition in

the second corollary is reasonable and we see that the number of acquired images must be

more than the SR factor squared. For example, forF = 3/2, 3 LR images are sufficient; for

F = 2, we need at least5 LR images to perform blur reconstruction.

3Likewise from conditions stated in Theorem 1 but they are equivalent to conditions in Theorem 2 forq = 1.
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(a) F = 2
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(b) F = 3/2

Figure 5: The size of nullifiersSθ depends on the SR factor ( (a)F = 2, (b) F = 3/2), size

of the blur (“◦” - 4 × 4, “¤” - 7 × 7, “×” - 10 × 10) and number of output channels (K).

The plotted curves show the lower bound for the nullifier size.

C. Reducing ambiguity

We would like to decrease the nullity ofN and thus avoid ambiguity in the solution under

integer SR factors. A naive approach is to specify at leastF 2 values inside the unknown PSFs

hk. One can think of different scenarios. For example, ifSh ≥ F then the knowledge of one

hk (Sh values) suffices to fully determine all the otherhk’s. Unfortunately, in real cases one

can not expect to poses such a strong knowledge. Theorem 2 suggests another possible path

towards lesser ambiguity. Imagine that our acquisition device can produce in one shot two or

more images that are shifted by predetermined vectors but contain the same volatile blur. Such

a configuration inside acquisition devices is not rare. On the contrary, the majority of digital

cameras contain CCD sensors arranged in the so-called “Bayer color pattern”, which has two

times more green filters than red or blue ones; see [31]. One raw digital photography thus

consists of 4 subimages: 1 red, 1 blue, and 2 greens shifted by[1, 1] pixels. Then the green

channels have the desired property. We will demonstrate in the experimental section that if

we have images with predetermined shifts, this information helps but with the increasing

level of noise (common for real situations) its role becomes superfluous.

Let us assume we performK measurements and in eachR images are acquired that differ

by predetermined displacements. We have thusRK LR images{zi}RK
1 packed byR. In

the k-th pack, we observe the same volatile PSFhk (k = 1, . . . , K) and the same set ofR
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displacements. We model ther-th displacement as convolution with a filtertr (r = 1, . . . , R)

that has one at the respective position and zeros elsewhere. LetSt denote the maximum

size of {tr}R
1 . Following the same procedure that led to (24), we define “full” convolution

matricesHk := CF (Sθ−1)+1{hk}, Tr := CF (Sθ−1)+Sh{tr}, G := CF (Sθ−1)+Sh+St−1{g} , and

“valid” convolution matricesU := C
F (Sθ−1)+Sg+Sh+St−2,Su

F (Sθ−1)+Sg+Sh+St−2
{u}, Zi := CSθ,Sz

Sθ {zi}. Further

define

Z† := [Z1, . . . ,ZRK ] ,

T := [T
P (F )
1 , . . . ,T

P (F )
R ] and

H† := [IR ⊗H
(:,00)
1 , . . . , IR ⊗H

(:,00)
K ] ,

whereH
(:,00)
k is taken fromH

P (F )
k . The degradation model in (15) withR displacements is

then given by

Z† = U(00,:)GP (F )T H† . (30)

Note that the productGP (F )T plays a role ofG in (24) (convolution matrix of different

discretizations of the sensor PSF). One can consider the model for the rational SR factor

(24) as a special case of the above model (30).

Similarly to (25), we reconstruct nullifying filtersθin (i = 1, . . . , RK; n = 1, . . . , N ) from

Null(Z†), build upsampled versions̃θin, define

N † :=




CSt+Sh−1{θ̃1,1} . . . CSt+Sh−1{θ̃RK,1}
...

. ..
...

CSt+Sh−1{θ̃1,N} . . . CSt+Sh−1{θ̃RK,N}


 IK ⊗




CSh{t1}
...

CSh{tR}


 (31)

and conclude that

N †h = 0 , (32)

The matrixN † resembles in all aspects the matrixN ′ from (26). Only the different discretiza-

tions of g are replaced with shift filterstr. The following theorem formalizes the necessary

conditions for a “unique” (nullity one) solution to (32).

