
Abstract

Goodness-of-�t testing is considered based on the statistics which are �-diver-
gences or �-disparities between hypothetical and empirical distributions. Absolutely
continuous distributions on IR stand for the hypothetical distributions and density
estimates based on spacings or histograms obtained from i.i.d. observations repre-
sent the empirical distributions. All these estimates can be obtained from quantiles
of the standard empirical distribution functions. It is shown that the goodness-of-
�t statistics considered in the previous literature are special cases of �-divergence
statistics. The main attention is paid to asymptotic properties of the �-divergence
and �-disparity statistics based on spacings. Asymptotic equivalence is proved un-
der various approaches to the de�nition of spacings which appeared in the previous
literature. General law of large numbers and asymptotic normality theorem under
local alternatives are proved from which one can obtain many previous asymptotic
results as particular cases. Special attention is devoted to the asymptotic laws for
the power divergence statistics of orders � 2 (�1;1). Parameters of these laws are
evaluated in a closed form and their continuity on the interval (�1;1) is proved.
These parameters are used to evaluate the local asymptotic power of the tests based
on these statistics. This enables to extend previous results about asymptotic op-
timality of the statistics of power � = 2 to the class of all statistics of the powers
� 2 (�1;1).
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Goodness-of-�t tests based on observations quantized

by hypothetical and empirical quantiles1

I. Vajda2 and E.C. van der Meulen3

1 Introduction and basic concepts

Goodness-of-�t tests decide about a hypothesis H0 : F = F0 concerning an unknown

distribution function F (x), x 2 IR of independent observations X1; : : : ; Xn. The decision

is based on the order statistics

(Y1; : : : ; Yn) = (Xn:1; : : : ; Xn:n) (1.1)
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which are su�cient functions of the observations. Another obvious su�cient statistic is

the empirical distribution function

Fn(x) =
1

n

nX
i=1

I(x � Yi) =
1

n

nX
i=1

I(x � Xi); x 2 IR (1.2)

where I(�) is the indicator function.
Intuitively one can expect that all goodness-of-�t test statistics will be measures of

disparity between the distributions F0 and Fn. For some statistics this is clear, e. g. the

measure of disparity for the well known statistic of Kolmogorov (1941) and Smirnov (1944)

is the Kolmogorov distance

K(F0; Fn) = sup
x2IR

jF0(x)� Fn(x)j: (1.3)

The �rst aim of the present paper is to show that the best known test statistics are mea-

sures of �-divergence of Csisz�ar (1963) between F0 and Fn, or measures of �-disparities

which are extensions of the �-divergences introduced by Lindsay (1994) and more sys-

tematically studied by Men�endez et al (1998).

Let �0 be the class of all continuous functions � : (0;1) 7! IR which are strictly

convex at 1 with �(1) = 0, and let us consider for every � 2 �0 the integral

D�(F0; F ) =
Z
IR

dF

dG
�

 
dF0=dG

dF=dG

!
dG; G =

F0 + F

2
; (1.4)

where dF0=dG, dF=dG are the Radon{Nikodym densities of the distributions F0; F with

respect to the dominating distribution G, and where the conventions

�(0) = lim
t#0

�(t); 0�
�
s

0

�
= s lim

t!1

�(t)

t
for s > 0 and 0�

�
0

0

�
= 0 (1.5)

are adopted behind the integral.

Let � 2 �0 be convex on the whole domain (0;1). Then

�(t)� �(1)

t� 1 =
�(t)

t� 1

is increasing (nondecreasing) on each of the intervals (0; 1) and (1;1). This means that
the limits �(0) and 0�(1=0) assumed in (1.5) exist and also that the right-hand deriva-

tive �0+(1) exists, such that the di�erence �(t) � �0+(1) (t � 1) is nonnegative on (0;1).
Therefore D�(F0; F ) is well de�ned by (1.4) and (1.5) and called �-divergence of F0 and

F , cf. Csisz�ar (1963).

Let us now consider � 2 �0 for which the limit 0�(1=0) of (1.5) and the right-hand

derivative �0+(1) exist and the di�erence �(t)� �0+(1) (t� 1) is monotone on each of the
intervals (0; 1) and (1;1). This implies that the limit �(0) of (1.5) exists. Further, since
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�(t) is strictly convex at t = 1, this implies that �(t)� �0+(1) (t� 1) is decreasing (nonin-
creasing) on (0; 1) and increasing (nondecreasing) on (1;1). By assumption �(1) = 0 so
that this means that �(t)��0+(1) (t�1) is nonnegative on (0;1). Consequently, D�(F0; F )

is well de�ned by (1.4) and (1.5) and called �-disparity of F0 and F , cf. Men�endez et al

(1998).

If � 2 �0 is convex on (0;1) then it satis�es the assumptions of the previous para-
graph. Therefore the �-divergences form a subclass in the class of �-disparities. It is easy

to verify (cf. Men�endez et al (1998)) that each �-disparity D�(F0; F ) takes on values from

the interval [0; �(0) + 0�(1=0)] and the extremal values

D�(F0; F ) = 0 or D�(F0; F ) = �(0) + 0�
�
1

0

�
are attained if and only if F0 = F or if F is supported by a subset S � IR of zero

F0-probability, respectively. Further, if F0 and F are absolutely continuous on IR with

densities f0 and f (in symbols, F0 � f0 and F � f), then (1.4) reduces to

D�(F0; F ) =
Z
IR
f �

 
f0
f

!
dx (1.6)

where the conventions (1.5) are adopted behind the integral.

If F0 is absolutely continuous then the support of the empirical distribution Fn has

a. s. the zero F0-probability, so that D�(F0; Fn) is a. s. constant equal �(0) + 0�(1=0).

To overcome this problem we restrict the distributions F0; Fn on the �nite sub�eld of the

Borel �eld generated by partitions

P = f(aj�1; aj] : 1 � j � kg ; �1 = a0 < a1 < � � � < ak =1 (1.7)

of IR. These partitions may depend on the sample size n in the sense that both the

partition size k and the cutpoints a1; : : : ; ak�1 themselves depend on n, but this is not

explicitly denoted in the paper. In this manner we obtain from (1.4) the �-disparities or

�-divergences

D�(p0;pn) =
kX
j=1

pnj �

 
p0j
pnj

!
(see (1.5)) (1.8)

of the discrete distributions

p0 = (p0j = F0(aj)� F0(aj�1) : 1 � j � k) ; pn = (pnj = Fn(aj)� Fn(aj�1) : 1 � j � k)
(1.9)

resulting from the original distributions F0; Fn restricted on the partition (1.7). Since p0
a. s. dominates pn, the �-disparitiesD�(p0;pn) cannot be a. s. constant, they discriminate

pn closer to p0 from those which are less close.
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In this paper the attention is focused on the class of statistics

T� = nD�(p0;pn); � 2 � (1.10)

whereD�(p0;pn) is de�ned by (1.8) and� is the class of continuous functions � : (0;1) 7!
IR with �(t) monotone in the neighborhood of 0 and 1 and �(t)=t monotone in the

neighborhood of 1 which are twice continuously di�erentiable in a neighborhood of 1

with the second derivative �00(1) > 0 and �(1) = 0. Obviously, the limits �(0) and

0�(s=0) considered in (1.5) exist and the sum (1.8) is well de�ned for all pairs p0; pn.

