Finitely Additive Measures

on Algebras of Fuzzy Sets

Tomáš Kroupa

Institute of Information Theory and Automation Academy of Sciences of Czech Republic Prague, Czech Republic

Measures on Fuzzy Sets

- roots in theory of fuzzy coalition games (Butnariu, Klement)
- generalization of classical measure theory: σ -additive measures on σ -complete algebras of fuzzy sets (Mesiar, Navara, ...)
- influence of diverse mathematical theories:
 - many-valued logics
 - $-\ensuremath{\,\mathsf{quantum}}$ and ordered structures
 - operator algebras

Clans

Clan \mathcal{C} over a non-empty set X is a collection of functions $X \to [0,1]$ such that

- 1. $1 \in C$
- 2. $\forall f \in \mathcal{C} \Rightarrow \neg f \in \mathcal{C}$
- $\textbf{3. } \forall f,g \in \mathcal{C} \ \Rightarrow \ f \oplus g \in \mathcal{C}$

Łukasiewicz operations

$$f(x) \oplus g(x) := \min(f(x) + g(x), 1)$$

$$f(x) \odot g(x) := \max(f(x) + g(x) - 1, 0)$$

Standard complement $\neg f := 1 - f$ Lattice operations \lor, \land (pointwise)

Tribes

Tribe \mathcal{T} is a clan over X such that

$$\forall (f_n) \in \mathcal{T}^{\mathbb{N}} \Rightarrow \bigoplus_{n=1}^{\infty} f_n \in \mathcal{T}.$$

Properties

- Boolean skeleton $\mathbf{B}(\mathcal{T}) := \{A \subseteq X \mid \chi_A \in \mathcal{T}\}$ is a σ -algebra
- every function $f \in \mathcal{T}$ is $\mathbf{B}(\mathcal{T})$ -measurable

Examples of Clans

- \bullet continuous functions $X \to [0,1]$ on a compact space X
- McNaughton functions
- \mathcal{A} -measurable functions $X \to [0,1]$ on a measurable space (X, \mathcal{A})

Separating Clans

Clan $\mathcal C$ over X is **separating** if

$$\forall x_1, x_2 \in X \ \exists f \in \mathcal{C} : \ f(x_1) = 0, f(x_2) > 0.$$

Separating clans of continuous functions over a compact subset of ${\mathbb R}$ cannot be tribes!

States and σ -additive States

State s on a clan C is a mapping $C \rightarrow [0, 1]$ such that

1. s(1) = 12. $\forall f, g \in \mathcal{C}, f \odot g = 0 \implies s(f \oplus g) = s(f) + s(g)$

 σ -additive state on a tribe \mathcal{T} is a state s such that for any non-decreasing sequence $(f_n) \in \mathcal{T}^{\mathbb{N}}$:

$$s\left(\bigvee_{n=1}^{\infty} f_n\right) = \lim_{n \to \infty} s(f_n).$$

Observation The mapping $\mu_s := s \upharpoonright \mathbf{B}(\mathcal{T})$ is a probability measure.

Examples of States

- for a given $x \in X$: $s_x(f) := f(x)$ is a state on any clan
- clan of continuous functions over a compact space X:

$$s(f) := \int_X f d\mu,$$

where μ is a Borel probability measure

• tribe over X:

$$s'(f) := \int_X f d\nu,$$

where ν is a probability measure on $\mathbf{B}(\mathcal{T})$

Representation Theorem

Theorem (Butnariu, Klement) Let \mathcal{T} be a tribe. For any σ -additive state s on \mathcal{T} :

$$s(f) = \int_X f d\mu_s.$$

Representation of states on clans

- which clans?
- which representing measures?
- uniqueness?

State Space

 \mathcal{C} ...clan over X

 $\mathscr{S}\!(\mathcal{C})\!\ldots$ collection of all states on $\mathcal C$

Theorem The state space $\mathscr{S}(\mathcal{C})$ is a Choquet simplex.

ext $\mathscr{S}(\mathcal{C})$...collection of all extreme points of $\mathscr{S}(\mathcal{C})$

Theorem The following are equivalent:

• $s \in \text{ext } \mathscr{S}(\mathcal{C})$

• s is a homomorphism $\mathcal{C} \to [0, 1]$

Description of Extreme Boundary

Theorem

Let C be a **separating** clan of continuous functions on a compact space X. Then a mapping

$$x \in X \mapsto s_x, \quad s_x(f) = f(x)$$

is a homeomorphism of X onto $ext \mathscr{S}(\mathcal{C})$.

Convex Analysis

Theorem (Krein, Milman)

If K is a compact convex subset of a LCS X, then $K = \overline{\operatorname{co}} \operatorname{ext} K$.

Theorem (Integral Representation)

If K is a compact convex subset of a LCS X, then for each $x \in K$ there exists a Borel probability measure ν supported by $\overline{\operatorname{ext} K}$ such that for any affine continuous function $\varphi: K \to \mathbb{R}$,

$$\varphi(x) = \int_{K} \varphi d\nu.$$

In addition, if K is a Choquet simplex and the extreme boundary ext K is compact, then the measure ν is determined uniquely.

Integral Representation 1

Theorem

Let C be a separating clan of continuous functions over a compact space Xand s be a state on C. Then there exists a **unique** Borel probability measure μ such that

$$s(f) = \int_X f d\mu, \quad f \in \mathcal{C}.$$

Why?

1. mapping \hat{f} : $s \in \mathscr{S}(\mathcal{C}) \mapsto s(f)$ is an affine continuous function $\mathscr{S}(\mathcal{C}) \to [0,1]$ 2. $\hat{f} \circ \varepsilon = f$

Integral Representation 2

If the clan is not separating...

Theorem

Let C be a clan of continuous functions over a compact space X and s be a state on C. Then there exists **some** Borel probability measure μ such that

$$s(f) = \int_X f d\mu, \quad f \in \mathcal{C}.$$

Counterexample

Let ${\mathcal C}$ be a clan over [0,1] generated by a function

$$f(x) = \begin{cases} \frac{1}{2}, & x \in [0, \frac{1}{2}] \\ x, & x \in (\frac{1}{2}, 1] \end{cases}$$

The state $s_{\frac{1}{4}}(g) := g(\frac{1}{4})$ is represented by every Dirac measure concentrated between 0 and $\frac{1}{2}$.

References

- Lukeš, J., Netuka, I., Veselý, J. *Choquetova teorie a Dirichletova úloha,* Pokroky matematiky, fyziky a astronomie, 45(2):98–125,2000.
- Phelps, R. R. *Lectures on Choquet's Theorem,* volume 1757 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2nd edition, 2001.

And Next?

- applications to game theory
- curse of [0, 1]-valued functions
 - \Rightarrow towards formal theory of fuzzy measures