Theorem 3:Assume thatSθ satisfies

N † := KRSθ − F (Sθ − 1) + Sh + St − 1 > 0 (33)

and

N †F (Sθ − 1) + Sh + St − 1 ≥ KSh . (34)
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Further assume that the HR imageu is F -polyphase persistently exciting for sizeF (Sθ−1)+

Sg+Sh+St−2 and the PSFs{hk}K
1 areF -polyphase co-prime. Letpr ∈ 〈0, St

1−1〉×〈0, St
2−

1〉 denote the position of one intr. If R ≥ 3 and vectors{[p1−p2]F , [p1−p3]F , . . . , [p1−pR]F}
are linearly independent thennullity(N †) = 1.

For the proof see Appendix. A unique solution (except for magnitude) exists for any SR

factor if we have at least three different displacements that do not lie in one row, column

or diagonal. The result of this theorem is particularly appealing for the SR factor of three

and more. ForF = 2, the benefits are not as evident, since in this case we have in total

four possible displacements ((0, 0), (1, 0), (0, 1), (1, 1)) to fully define the HR image and we

need three of them for the PSF reconstruction. One can reduce, though not eliminate, the

ambiguity if only two displacements are available.

Corollary 5: AssumeF = 2, R = 2 (displacementsp1, p2) and all the assumptions in

Theorem 3. It then holds that if[p1 − p2]F ∈ {(1, 0), (0, 1)} then nullity(N †) = 4 and if

[p1 − p2]F = (1, 1) thennullity(N †) = 2.

The proof is in Appendix.

D. Efficient calculation

We consider here the integer downsampling case but the same holds for the rational (27)

and predetermined shifts (32). The main difficulty resides in the computation of the null space

N of Z. The “valid” convolution matrixZ of size (Sz − Sθ + 1, KSθ) is too large in most

of the cases to be handled as a whole. Note that though the size of the nullifying filtersSθ is

usually small (around10× 10 pixels), the size of the LR imageszk is often over100× 100.

Lemma 1 gives us the lower boundN of the nullity of Z. Eigenvectors that correspond to

the N smallest eigenvalues ofZTZ spanNull(H). These eigenvectors then form the matrix

N. Therefore it suffices to construct the(KSθ, KSθ) symmetric matrixZTZ and apply the

eigenvalue decomposition thereon. This matrix product can be calculated in a very efficient

way directly fromzk without building the full matrixZ; see [7], [12] for a detail discussion

of calculating similar products.

VI. B LIND SUPERRESOLUTION

In order to solve the BSR problem, i.e, determine the HR imageu and volatile PSFshk,

we adopt a classical approach of minimizing a regularized energy function. This way the
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method will be less vulnerable to noise and less ill-posed. The energy consists of three terms

and takes the form

E(u,h) =
K∑

k=1

‖DHku− zk‖2 + αQ(u) + βR(h) , (35)

whereh = [hT
1 , . . . ,hT

K ]T . The first term measures the fidelity to the data and emanates from

our acquisition model (9). The remaining two are regularization terms with positive weighting

constantsα andβ that attract the minimum ofE to an admissible set of solutions. The form

of E very much resembles the energy we have proposed in [13] for MBD. Indeed, this should

not come as a surprise since MBD and SR are related problems in our formulation.

RegularizationQ(u) is a smoothing term of the form

Q(u) = uTLu , (36)

whereL is a high-pass filter. A common strategy is to use convolution with the Laplacian

for L, which in the continuous case, corresponds toQ(u) =
∫ |∇u|2. Recently, variational

integralsQ(u) =
∫

φ(|∇u|) were proposed, whereφ is a strictly convex, nondecreasing

function that grows at most linearly. Examples ofφ(s) are s (total variation - used in

our experiments),
√

1 + s2 − 1 (hypersurface minimal function),log(cosh(s)), or nonconvex

functions, such aslog(1 + s2), s2/(1 + s2) andarctan(s2) (Mumford-Shah functional). The

advantage of the variational approach is that while in smooth areas it has the same isotropic

behavior as the Laplacian, it also preserves edges in images. The disadvantage is that it is

highly nonlinear and to overcome this difficulty, one must use, e.g., half-quadratic algorithm

[32]. For the purpose of our discussion it suffices to state that after discretization we arrive

again at (36), where this timeL is a positive semidefinite block tridiagonal matrix constructed

of values depending on the gradient ofu. The rationale behind the choice ofQ(u) is to

constrain the local spatial behavior of images; it resembles a Markov Random Field. Some

global constraints may be more desirable but are difficult (often impossible) to define, since

we develop a general method that should work with any class of input images.