If � 2 � is convex on (0;1) then T� is a measure of �-divergence of F0 and Fn and if
�(t)� �0(1) (t� 1) is monotone on (0; 1) and (1;1) then it is a measure of �-disparity of
F0 and Fn.

In Section 2 we recall the known fact that the classical goodness-of-�t statistics of

Pearson (1900), Neyman and Pearson (1928), Neyman (1949) and Freeman{Tukey (1950)

are �-divergence measures from the class (1.10). We also show that the Anderson{Darling

and Cram�er{von Mises statistics are weighted averages of some �-divergence statistics

from the class (1.10). However, the main attention of Section 2 is payed to the goodness-

of-�t statistics based on spacings. Various statistics of this type were introduced and

studied by Greenwood (1946), Moran (1951), Darling (1953), Pyke (1965, 1972), Cressie

(1976), Dudewicz and van der Meulen (1981), Hall (1984, 1986), Jammalamadaka et al

(1989), Guttorp and Lockart (1989), van Es (1992), Shao and Hahn (1995), Ekstr�om

(1999), Misra and van der Meulen (2001), Morales et al (2003) and others cited there.

Spacings are obtained as components of the hypothetic distribution p0 de�ned in (1.9)

when the cutpoints a1; : : : ; ak�1 of the partition (1.7) are selected from the order statistics

Y1; : : : ; Yn. To present this idea in more detail, denote by

F�1(�) = inffx 2 IR : F (x) � �g; � 2 (0; 1)

the quantile function of an arbitrary distribution F and replace in the de�nition of cut-

points

aj = F�10 (j=k); 1 � j � k � 1 (1.11)

the hypothetic quantiles by similar empirical quantiles, i. e. let the cutpoints be random,

de�ned by formula

aj = F�1n (j=k); 1 � j � k � 1: (1.12)

If k depends on the sample size so that n = mk for a �xed integer m � 1, then we get

the order statistics cutpoints aj = Ymj for 1 � j � k � 1. If F0 is continuous then the
hypothetic quantiles (1.11) lead to the uniform hypothetic distribution (1.9),

p0 =
�
p0j =

1

k
: 1 � j � k

�
:
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The empirical quantiles (1.12) lead to the uniform empirical distribution (1.9),

pn =
�
pnj =

1

k
: 1 � j � k

�
and to the random theoretical distribution p0 with probabilities

p0j =

*
F0(Ymj)� F0(Ym(j�1)) for 1 � j � k � 1
F0(Yn+1)� F0(Ym(k�1)) for j = k

with the dummy observations Y0 = �1 and Yn+1 =1.
Let the observation space be reduced to the interval [0; 1] � IR and F0(x) = x for

x 2 [0; 1]. Then the last formula yields the nonoverlapping spacings

p0j =

*
Ymj � Ym(j�1) for 1 � j � k � 1
Yn+1 � Ym(k�1) for j = k

with the dummy observations

Y0 = 0 and Yn+1 = 1 (1.13)

studied e. g. by Del Pino (1979) and Jammalamadaka et al (1989). We are interested in

the simple spacings where m = 1 and k = n. Then the distributions (1.9) take on the

form

p0 =

0@p0j =
*
Yj � Yj�1 for 1 � j � n� 1
Yn+1 � Yn�1 for j = n

1A ; pn =
�
pnj =

1

n
: 1 � j � n

�
:

(1.14)

Using the formula (1.8) we obtain from here that the statistics (1.10) take on the form

T� = S� � �(n(Yn+1 � Yn))� �(n(Yn � Yn�1)) + �(n(Yn+1 � Yn�1))

for S� =
n+1X
j=1

�(n(Yj � Yj�1)); � 2 � (1.15)

where Y0 and Yn+1 are the same as in (1.13). This prescribes the exact form of the

statistics using the information contained in the spacings Yj � Yj�1, 1 � j � n + 1, and

based on the �-divergence or �-disparity of the hypothetic and empirical distributions

F0; Fn.

In Section 2 we list the statistics proposed for simple spacings in the above mentioned

literature. All of them di�er from T� of (1.15). However, in Section 3 we prove that

they share all statistically relevant asymptotic properties with T� of (1.15) so that the

di�erences are only numerical and not statistically principal. In Section 4 we evaluate the

asymptotic means and variances of the statistics under consideration when � 2 � varies

continuously in a real valued parameter and study their continuity in this parameter.

This section parallels in some sense the e�ort of Read and Cressie summarized in their
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monograph of (1988). They have shown that various goodness-of-�t statistics based on the

deterministic partitions (1.7) of the type (1.11) are just special cases of certain statistics

T�� de�ned by (1.10) for ��-divergences D��(p0;pn) speci�ed by convex functions ��

continuously depending on the parameter � 2 IR. They proved that the most important
properties of these statistics are shared for all � 2 IR, or at least for all � from large

intervals on IR, so that the theory of a large class of goodness-of-�t statistics can be

uni�ed and simpli�ed by increasing the level of mathematical abstraction. We show in

Section 4 that the spacings-based goodness-of-�t statistics can similarly be uni�ed and

their theory simpli�ed by treating the whole class T�� , � 2 IR, obtained from (1.10) under
the empirical quantile partitions (1.12).

2 �-disparities and test statistics

In this section we study some concrete statistics T� from the class (1.10). We show that

all common goodness-of-�t statistics are measures of disparity or divergence between the

restrictions p0; pn of F0; Fn belonging to this class.

Our �rst aim are the statistics de�ned by the partitions (1.7) with cutpoints aj de�ned

by a deterministic rule, e. g. by (1.11). We show that the most common statistics are

in this case measures of �-divergence de�ned in accordance with the formula (1.8) for

convex functions � 2 �. Obviously, the choice �(t) = (t � 1)2=t leads to the Pearson
(1900) statistic

T = n�2(pn;p0) = n
kX
j=1

(pnj � p0j)
2

p0j
=

kX
j=1

(Zj � np0j)
2

np0j
(2.1)

where (Zj : 1 � j � k) = (npnj : 1 � j � k) is multinomially distributed with parameters

n and

p = (pj = F (aj)� F (aj�1) : 1 � j � k) (2.2)

being the restriction of the true distribution F on the partition (1.7). Similarly, �(t) =

�2 ln t and �(t) = 2t ln t lead to the log-likelihood statistic

T = 2n I(pn;p0) = 2n
kX
j=1

pnj ln
pnj
p0j

= 2
kX
j=1

Zj ln
Zj
np0j

(2.3)

and the reversed log-likelihood statistic

T = 2n I(p0;pn) = 2n
kX
j=1

p0j ln
p0j
pnj

= 2
kX
j=1

np0j ln
np0j
Zj

(2.4)

of Neyman and Pearson (1928), �(t) = (t� 1)2 leads to the Neyman (1948) statistic

T = n�2(p0;pn) = n
kX
j=1

(pnj � p0j)
2

pnj
=

kX
j=1

(Zj � np0j)
2

Zj
(2.5)
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and �(t) = 4(1�
p
t) leads to the Freeman{Tukey (1950) statistic

T = 8nH(p0;pn) = 8n

0@1� kX
j=1

p
pnjp0j

1A = 4 kX
j=1

�q
Zj �

p
np0j

�2
: (2.6)

In these formulas we used the symbols �2(p0;pn), I(p0;pn) and H(p0;pn) for the �
2-

divergence, I-divergence and Hellinger divergence de�ned by (1.8) for �(t) = (t � 1)2,
�(t) = t ln t and �(t) = 1 �

p
t, respectively. These best known �-divergences will be

often used in the sequel. For the terminology and more details about the statistics (2.1) {

(2.6) we refer to Read and Cressie (1988).

Notice that the Kolmogorov distance K(F0; Fn) is the maximal �-divergence of restric-

tions p0x = (F0(x); 1� F0(x)) and pnx = (Fn(x); 1� Fn(x)) of the original distributions

F0 and Fn on the class of binary partitions

Px = f(�1; x]; (x;1)g ; x 2 IR

of IR for the convex function �(t) = jt � 1j=2 not di�erentiable at t = 1. For smooth

functions �(t) from � it is convenient to replace supx2IRD�(p0x;pnx) by the average

values

D�(F0; FnjW ) =
Z
IR
W (x)D�(p0x;pnx) dF0(x) (2.7)

taken with respect to continuous weights W : IR ! [0;1). For example, for the convex
function �(t) = (t � 1)2=t leading to the Pearson statistic (2.1) we obtain the average
divergence

D(F0; FnjW ) =
Z
IR
W (x)

(F0(x)� Fn(x))
2

F0(x) (1� F0(x))
dF0(x): (2.8)

The statistic TW = nD(F0; FnjW ) reduces for the weightW (x) � 1 orW (x) = F0(x) (1�
F0(x)) to the Anderson{Darling or Cram�er{von Mises goodness-of-�t statistic respectively,

see Durbin (1973), Anderson and Darling (1954), von Mises (1947) and also pp. 58{64 in

Ser
ing (1980). Basic results about the general class of statistics T�;W = nD�(F0; FnjW )
were overviewed in Darling (1957).

Let us now turn to the class of statistics, T� de�ned by (1.15). We show that the

statistics based in the literature on simple spacings can be viewed as measures of �-

disparity between F0 and Fn from this class. By this we mean that they are in some sense

equivalent to the statistics T� de�ned by (1.15) for � 2 � with monotone di�erences

�(t)� �0(1) (t� 1) on the intervals (0; 1) and (1;1). For the best known statistics based
on spacings the corresponding functions � 2 � are convex on (0;1), i. e. these statistics
are measures of �-divergence between F0 and Fn.

In accordance with the literature dealing with testing of hypotheses based on spacings,

in the rest of this section, and in the rest of paper, we suppose that the distribution F is
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concentrated on the interval (0; 1] and that F0 is uniform on this interval, i. e. F0(x) = x,

x 2 [0; 1]. Then all interval partitions of IR under consideration can be reduced to the

partitions of (0; 1], i. e. we put a0 = 0 and ak = 1 in (1.7).

We start with the simplest and best known case where m = 1 and k = n in (1.12)

leading to the cutpoints aj = Yj, 1 � j � n � 1 in the interval (0; 1]. By (1.14), the
components of the null distribution p0 are in this case

p0j =

8>>><>>>:
Y1 j = 1

Yj � Yj�1 for 2 � j � n� 1
1� Yn�1 j = n

(2.9)

and the empirical distribution pn = (1=n; : : : ; 1=n) is uniform. From (1.8) and (1.10) we

obtain the class of statistics

T� = nD�(p0;pn) =
nX
j=1

�(n p0j); � 2 � (2.10)

as considered already in (1.15). These statistics are measures of �-divergence or �-

disparity between the distributions F0 and Fn if �(t) is convex on (0;1) or the di�erence
�(t)� �0(t) (t� 1) is monotone on (0; 1) and (1;1), respectively.
The authors dealing with the statistics based on di�erences between order statistics

(spacings) introduced a number of modi�cations of the statistics (2.10). These modi�-

cations depend on various possibilities to represent the tail probabilities p01 = Y1 and

p0n = 1 � Yn�1 as spacings. One possibility is to introduce arti�cial observations Y0 = 0

and Yn+1 = 1 which was already done in (1.13) and which leads to the spacings

p01 = Y1 � Y0; ~p0n = Yn � Yn�1; ~p0;n+1 = Yn+1 � Yn: (2.11)

Some authors adopted this approach and studied the statistics

S� =
n�1X
j=1

�(n p0j) + �(n ~p0n) + �(n ~p0;n+1) (2.12)

previously introduced in (1.15) (e. g. Jammalamadaka et al (1986, 1989)). Some authors

neglected the tail probabilities p01 = Y1 and ~p0;n+1 = 1� Yn and studied the statistics

~S� = S� � �(np01)� �(n; ~p0;n+1) =
nX
j=2

�(n(Yj � Yj�1)) (2.13)

(e. g. Hall (1984)). Many authors studied the following modi�cation of S�

S+� =
n+1X
j=1

�((n+ 1) (Yj � Yj�1)) (2.14)
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(see Ekstr�om (1999), Misra and van der Meulen (2001) and others cited by them). Another

possibility is to interpret the observation space (0; 1] as a circle of unit circumference and

to use aj = Yj, 1 � j � n � 1 considered above and also an = Yn as cutpoints of an

interval partition f ~Aj : 1 � j � ng on this circle. This will join the intervals A1 = (0; Y1]
and An+1 = (Yn; Yn+1] of the interval partition fAj = (Yj�1; Yj] : 1 � j � n + 1g of (0; 1]
into one interval ~A1 = A1 [An+1 on the circle and, consequently, merge the probabilities
p01 = Y1 � Y0 = Y1 and ~p0;n+1 = Yn+1 � Yn = 1� Yn into

~p01 = p01 + ~p0;n+1 = 1 + Y1 � Yn:

This leads to the new theoretical distribution

~p0 = (~p01; p02; : : : ; p0;n�1; ~p0n)

with p02; : : : ; p0;n�1 and ~p0n de�ned by (2.9), (2.11) and to the same uniform distribution

pn as before. With this approach our statistics T� of (2.10) are replaced by

~T� = nD�(~p0;pn) =
n�1X
j=2

�(n p0j) + �(n ~p01) + �(n ~p0n); � 2 �: (2.15)

Some authors (e. g. Hall (1986)) used the statistics

~T+� =
n�1X
j=2

�((n+ 1) p0j) + �((n+ 1) ~p01) + �((n+ 1) ~p0n): (2.16)

It is to be noted that Ekstr�om (1999) and most authors cited by him studied the

statistic S+� only with the convex function �(t) = � ln t belonging to � while Misra

and van der Meulen (2001) studied �(t) = t ln t . On the other hand, Hall (1986),

Jammalamadaka et al (1989), Guttorp and Lockart (1989) and others studied the statistics

S�, ~S� or S
+
� for � from a wider class

~� = fc1�+c2 : c1; c2 2 IR; � 2 �g than�. However,
if ~� 2 ~� then for every statistic U~� from the class fS~�; ~S~�; S+~� g there exist c1; c2 2 IR and
a function � 2 � such that

U~� = c1U� + c2 for some U� 2 fS�; ~S�; S+� g:

This means that the functions considered by these authors can be restricted without loss

of generality to those from �. Further, the assumption �00(1) > 0 for � 2 � implies

that � is strictly convex in a neighborhood of 1. Consequently, �(t) � �0(1) (t � 1) is
decreasing on some interval (a; 1) � (0; 1) and increasing on (1; b) � (0;1). Since there
is no visible reason for considering �(t) oscillating on (0; a) or (b;1) if these intervals are
nonvoid, we can assume without loss of generality that the functions � proposed by the

mentioned authors de�ne �-disparities of probability distributions. Combining this result

with the fact that the di�erences T� � U� and ~T� � U� are for all U� 2 fS�; ~S�; S+� ; ~T+� g
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statistically negligible, when n ! 1 (see Section 3 below), we can conclude that the

goodness-of-�t statistics based on simple spacings are in fact measures of �-disparity or

of �-divergence between the hypothetical and empirical distributions F0 and Fn. Similar

conclusion can be obtained also for the statistics based on m-spacings for �xed m > 1,

and also for m = mn ! 1 as n ! 1 (these cases are not considered in the present

paper; the subcase mn=n!1 has been analyzed recently by Morales et al (2003)).