The PSF regularization termR(h) directly follows from the conclusions of the previous

section. Since the matrixN (or N ′, N †) contains the correct PSFshk in its null space, we

define the regularization term as a least squares fit

R(h) = ‖Nh‖2 = hTN TNh , (37)

where forN we can substituteN ′ or N †. The productN TN is in general a positive

semidefinite matrix. More precisely,R is a consistency term that binds the different volatile
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PSFs to prevent them from moving freely and unlike the fidelity term (the 1st term) it is

based solely on the observed LR images. A good practice is to include also a smoothing

term hTLh with a small weight inR(h). This is especially useful in the case of very noisy

data.

The complete energy then takes the form

E(u,h) =
K∑

k=1

‖DHku− zk‖2 + αuTLu + β‖Nh‖2 . (38)

To find a minimizer of the energy function, we perform alternating minimizations (AM) of

E over u and h. The advantage of this scheme lies in its simplicity. Each term of (38)

is quadratic and therefore convex (but not necessarily strictly convex) and the derivatives

w.r.t. u andh are easy to calculate. This AM approach is a variation on the steepest-descent

algorithm. The search space is a concatenation of the blur subspace and the image subspace.

The algorithm first descends in the image subspace and after reaching the minimum, i.e.,

∇uE = 0, it advances in the blur subspace in the direction∇hE orthogonal to the previous

one, and this scheme repeats. In conclusion, starting with some initialh0 the two iterative

steps are:

step 1) um = arg min
u

E(u,hm)

⇔(
K∑

k=1

HT
k DTDHk + αL)u =

K∑

k=1

HT
k DTzk , (39)

step 2) hm+1 = arg min
h

E(um,h)

⇔([IK ⊗UTDTDU] + βN TN )h = [IK ⊗UTDT ]z , (40)

whereU := CSh,Su

Sh {u}, z := [zT
1 , . . . , zT

K ]T andm is the iteration step. Note that both steps

are simple linear equations.

EnergyE as a function of both variablesu andh, is not convex due to the coupling of

the variables via convolution in the first term of (38). Therefore, it is not guaranteed that

the BSR algorithm reaches the global minimum. In our experience, convergence properties

improve significantly if we add feasible regions for the HR image and PSFs specified as lower

and upper bounds constraints. To solve step 1, we use the method of conjugate gradients

(function cgs in Matlab) and then adjust the solutionum to contain values in the admissible

range, typically, the range of values ofz. It is common to assume that PSF is positive

(hk ≥ 0) and preserves the image brightness (
∑

hk = 1). We can therefore write the lower
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and upper bounds constraints for PSFs ashk ∈ 〈0, 1〉Sh. In order to enforce the bounds in

step 2, we solve (40) as a constrained minimization problem (functionfmincon in Matlab)

rather than using the projection as in step 1. Constrained minimization problems are more

computationally demanding but we can afford them in this case since the size ofh is much

smaller than the size ofu.

The weighting constantsα andβ depend on the level of noise. If noise increases,α should

increase andβ should decrease. One can use parameter estimation techniques, such as cross-

validation or expectation maximization, to determine the correct weights. However, in our

experiments we set the values manually according to a visual assessment. If the iterative

algorithm begins to amplify noise, we have underestimated the noise level. On contrary, if

the algorithm begins to segment the image, we have overestimated the noise level.

VII. E XPERIMENTS

The experimental section consists of two parts. In the first part, a set of experiments on

synthetic data evaluate performance of the BS algorithm with respect to noise and different

regularization termsR(h). The second part of this section demonstrates the applicability of

the proposed method to real data and the performance gain with respect to the number of LR

images. We compare the quality of SR reconstruction with three methods: two interpolation

techniques and one state-of-the-art SR method.

In all the following experiments, we set the sensor blur to a Gaussian function of standard

deviationσ = 0.35 (relative to the scale of LR images). The proposed BSR method is fairly

robust to the choice of the Gaussian variance, since it can compensate for the insufficient

variance by automatically including the missing factor of Gaussian functions in the volatile

blurs. For this reason, we have chosenσ that we believe is slightly smaller than the correct

one.