3 General asymptotic results

In this section we study the �nite set of statistics

fT�; ~T�; ~T+� ; S�g (3.1)

for all � from the set � de�ned in (1.10). The statistics of (3.1) were de�ned in Section 2.

Here we extend the asymptotic results proved previously for one of the statistics (3.1) to

all the statistics of (3.1). This extension is achieved at the price of a restriction on the

set �, namely we consider the subsets �2 � �1 � � de�ned by the condition that there

exist functions �; �; � : (0;1) 7! IR such that every � 2 �1 satis�es for all s; t 2 (0;1)
the functional equation

�(st) = �(s)�(t) + �(t)�(s) + �(s) (t� 1) (3.2)

and every � 2 �2 satis�es the functional equation

�(st) = �(s)�(t) + �(s) + �(s) (t� 1): (3.3)

Lemma 3.1. The functions �; � and � are continuous on (0;1) and satisfy the relations

�(1) = �(1) = 1 and �(1) = 0: (3.4)

Proof. The continuity of � and � from (3.3) can be obtained by putting s = 2 and t = 2

and t = 3 in (3.2). If we put s = 1 in (3.2) or (3.3) and use the assumption �(1) = 0 then

we obtain that for all t 2 (0;1)

(�(1)� 1)�(t) + �(1) (t� 1) = 0:

This contradicts the assumption �00(1) > 0 unless �(1) = 1 which implies also �(1) = 0.

By putting t = 1 in (3.2) we �nd that �(1) = 1.

Lemma 3.2. Every � 2 �1 is di�erentiable on (0;1), the corresponding functions �
and � are di�erentiable at 1, and for every t > 0

�0(t) = �0(1)
�(t)

t
+ �0(1)

�(t)

t
+ �0(1)

t� 1
t

: (3.5)
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Proof. Putting s = 1 + " and

��(") =
�(1 + ")� �(1)

"
; ��(") =

�(1 + ")� �(1)

"

we obtain from (3.2) for every t > 0 and " close to 0

t
�(t+ "t)� �(t)

"t
= ��(")�(t) +

�(1 + ")� �(1)

"
�(t) + ��(") (t� 1): (3.6)

Since � is di�erentiable in a neighborhood of 1, for t close to 1

��(")�(t) + ��(") (t� 1) = t �0(t)� �0(1) �(t) + o(") as "! 0:

By assumptions concerning �, �(t) is not linear in a neighborhood of t = 1. Therefore

the last relation implies that the limits of ��(") and ��(") for "! 0 exist, i. e.,

��(") = �0(1) + o(") and ��(") = �0(1) + o(") as "! 0:

Now (3.5) for all t > 0 follows from (3.6).

Example 3.1. The function �(t) = (1� t)=t, t > 0, belongs to � and satis�es (3.3) for

�(t) = 1=t and �(t) � 0. Therefore it belongs to �2 � �. The function �(t) = (1� t)2=t,

t > 0, belongs to � too and satis�es (3.3) for the same �(t) as above and �(t) = t� 1=t.
Therefore it belongs to �2. The class of functions de�ned on (0;1) by

��(t) =
t� ln t

(2�� 1) ; � 2 IR� f 1
2
g

belong to � and satisfy (3.2) for �(t) = �(t) = t� and �(t) � 0. Therefore

f�� : � 2 IR� f 12gg � �1

and �0 2 �2. But �1 satis�es also (3.3) for �(t) = t and �(t) = t ln t. Therefore �1 belongs

to �2.

In the theorems that follow the observations are assumed to be distributed on (0; 1]

in two possible ways:

(i) under a �xed alternative,

(ii) under local alternatives.

The case (i) means that the observations are distributed by a �xed distribution function

F (x) with a density f(x) positive if and only if x 2 [0; 1] and continuous on [0; 1]. The

11



case (ii) means that the observations from samples of sizes n = 1; 2; : : : are distributed

by distribution functions

F (n)(x) = F0(x) +
Ln(x)

4
p
n
= x+

Ln(x)
4
p
n

(3.7)

on [0; 1] where Ln : IR 7! IR are continuously di�erentiable functions with Ln(0) =

Ln(1) = 0 with the derivatives `n(x) = L0n(x) tending on [0; 1] to a continuously di�eren-

tiable function ` : IR 7! IR uniformly in the sense

sup
0�x�1

j`n(x)� `(x)j = o(1) as n!1: (3.8)

The two possibilities (i) and (ii) are not mutually exclusive: their conjunction is \under

the hypothesis" where F (x) = F0(x), f(x) = f0(x) = I[0;1](x) and Ln(x) � 0 on IR

for all n. This means that the asymptotic results obtained under local alternatives for

`(x) of (3.8) equal identically 0 must coincide with the results obtained under the �xed

alternative for F (x) = F0(x).

The theorems below demonstrate that if � 2 �2 de�nes a �-divergence or �-disparity

then the statistics S�; ~S�; S
+
� and T

+
� share the most important statistical properties with

the �-divergence or �-disparity statistics T� and ~T�. In other words, they provide a key

argument for the thesis of the present paper formulated in Section 2, that the spacings-

based goodness-of-�t statistics considered in the previous literature are measures of �-

divergence or �-disparity between the hypothetic and empirical distributions F0 and Fn.

But independently of this purpose, these theorems present the asymptotic theory for the

whole set of statistics (3.1) and clarify that the small modi�cations distinguishing these

statistics from one another are asymptotically negligible. The restriction to the functions

from �2 or even �1 is not essential { it only simpli�es the proof of the next theorem.

Theorem 3.1. Consider the observations under �xed or local alternatives and denote

by U� any statistic from the class fT�; S�; ~T�g de�ned in (2.10) { (2.15). For all � 2 �1

U� � ~S� = Op(1) as n!1 (3.9)

and for all � 2 �2

S+� � S� = "n S� + �n and ~T+� � ~T� = "n ~T� + �n (3.10)

where S+� and
~T+� are de�ned by (2.14) and (2.16), "n = o(1) and �n = �0(1) + o(1) as

n!1.

12



Proof. We shall consider the �xed alternative F (x) with a continuous density f(x) > 0

for 0 � x � 1. For the local alternatives the argument is similar. By inspecting the

de�nitions of T�; ~T� and ~S� we see that for (3.9) it su�ces to prove that for n!1

�(np01) = Op(1) and �(n(p01 + p02)) = Op(1): (3.11)

It is known (see e. g. page 208 in Hall (1986)) that p01 = F�1(Z1=Wn+1) and p01 + p02 =

F�1((Z1+Z2)=Wn+1) where Z1; : : : ; Zn+1 are independent standard exponential variables

and Wn+1 = Z1 + � � �+ Zn+1 so that, for n!1,

Wn+1

n

p�! 1 and Vn =
Z1
Wn+1

p�! 0:

Setting

Rn =
F�1(Vn)

Vn
=
F�1(Vn)� F�1(0)

Vn

and using the mean value theorem and the assumed continuity of f in the neighborhood

of 0, we �nd that

Rn
p�! 1

f(0)
as n!1

where, by assumptions about f , 0 < f(0) <1. Thus

np01 =
n

Wn+1

Z1Rn

and, by applying (3.2),

�(np01) = �

 
n

Wn+1

!
�(Z1Rn) + �(Z1Rn)�

 
n

Wn+1

!
+ �

 
n

Wn+1

!
(Z1Rn � 1):

Since Z1Rn = Op(1) as n!1, we obtain from Lemma 3.1

�(np01) =

"
�

 
n

Wn+1

!
+ �

 
n

Wn+1

!
+ �

 
n

Wn+1

!#
Op(1)

= [�(1) + �(1) + �(1) + op(1)]Op(1)

= Op(1) (cf. (3.4)):

Replacing Vn = Z1=Wn+1, by Vn = (Z1 + Z2)=Wn+1 and using the fact that

(Z1 + Z2)Rn = (Z1 + Z2)
F�1(Vn)� F�1(0)

Vn
= Op(1)

we obtain the second relation of (3.11). Now we prove (3.10). From (3.3) we get for any

p > 0

�((n+ 1) p) = �
�
n+ 1

n

�
�(np) + �

�
n+ 1

n

�
+ �

�
n+ 1

n

�
(np� 1)
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so that

�((n+ 1) p)� �(np) = "n�(np) + �
�
n+ 1

n

�
+ �

�
n+ 1

n

�
(np� 1)

(3.12)

where "n = �((n+1)=n)� 1 = o(1) as n!1 by Lemma 3.1. Replacing p by p0j �guring

in the de�nitions of S� and S
+
� and summing over 1 � j � n+ 1, we get the equality

S+� � S� = "n S� + �n

for

�n = (n+ 1)�
�
n+ 1

n

�
� �

�
n+ 1

n

�

=
n+ 1

n

�
�
1 + 1

n

�
� �(1)

1
n

� �
�
n+ 1

n

�
:

By Lemma 3.1,

�n = �0(1) + o(1) as n!1:

This completes the proof of the �rst relation in (3.10). Proof of the second relation is the

same, we just replace p in (3.12) by the probabilities p0j �guring in the de�nition of ~T�.

For every continuous function  : (0;1) 7! IR we de�ne the condition

lim
t!1

t��j (t)j = lim
t#0

t�j (t)j = 0 for some � � 0 and � < 1 (3.13)

and the integral

h i =
Z 1

0
 (t) e�t dt: (3.14)

Obviously, if (3.13) holds then h i exists and is �nite.
Let � 2 �1 satisfy (3.13) and let

� = ��; � = �� and � = �� (3.15)

be the corresponding functions satisfying the functional equation (3.2). Then all functions

 (t) = �(ts)� �(t) �(s); s > 0;

satisfy (3.13) too and, by (3.2), also the linear combinations

 (t) = �(t)�(s) + �(t) (s� 1); s > 0;

of functions �(t) and �(t) satisfy (3.13). Since �(s) is not linear in the neighborhood

of s = 1, it follows from here that �(t) and �(t) themselves satisfy (3.13). Therefore
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the integrals h�i and h�i exist and are �nite. For the �xed alternatives F � f we shall

consider the linear combinations

��(f) = h�iD�(F0; F ) + h�iD�(F0; F )

of the integrals

D�(F0; F ) =
Z 1

0
f(x)�

 
f0(x)

f(x)

!
dx =

Z 1

0
f(x)�

 
1

f(x)

!
dx

and

D�(F0; F ) =
Z 1

0
f(x) �

 
f0(x)

f(x)

!
dx =

Z 1

0
f(x) �

 
1

f(x)

!
dx

(cf. (1.6)) which are under the present assumptions about the alternative density f well

de�ned and �nite. If �(t) is convex on (0;1) or �(t)��0(1) (t�1) monotone on (0; 1) and
(1;1) then D�(F0; F ) is nonnegative �-divergence or �-disparity of F0 and F . Similarly

if �(t) is convex on (0;1) or �(t)� �(1)� � 0(1) (t�1) monotone on (0; 1) and (1;1) then

D��(F0; F ) =
Z 1

0
f(x)��

 
f0(x)

f(x)

!
dx = D�(F0; F )� 1

is the ��-divergence or ��-disparity of F0 and F for

��(t) = �(t)� �(1) = �(t)� 1 (cf. Lemmas 3.1 and 3.2):

Hence the formula for ��(f) can be written for every � 2 �1 in the more intuitive form

��(f) = h�iD�(F0; F ) + h�i [D��(F0; F ) + 1] (3.16)

where � and �� depend on � as speci�ed above and D�(F0; F ), D��(F0; F ) are divergences

of disparities between the hypothesis F0 and the alternative F for typical � 2 �1. For

� 2 �2 � �1 it holds ��(t) = t� 1 so that the last formula simpli�es as follows

��(f) = h�iD�(F0; F ) + h�i: (3.17)

In particular,

��(f0) = h�i: (3.18)

Theorem 3.2. Consider the observations under the �xed alternative F � f and denote

by U� any statistic from the class fT�; ~T�; S�; ~S�g. If � 2 �1 satis�es (3.13) then

U�
n

p�! ��(f) for n!1 (3.19)

where ��(f) is given by (3.16). If � 2 �2 satis�es (3.13) then the asymptotic relation

(3.19) remains valid also for U� = ~T+� and U� = S+� and ��(f) is given by the simpler

formula (3.17).
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Proof. By Theorem 1 of Hall (1984), the statistic ~S� de�ned by (2.13) satis�es under a

�xed alternative F � f the relation

~S�
n

p�! ~��(f) =
Z 1

0
f 2(x)

�Z 1

0
�(t) e�tf(x)dt

�
dx as n!1

provided � : (0;1) 7! IR is continuous and exponentially bounded in the sense that

j�(t)j � K(t� + t��) for some K > 0, � � 0, � < 1 and f is bounded, piecewise

continuous and bounded away from 0 (see also part (i) of Theorem 3.1 in Misra and van

der Meulen (2001)). Thus (3.19) is proved for U� = ~S� as soon as it is shown that for

� 2 �1 the limit ~��(f) coincides with ��(f). By substituting s for tf(x) in the last

integral and using the assumption 0 < f(x) <1 and the functional equation (3.2),

~��(f) =
Z 1

0
f(x)

 Z 1

0
�

 
s

f(x)

!
e�sds

!
dx

=
Z 1

0
f(x)

 Z 1

0

"
�(s)�

 
1

f(x)

!
+ �

 
1

f(x)

!
�(s) + �(s)

 
1

f(x)
� 1

!#
e�sds

!
dx

= ��(f) +
Z 1

0
�(s) e�s ds

Z 1

0
(1� f(x)) dx = ��(f):

The extension of (3.19) to U� 2 fT�; ~T�; S�g follows from Theorem 3.1. For � 2 �2 the

extension of (3.19) to U� 2 f ~T+� ; S+� g follows from Theorem 3.1 too.

In the sequel we use the L2-norm

k`k =
�Z 1

0
`2(x) dx

�1=2
and we usually denote the integral (3.14) by h (t)i instead of h i.