The increasing SR factorF negatively influences the stability of the BSR algorithm. In

addition, rational SR factorsp/q, wherep and q are incommensurable and large regardless

of the effective value ofF , make also the BSR algorithm unstable. It is the numeratorp

that determines the internal SR factor used in the algorithm. Hence we limit ourselves to

F = 3/2, 5/3 and2.
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Figure 6: Simulated data: (a) original175× 175 image; (b) six4× 4 volatile PSFs used to

blur the original image.

(a) (b) (c)

Figure 7: BSR of simulated data: (a) one of six LR images with the downsampling factor

2; (b) BSR forF = 3/2; (c) BSR forF = 2. The shirt texture is not yet visible for the SR

factor 3/2 but becomes well reconstructed for the SR factor2.

A. Simulated data

First, let us demonstrate the BSR performance with a simple experiment. An175 × 175

image in Fig. 6(a) blurred with six masks in Fig. 6(b) and downsampled with factor2 gives

six LR images. Using the LR images as an input, we estimated the original HR image with

the proposed BSR algorithm forF = 3/2 and2. Fig. 7 summarizes obtained results in their

original size. One can see, that forF = 3/2 (Fig. 7(b)), the reconstruction is good but some

details, such as the shirt texture, are still fuzzy. For the SR factor2, the reconstructed image

in Fig. 7(c) is almost perfect.

In order to evaluate the noise robustness of the BSR method, we added noise to the above
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LR images withSNR4 between50 dB and10 dB and considered three different scenarios. In

the first scenario, we downsampled the image with the integer factor2 and performed BSR

for F = 2 usingN in the blur regularizationR(h). In the second scenario, we downsampled

the image with the rational factor5/3 and then performed BSR forF = 5/3 usingN ′. The

last scenario simulated acquisitions with predetermined displacements as described in Section

V-C. To each LR image (downsampling factor2), we generated a second image shifted by

(0.5, 0.5) pixels (relative the scale of the HR image) by translating the volatile blurs(1, 1)

pixels. In the BSR algorithm, we then utilizedN † configured for two shifts:p1 = (0, 0)

and p2 = (1, 1). Fig. 8 summarizes the performance of the BSR method in terms of peak

signal to noise ratio defined asPSNR(û) = 10 log( span(u)2

‖û−u‖2/Su ), where û is the estimate of

the original HR imageu, and span(u) denotes the span of gray-level values in the original

image, typically255. For the visual comparison of the obtained results refer to Fig. 9. The

smaller nullity ofN ′ andN † helps to improve estimates, yet as the noise level increases the

performance boost diminishes. Reconstructed PSFs for the first scenario (Fig. 9(a)) exhibit a

patch-like pattern due to relatively high nullity ofN (nullity(N ) = 16). In the second and

third scenario the matrix nullity is smaller and the PSF estimation is almost perfect for low

noise levels; refer to Fig. 9(b) for the case ofN † (nullity = 2). Results of all three scenarios

become identical under more severe noise corruption with an example given in Fig. 9(c).

B. Real data

To obtain real images, we used a standard 5 Mpixel color digital camera (Olympus C5050Z)

equipped with an optical zoom3×, which can store photos in a raw format. Since this work

considers gray-level images, LR images correspond to green channels of color photos. To

compare the quality of SR reconstruction, we provide results of three additional methods:

two interpolation techniques and one state-of-the-art SR method. The first technique is simple

bilinear interpolation (BI) of the LR image. The second technique combines the MBD method

proposed in [13] and BI. The MBD method first removes volatile blurs and then BI of the

deconvolved image achieves the desired spatial resolution. The third method, which we will

call herein a “standard SR algorithm”, is a MAP formulation of the SR problem proposed,

e.g., in [16], [17]. This method uses a MAP framework for the joint estimation of image

registration parameters (in our case only translation) and the HR image, assuming only the

4SNR = 10 log(σ2
u/σ2

n), whereσu andσn are the image and noise standard deviations, respectively.
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Figure 8: Performance of the BSR algorithm under different levels of noise: (¤) BSR for

F = 2 with N in the blur regularizationR(h); (4) BSR for F = 5/3 with N ′; (©) BSR

for F = 2 with N †. The dotted line denotes the performance of bilinear interpolation. Note

that as the noise level increases the advantage of the smaller nullity ofN ′ andN † becomes

less evident.
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Figure 9: Results of the BSR simulation: The estimated HR image and PSFs in the case of

(a) SNR = 50 dB with N , (b) SNR = 50 dB with N †, and (c)SNR = 30 dB with N .
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sensor blur (G) and no volatile blurs. As an image prior, we use edge preserving Huber

Markov Random Fields [26].