Theorem 3.3. Consider the observations under the local alternatives with a limit func-

tion `(x) of (3.8) and denote by U� any statistic from the set fT�; ~T�; ~T+� ; S�; ~S�; S+� g. If
� 2 �2 satis�es the stronger version of (3.13) with � < 1=2 then

1p
n
(U� � n��)

D�! N(m�(`); �
2
�) a. s. n!1 (3.20)

where

�� = h�(t)i; �2� = h�2(t)i � h�(t)i2 � (ht�(t)i � h�(t)i)
2 (3.21)

and

m�(`) =
k`k2
2

�
ht2�(t)i � 4ht�(t)i+ 2h�(t)i

�
: (3.22)
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Proof. For U� = S+� the relations (3.20) { (3.22) follow from the result of Kuo and Rao

(1981), cf. also Del Pino (1979) and Theorem 3.2 in Misra and van der Meulen (2001).

The extension to the remaining statistics U� follows from Theorem 3.1.

Let us now consider the �xed alternative F � f de�ned in (i) above and � 2
�2 with � = ��, � = ��, satisfying the functional equation (3.3), and let ~f(x) =

[�0(1)� �0(1)] f(x) + �0(1) where �0; �0; �0 are the derivatives of �; �; �. To express the

asymptotic normality under this alternative, we need auxiliary functions 	i = 	i;� of the

variable x 2 (0; 1):

	1(x) = �0(1) h�(t)i f(x) �
 
1

f(x)

!
+ �0(1) f(x)�

 
1

f(x)

!
+ ~f(x);

	2(x) =
�
h�2(t)i � h�(t)i2

�
f(x) �2

 
1

f(x)

!
+ f(x) �2

 
1

f(x)

!

+2(ht�(t)i � h�(t)i)f(x) �
 
1

f(x)

!
�

 
1

f(x)

!
; (3.23)

	3(x) = (ht�(t)i � h�(t)i)
q
f(x) �

 
1

f(x)

!
+
q
f(x) �

 
1

f(x)

!
; (3.24)

and also

	4(x) =

q
f(x)

F (x)

Z x

0

 
1� F (y) f 0(y)

f 2(y)

!
	1(y) dy (3.25)

when the alternative density has a continuous derivative f 0(x) on (0; 1).

Theorem 3.4. Consider the observations under the �xed alternative F � f where f

has a continuous derivative f 0 : [0; 1] 7! IR, and denote by U� any statistic from the set

fT�; ~T�; ~T+� ; S�; ~S�; S+� g. If � 2 �2 satis�es the stronger version of (3.13) with � < 1=2

then

1p
n
(U� � n��(f))

D�! N(0; �2�(f)) n!1 (3.26)

where ��(f) is given by (3.17) and

�2�(f) =
Z 1

0
	2(x) dx� 2

Z 1

0
	3(x)	4(x) dx+

Z 1

0
	24(x) dx (3.27)

for 	2(x); 	3(x) and 	4(x) de�ned by (3.23) { (3.25).

Proof. Consider U� = ~S� for � 2 �2. By Lemma 3.2, �(t) has a continuous derivative

�0(t) on (0;1). By (3.5), for every c 2 IR

tcj�0(t)j � j�0(1)j tc�1j�(t)j+ j�0(1)j tc + j�0(1)j tc�1jt� 1j:
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Thus if � satis�es (3.13) with � < 1=2 then there exists � � 0 such that

lim
t!1

t��j�0(t)j = lim
t#0

t1+�j�0(t)j = 0:

This means that under the assumptions of the theorem there exist a > 0, K > 0 and

b < 1=2 such that for every t 2 (0;1)

j�(t)j � K(ta + t�b) and j�0(t)j � K(ta + t�b�1):

For continuously di�erentiable functions � satisfying these assumptions and �xed alter-

natives with densities f continuously di�erentiable on (0; 1) it follows from Theorem 2 in

Hall (1984) (cf. also part (ii) in Theorem 3.1 of Misra and van der Meulen (2001)) that

U� = ~S� satis�es the relation

1p
n
(U� � n~��(f))

D�! N(0; ~�2�(f)) for n!1

where: (1) the asymptotic mean ~��(f) was presented and proved to be equal to ��(f) in

the proof of Theorem 3.2 under assumptions weaker than here and, (2) the asymptotic

variance ~�2�(f) can be speci�ed by means of the standard exponential variate Z and the

auxiliary function

G(x) =
Z x

0

 
1� F (y) f 0(y)

f 2(y)

!
E

"
Z �0

 
Z

f(y)

!#
dy; 0 < x < 1; (3.28)

as the sum of

s21(f) =
Z 1

0

0@E�2  Z

f(x)

!
�
"
E�

 
Z

f(x)

!#21A f(x) dx
s22(f) = �2

Z 1

0
E

"
(Z � 1)�

 
Z

f(x)

!#
G(x)

F (x)
f(x) dx

and

s23(f) =
Z 1

0

 
G(x)

F (x)

!2
f(x) dx:

It remains to be proved that for every x 2 (0; 1)0@E �2  Z

f(x)

!
�
"
E �

 
Z

f(x)

!#21A f(x) = 	2(x); (3.29)

E

"
(Z � 1)�

 
Z

f(x)

!#q
f(x) = 	3(x) (3.30)

and

G(x)
q
f(x)

F (x)
= 	4(x): (3.31)
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Indeed, then ~�2�(t) = �2�(f) so that (3.26) is proved for U� = ~S� and the extension of

(3.26) to the remaining statistics U� considered there follows from Theorem 3.1. We shall

prove (3.29) { (3.31) in the reversed order. By substituting t = Z=f(y) in (3.5) and taking

into account that �(t) � 1 we obtain

E

"
Z�0

 
Z

f(y)

!#
= f(y)E

"
�0(1)�

 
Z

f(y)

!
+ �0(1) + �0(1)

 
Z

f(y)
� 1

!#

= f(y)

"
�0(1)E �

 
Z

f(y)

!
+ �0(1) + �0(1)

 
1

f(y)
� 1

!#

and, by putting s = 1=f(x) and t = Z in (3.3), we get

�

 
Z

f(x)

!
= �(Z) �

 
1

f(x)

!
+ �

 
1

f(x)

!
+ �

 
1

f(x)

!
(Z � 1): (3.32)

Therefore

E �

 
Z

f(x)

!
= h�i�

 
1

f(x)

!
+ �

 
1

f(x)

!
(3.33)

and, consequently,

E

"
Z �0

 
Z

f(y)

!#
= 	1(y): (3.34)

This together with the de�nitions of 	4(x) and G(x) in (3.25) and (3.28) implies (3.31).

Further, from (3.32) and the de�nition of 	3(x) in (3.24) we get (3.30). Finally, from

(3.32), (3.33) and the de�nition of 	2(x) in (3.23) we obtain (3.29) which completes the

proof.

Remark 3.1. Under the hypothesis F0 � f0 � 1 both Theorems 3.3 and 3.4 deal with
the same statistical model. Therefore the asymptotic parameters (��; �

2
�) from (3.21) and

(��(f0); �
2
�(f0)) from (3.17) and (3.27) must be the same, i. e. the equalities

��(f0) = h�i and �2�(f0) = h�2i � h�i2 � (ht�(t)i � h�i)
2

must hold. The �rst equality is clear from (3.17), (3.18). For f = f0 we get from (3.34)

by partial integration

	1(y) = ht�0(t)i = ht�(t)i � h�i for all y 2 (0; 1):

Thus, by (3.25), 	4(x) is under the hypothesis constant, equal ht�(t)i � h�i. Similarly,
by (3.23) (3.24) and Lemma 3.1, 	2(x) = h�2i � h�i2 and 	3(x) = 	4(x). Hence (3.27)
implies the desired result

�2�(f0) = 	2(x)� 2	24(x) + 	24(x) = �2�:

19



Remark 3.2. The expressions ��; �
2
� are well de�ned by (3.21) for every continuous

function � : (0;1) 7! IR satisfying the condition (3.13) with � < 1=2. If this condition

holds for some function  : (0;1) 7! IR then it holds also for all linear transformations

�(t) = a (t) + b(t� 1) + c and

�� = a� + c; �2� = a2�2 : (3.35)

Let us now consider a �xed alternative F � f with the density continuously di�erentiable

on (0; 1). Then the formulas

��(f) =
Z 1

0
f(x)

*
�

 
t

f(x)

!+
dx and �2�(f) = s21(f) + s22(f) + s23(f)

using s2i (f) speci�ed in the last proof, de�ne ��(f) and �
2
�(f) for all continuously di�er-

entiable functions � : (0;1) 7! IR such that both �(t) and ~�(t) = t�0(t) satisfy (3.13)

with � < 1=2. If  is one of the functions satisfying all these conditions then all linear

transformations �(t) = a (t) + b(t� 1) + c satisfy these conditions too and

��(f) = a� (f) + c; �2�(f) = a2�2 (f): (3.36)

The formulas (3.35) and (3.36) are veri�able from the de�nitions mentioned in this remark

and they are useful for evaluation of asymptotic means and variances.

4 Asymptotic results for power divergence statistics

In this section we pay special attention to the class of convex functions �� : (0;1) 7! IR

parametrized by � 2 IR and de�ned by

��(t) =
t� � �(t� 1)� 1

�(�� 1) if � 2 IR� f0; 1g (4.1)

and otherwise by the corresponding limits

�0(t) = � ln t+ t� 1 and �1(t) = t ln t� t+ 1: (4.2)

All these functions are strictly convex and arbitrarily di�erentiable on (0;1) with ��(1) =
�0�(1) = 0 and �

00
�(1) = 1. All of them belong to the subset �2 � �, i. e. they satisfy the

functional equation (3.3) with

�(t) = ��(t) = t� and �(t) = ��(t) =

8<:
t��t
��1 if � 6= 1
lim
�!1

t��t
��1 = t ln t if � = 1 (4.3)

i. e.

��(st) = s���(t) + ��(s) + (t� 1):
8<:

s��s
��1 if � 6= 1
s ln s if � = 1

(4.4)
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for all s; t > 0 and all parameters � 2 IR.
We use the simpli�ed notation

D�(p0;p) = D��(p0;p) and D�(F0; F ) = D��(F0; F )

for the ��-divergences. It is easy to see that

~��(t) =
t� � 1
�(�� 1) ; � 2 IR� f0; 1g

and
~�0(t) = � ln t; ~�1(t) = t ln t

are convex functions belonging to �2 too and that the ~��-divergences coincide with the

��-divergences. Further,

D2(p0;p) = D�1(p;p0) =
1

2
�2(p0;p);

D1(p0;p) = D0(p;p0) = I(p0;p);

D1=2(p0;p) = D1=2(p;p0) = 4H(p0;p):

Similar equalities hold also when p0; p are replaced by F0; F . We see from here that the

class of statistics T� = nD�(p0;p) with � 2 f�� : � 2 IRg contains the classical statistics
(2.1) { (2.6) as particular cases and thus provides a su�cient wide variety of statistics for

theoretical and practical considerations.

In this section we study the sets of ��-divergence statistics

U� =
n
T�� ; ~T�� ; ~T

+
��
; S�� ; ~S�� ; S

+
��

o
(4.5)

for � 2 IR. The statistics T�� ; ~T�� and S
+
��
are not altered if the nonnegative convex

functions �� 2 �2 are replaced by the simpler convex functions ~�� 2 �2. The statistics

T�� and ~T�� are proportional to the ��-divergences of hypothetical and empirical distri-

butions F0 and Fn reduced by appropriate partitions of the observation space [0; 1]. For

the remaining statistics from U� one cannot �nd partitions of [0; 1] enabling such a ��-
divergence interpretation but these statistics still re
ect a proximity of F0 and F reduced

by some partitions, using the functions �� or ~��. Among them are the spacings-based

statistics studied in the previous literature.

For example

n+1X
j=1

(Yj � Yj�1)
2 =

1

n+ 1

 
1 +

2S+�2
n+ 1

!
=

1

n+ 1

0@1 + 2S+~�2
n+ 1

1A
with Y0 = 0, Yn+1 = 1 is the so-called Greenwood statistic introduced by Greenwood

(1946) and studied later by Moran (1951) and many others. The statistic S+�0 = S+~�0
was
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introduced by Moran (1951) and studied later by Cressie (1976), van Es (1992), Ekstr�om

(1999) and many others cited by them. A class of statistics containing f ~S�� : � > �1=2g
was studied by Hall (1984) and a class containing f ~T+~�� : � 2 IRg or fS�� : � 2 IRg by
Hall (1986) or Jammalamadaka et al (1986, 1989), respectively. Recently Misra and van

der Meulen (2001) investigated the statistic S+�1 = S+~�1
(including its generalization to

the m-spacings for �xed m > 1). The only paper dealing so far with the spacings-based

statistics with a direct ��-divergence interpretation seems to be that of Morales et al

(2003) which studies a class of statistics containing f ~T�� : � 2 IRg, but the asymptotic
theory is restricted there to them-spacings withm = mn increasing to in�nity for n!1,
similarly as in Hall (1986) or Jammalamadaka et al (1986, 1989).

Since the asymptotic theory of the statistics U� 2 U� speci�ed by (4.5) is covered by
Theorems 3.1 { 3.4, the theorems that follow are their corollaries. However, the proofs

of the following theorems are partly based on a continuity theory for the asymptotic

parameters

��(f) = ���(f); �2�(f) = �2��(f); �� = ��� ; �2� = �2�� and m�(`) = m��(`)
(4.6)

as functions of the structural parameter � 2 IR. This theory enables us to avoid a

direct calculation of the asymptotic parameters at some �0 2 IR if these calculations are
tedious and the asymptotic parameters are known at the neighbors � of �0. This theory

is summarized in Theorem 4.1 using the following lemma.

Lemma 4.1. Let g(y) be a continuous positive function on a compact interval [a; b] � IR

and �(u; v) a continuous function of variables u; v 2 IR. Further, let for all � from an

interval (c; d) � IR,  � : (0;1) 7! IR be convex or concave functions di�erentiable at some

point t� 2 (0;1). If the values  �(t), t 2 (0;1) and the derivatives  0�(t�) continuously
depend on � 2 (c; d) then for every �0 2 (c; d)

lim
�!�0

bZ
a

�(g;  �(g)) dy =

bZ
a

�(g;  �0(g)) dy: (4.7)

Proof. By the assumptions about g,

t0 = min
y2[a;b]

g(y) > 0 and t1 = max
y2[a;b]

g(y) <1:

If  �(t) is convex then for every t 2 [t0; t1] and � 2 (c; d)

 0�(t�) (t� t�) �  �(t) �  �(t0) +  �(t1):

If  �(t) is concave then, similarly,

 �(t0) +  �(t1) �  �(t) �  0�(t�) (t� t�):
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Therefore in both cases

max
t0�t�t1

j �(t)j � max fj �(t0) +  �(t1)j; j 0�(t�)j � jt1 � t0jg :

The assumed continuity of  0�(t�) and  �(t0) +  �(t1) in the variable � 2 (c; d) implies
that for all compact neighborhoods N � (c; d) of �0 the constant

k = sup
�2N

max
t0�t�t1

j �(t)j = sup
�2N

max
y2[a;b]

j �(g(y))j

is �nite. Put

K = max
[t0;t1]�[�k;k]

�(u; v):

The function j�(g;  �(g))j of variables (y; �) 2 [a; b] � (c; d) is bounded on [a; b] � N by

K <1. Since for every y 2 [a; b]

lim
�!�0

�(g;  �(g)) = �(g;  �0(g));

the Lebesgue dominated convergence theorem for integrals implies (4.7).