First, we show the performance of the proposed BSR method on data with negligible blur.

We took eight images of a still object (see Fig. 10(a)) with a short shutter speed to minimize

possible volatile blurs. We set the SR factor to2. To compare the quality of reconstruction

we acquired one additional image with optical zoom2× that plays the role of a “ground

truth” image; see Fig. 10(b). The estimated HR image using the BSR method is in Fig. 10(c).

Close-ups in Fig. 10(d) demonstrate a very good performance comparable to the “ideal” one

of the optical zoom.

The next two experiments demonstrate the true power of the BSR algorithm. In the first

one, a long shutter speed introduced severe blurring in acquired images; see Fig. 11(a). We

took four consecutive color images, and using both green channels, we generated altogether

eight LR images. Owing to the Bayer pattern,(1, 1) shift exists between the green channels

inside each color image. The standard SR approach in Fig. 11(e) gives unsatisfactory results.

The MBD combined with BI in Fig. 11(c) provides very good results that lag a little behind

BSR in Fig. 11(f) that does not consider the(1, 1) shift between the green channels. This is

due to the character of the LR images that do not contain many details, and therefore, the SR

part of the BSR algorithm cannot achieve much. The BSR approach with the predetermined

shift (Fig. 11(g)) gives slightly better results that resemble the image (Fig. 11(d)) acquired

with optical zoom and no blur. The second experiment compares different reconstruction

techniques of a car front. In this case, the blur came from the car motion; see Fig. 12(a).

The MBD with BI method (Fig. 12(b)) reconstructed well the banner, yet the license plate

is not legible, since it contains tiny details. As in the previous experiment, the standard SR

approach in Fig. 12(c) gives unsatisfactory results. The proposed BSR method outperforms

all the other techniques and provides a sharp HR image. Figs. 12(d) and (e) illustrate BSR

with the SR factor5/3 and2, respectively.

When dealing with real data, one cannot expect that the performance will increase in-

definitely as the number of available LR images increases. At a certain point possible

discrepancies between the measured data and our mathematical model take over, and the

estimated HR image does not improve any more or it can even worsen. We conducted several

experiments on real data (short shutter speed and still shooting objects) with different SR

factors and number of LR imagesK. See results of one such experiment in Fig. 13 for
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(a) (b) (c)

(d)

Figure 10: BSR of mildly blurred images (F = 2): (a) One of eight LR images of size

100× 90. (b) Image acquired with optical zoom2×, which plays the role of “ground truth”.

(c) Proposed BSR method. (d) Close-ups of images (a), (b) and (c) (from left to right).

F = 3/2 and the number of LR images5 ranging from3 to 8. A small improvement is

apparent between using3 and4 LR images; compare Figs. 13(c) and (d). However, the result

obtained with all8 images in Fig. 13(e) shows a very little improvement. We deduce that

for each SR factor exists an optimal number of LR images that is close to the minimum

5According to Lemma 4, the minimum number of LR images necessary to construct the blur regularizationR(h) for

F = 3/2 is 3.
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(a)

(b) (c) (d)

(e) (f) (g)

1 12
1

12

(h) (i)

Figure 11: BSR of heavily blurred images (F = 5/3): (a) Three out of eight LR images

acquired with the digital camera; zero-order interpolation. (b) BI of the least blurred LR

image. (c) MBD followed by BI. (d) Image acquired with the same camera mounted on a

tripod and with optical zoom1.7×. This image plays the role of “ground truth”. (e) Standard

SR algorithm. (f) Proposed BSR without predetermined shifts (N ′). (g) Proposed BSR with

predetermined shifts (N †). (h) Four reconstructed12 × 12 PSFs for the result in (g). (i)

Close-ups of the results (c), (d) on top and (f), (g) on bottom.

necessary number. Therefore in practice, we recommend to use the minimum or close to

minimum number of LR images for the given SR factor.
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(a) (b) (c)

(d) (e) (f)

Figure 12: Car-in-motion experiment (F = 2): (a) One of eight LR images acquired with the

digital camera; zero-order interpolation. (b) MBD followed by BI. (c) Standard SR algorithm.

(d) Proposed BSR algorithm forF = 5/3 and bilinearly interpolated to have the same size

as (e). (e) Proposed BSR algorithm forF = 2. (f) Close-ups of the results (b), (c) on top

and (d), (e) on bottom.

VIII. C ONCLUSIONS

We have shown that the SR problem permits a stable solution even in the case of unknown

blurs. The fundamental idea is to split radiometric deformations into sensor and volatile parts

and assume that only the sensor part is known. We can then construct a convex functional

using the observed LR images and polyphase formulation and observe that the volatile part

minimizes this functional. Due to the presence of resolution decimation, the functional is

not strictly convex and reaches its minimum on a subspace that depends on the integer SR

factor. We have also extended our conclusions to rational factors. To achieve robust solution,

we have adopted the regularized energy minimization approach. The proposed BSR method

goes far beyond the standard SR techniques. The introduction of volatile blurs makes the

method particularly appealing to real situations. While reconstructing the blurs, we estimates

not only subpixel shifts but also any possible blurs imposed by the acquisition process.

To our knowledge, this is the only method that can perform deconvolution and resolution

enhancement simultaneously. Finally, we have outlined a possible future extension into color

imaging. The Bayer color pattern utilized in the digital cameras permits a more restrictive
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(a) (b)

(c) (d) (e)

Figure 13: Performance of the BSR algorithm with respect to the number of LR images

(F = 1.5): (a) One of eight LR images of size40× 70, zero-order interpolation. (b) Image

acquired with optical zoom1.5×, which plays the role of “ground truth”. The proposed BSR

algorithm using (c) 3, (d) 4, and (e) 8 LR images.

blur regularization and if the image regularization incorporates correlation of color channels,

we will obtain a complex demosaicing methodology.

APPENDIX

In order to prove the theorems we utilize the property ofz-transform thaty = h ∗ u

becomes a multiplication of polynomialsY (ξ1, ξ2) = H(ξ1, ξ2)U(ξ1, ξ2). Using the polyphase

componentsH ij of H andU ij of U , we can express the polyphase components of the resulting

imageY as

Y ij =
∑

0≤(m,n)≤F−1

ξ
(sgn(m−i))+

1 ξ
(sgn(n−j))+

2 H [i−m]F [j−n]F Umn . (41)

For example, forF = 2 we have



Y 00

Y 10

Y 01

Y 11




=




H00 ξ1H
10 ξ2H

01 ξ1ξ2H
11

H10 H00 ξ2H
11 ξ2H

01

H01 ξ1H
11 H00 ξ1H

10

H11 H01 H10 H00







U00

U10

U01

U11




. (42)

Note that the matrices are polynomial matrices.

Proof of Theorem 1:In (17), G has always full column rank. Sinceu is F -polyphase

persistently exciting for sizeF (Sθ−1)+Sg +Sh−1, thenU(00,:) has full column rank as well
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and thereforeNull(Z) ≡ Null(H). From Lemma 1 follows that the condition (21) guaranties

nullity(H) > 0 and thus the existence of the nullifying filtersθkn. The reconstruction equation

Nh = 0 transforms in thez-domain to
K∑

k=1

Θ̃k,nHk = 0, ∀n = 1, . . . , N , (43)

whereΘ̃k,n is the z-transform ofθ̃kn. Using the polyphase formulation in (41), convolution

with the upsampled filter̃θkn is equivalent in thez-domain to multiplication by a diagonal

matrix 


Θk,n 0 . . . 0

0 Θk,n . . . 0
...

...
...

...

0 0 . . . Θk,n




︸ ︷︷ ︸
F 2

, (44)

whereΘk,n is thez-transform ofθkn. (Refer to an example in (42) for better understanding.)

This splits every equation (43) intoF 2 equations
∑K

k=1 Θk,nH ij
k = 0, ∀i, j = 0, . . . , (F − 1).

Then one can see, that the nullifying filters can not distinguish between different polyphase

components. In addition,
∑

k Θk,nH ij
k =

∑
k Θk,nCijH̃

ij
k ⇒ ∑

k Θk,nH̃
ij
k = 0, where the

degree ofH̃ ij
k is by Scij smaller thanH ij

k , and the nullifying filters can only recover the

polyphase components up to the common factorsCij. Hence for a polynomial matrix

Θ =




Θ1,1 . . . ΘK,1

Θ1,2 . . . ΘK,2

...
.. .

...

Θ1,N . . . ΘK,N




(45)

it holds thatnullity(Θ) =
∑

i,j Scij . If A1 is not true and the polyphase components are

linearly dependent, the matrix nullity decreases. The matrixN in (20) transforms toΘ⊗ IF 2

and if N has more rows than columns (condition (22)) we conclude thatnullity(N ) =

nullity(Θ⊗ IF 2) = F 2 nullity(Θ) = F 2
∑

i,j Scij .

Proof of Theorem 2:The rationalF = p/q factor can be considered as a special case of the

problem of predetermined shifts. The matrixG in (24) is similar toGP (F )T in (30), where

q2 distinct discretizations of the sensor blurg correspond toR = q2 shifts in T . Hence, the

result follows from the proof of Theorem 3 below.

Proof of Theorem 3:We proceed as in the proof of Theorem 1. In (30),G has full column

rank. Sinceu is F -polyphase persistently exciting for sizeF (Sθ−1)+Sg +Sh +St−2, then
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U(00,:) has full column rank as well and thereforeNull(Z†) ≡ Null(T H†). The condition

(33) guarantiesnullity(T H†) > 0 and thus the existence of the nullifying filtersθin. In the

z-domain,N †h = 0 transforms to
K∑

k=1

Hk

R∑
r=1

TrΘ̃R(k−1)+r,n = 0, ∀n = 1, . . . , N , (46)

whereTr is thez-transform oftr. Convolution withtr shifts θ̃in by the integer vectorpr and

in the above equation it is equivalent to reshuffling of polyphase components ofΘ̃in. Note

that all polyphase components ofΘ̃in are zero except̃Θ00
in = Θin. For the sake of simplicity,

we will consider the case ofF = 2 and three linearly independent displacementsp1 = (0, 0),

p2 = (1, 0) andp3 = (0, 1). Using the polyphase formulation of convolution in (41), we can

see, that for example fork = 1,
∑R

r=1 TrΘ̃R(k−1)+r,n becomes



Θ1,n ξ1Θ2,n ξ2Θ3,n 0

Θ2,n Θ1,n 0 ξ2Θ3,n

Θ3,n 0 Θ1,n ξ1Θ2,n

0 Θ3,n Θ2,n Θ1,n




(47)

and in the same manner for allk. The shape of the above matrix forbids ambiguity in the order

of polyphase componentsH ij
k as was the case in (44). The same holds true for any integer

SR factorF and any three shifts that do not lie on the same line. Sincehk are polyphase co-

prime, no factorization ofH ij
k is possible, and ifN † has more rows than columns (condition

(34)) we conclude thatnullity(N †) = 1.

Proof of Corollary 5: Consider the line of reasoning in the proof of Theorem 3 above.

In the case of diagonal displacements (e.g.p1 = (0, 0) and p2 = (1, 1)), the matrix in (47)

looks as 


Θ1,n 0 0 ξ1ξ2Θ2,n

0 Θ1,n ξ2Θ2,n 0

0 ξ1Θ2,n Θ1,n 0

Θ2,n 0 0 Θ1,n




. (48)

Due to the presence of zeros, two polyphase components ofHk can remain zero without

violating (46) and we have two possible configurations:H10
k = H01

k = 0 andH00
k = H11

k = 0.

We deduce thatnullity(N †) = 2.

In the case of vertical or horizontal displacements (e.g.p1 = (0, 0) and p2 = (1, 0)), the
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matrix in (47) takes the form



Θ1,n ξ1Θ2,n 0 0

Θ2,n Θ1,n 0 0

0 0 Θ1,n ξ1Θ2,n

0 0 Θ2,n Θ1,n




=


Θ1,n ξ1Θ2,n

Θ2,n Θ1,n


⊗ I2 . (49)

As in the case of diagonal displacement, we have two configurations of zeros:H01
k = H11

k = 0

andH00
k = H10

k = 0. However, since the Kronecker product ofI2 further reduces the matrix,

the nullity increases twice and we conclude thatnullity(N †) = 4.
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