Theorem 4.1. The asymptotic parameters ��; �
2
� and m�(`) speci�ed by (4.6) and

(3.21), (3.22) are continuous in the variable � 2 (�1=2;1). If the density f satis�es the
assumptions of Theorem 3.2 then the asymptotic mean ��(f) speci�ed by (4.6) and (3.17)

is continuous in the variable � 2 (�1;1). If the density f satis�es the assumptions of
Theorem 3.4 then the asymptotic variance �2�(f) speci�ed by (4.6) and (3.27) is continuous

in the variable � 2 (�1=2;1).

Proof. Since �� = ��(f0) and �
2
� = �2�(f0) where the hypothetic density f0 satis�es

the assumptions of Theorems 3.2 and 3.4, the continuity of �� and �
2
� follows from the

continuity of ��(f) and �
2
�(f) proved below. By (4.6) and (3.22),

m�(`) =
k`k2
2

�
ht2��(t)i � 4ht��(t)i+ 2h��(t)i

�
where �� is given by (4.1) (4.2) and, by (3.14),

htj��(t)i =
Z 1

0
tj��(t) dG(t); j 2 f0; 1; 2g (4.8)

for G(t) = 1 � e�t. All integrals (4.8) are �nite if and only if � 2 (�1;1). Further, for
every �xed t > 0

d

d�
���(t) � 0 at any � 2 IR: (4.9)
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Hence the continuity of the products �htj��(t)i in the variable � 2 IR follows from the

monotone convergence theorem for integrals, and this implies also the desired continuity

of the integrals (4.8) at any � 2 (�1;1)� f0g. Further, for every �xed t > 0

d

d�
(�� 1)��(t) � 0 for any � 2 IR: (4.10)

Hence the continuity of the products (� � 1) htj��(t)i in the variable � 2 IR follows

from the monotone convergence theorem for integrals. Similarly as above, this implies

the continuity of the integrals (4.8) at the remaining point � = 0. Further, by (4.6) and

(3.17),

��(f) = h��iD�(F0; F ) + h��i

where, by (3.14) and (4.3)

h��i =
Z 1

0
t�dG(t) and h��i =

Z 1

0
��(t) dG(t):

These integrals are �nite if and only if � 2 (�1;1). The continuity of h��i at � 2 (�1;1)
was proved above, the continuity of D�(F0; F ) at � 2 IR follows from the assumptions

about the densities f0; f and from Proposition 2.14 in Liese and Vajda (1987). The

continuity of h��i of � 2 (�1;1) follows from the monotone convergence theorem for

integrals applied separately to the integration domains (0; 1) and (1;1). Finally, let us
consider �2�(f) de�ned by (3.23) { (3.27) for � = ��, � = �� and � = �� given by (4.1) {

(4.3). The integrals ht��(t)i, h��(t)i and h�2�(t)i are �nite if and only if � 2 (�1=2;1)
and their continuity at � 2 (�1=2;1) was either proved above or it can be proved
similarly as above. The continuity of the integral

Z 1

0

"
f�2�

 
1

f

!
+ f�2�

 
1

f

!#
dx

at � 2 (�1=2;1) follows from Lemma 4.1, which classi�es the continuity of the componentR
 2(x) dx of �

2
�(f) in (3.27). For the continuity of the remaining two components take

into account that F (x) > c1x for some c1 > 0 on [0; 1] because f is bounded away from

zero on [0; 1]. Further, both f(x) and f 0(x) are bounded on [0; 1] so that there exists a

constant c2 such that in (3.25)q
f(x)

F (x)

Z x

0

�����1� F (y) f 0(y)

f 2(y)

����� dy < c2 for all x 2 [0; 1]: (4.11)

Using the function '�(t) = ���(t) which is for every t > 0 continuous and monotone in

� 2 IR (cf. (4.9)), we obtain from (3.23)

	1(x) = �h��i f(x)1�� + f(x)'�

 
1

f(x)

!
+ 1� f(x)
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where the right-hand side is bounded on [0; 1] locally uniformly in � and continuous at

any � 2 IR. By (3.25) and (4.11), this implies that also 	4(x) is bounded on [0; 1] locally
uniformly in � and continuous at any � 2 IR. Since the integrands inZ 1

0

"q
f��

 
1

f

!
+
q
f��

 
1

f

!#
	4 dx and

Z 1

0
	24 dx

are on [0; 1] continuous and locally bounded in the variable � 2 IR, the continuity of both
these integrals in the variable � 2 IR follows from the Lebesgue dominated convergence

theorem for integrals. This clari�es the continuity of the second and third component of

�2�(f) in (3.27) and thus completes the proof.

In the theorems below we use the gamma function of the variable � 2 IR and the Euler
constant,

�(�) =
Z 1

0
t��1 e�t dt and 
 = 0:577 : : : : (4.12)

Theorem 4.2. Consider the observations under the �xed alternative F � f and denote

by U� any statistic from the class U� of (4.5). If � > �1 then

U�
n

p�! ��(f) as n!1 (4.13)

for

��(f) = D�(F0; F ) �(�+ 1) + ��; (4.14)

where

�0 = 
; �1 = 1� 
 and �� =
�(�+ 1)� �(1)

�(�� 1) for � =2 f0; 1g
(4.15)

and D�(F0; F ) are the ��-divergences

D1(F0; F ) =
Z 1

0
f ln

f

f0
dx =

Z 1

0
f(x) ln f(x) dx;

D0(F0; F ) =
Z 1

0
f0 ln

f0
f
dx = �

Z 1

0
ln f(x) dx; (4.16)

D�(F0; F ) =
1

�(�� 1)

 Z 1

0
f

 
f0
f

!�
dx�1

!
=

1

�(�� 1)

�Z 1

0
f(x)1��dx�1

�
(4.17)

for � =2 f0; 1g:

The ��-divergences are zero if and only if F = F0 so that under the hypothesis F = F0

��(f0) = ��; � 2 IR: (4.18)

Both parameters �� and ��(f) are continuous in the variable � 2 (�1;1) and satisfying
the inequality ��(f) � �� which is strict unless F = F0.
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Proof. The functions from the class f�� : � 2 (�1;1)g � �2 satisfy all assumptions of

Theorem 3.2. Hence (4.13) holds for all � > �1 and the limit ��(f) is given in accordance
with (3.17) and (4.3) by the formula

��(f) = h��(t)iD�(F0; F ) + h��(t)i = ht�iD�(F0; F ) + h~��(t)i

where ht�i = �(�+ 1) for all � 2 IR. If � =2 f0; 1g then

h~��(t)i =
1

�(�� 1)ht
� � 1i = �(�+ 1)� �(1)

�(�� 1)

but

h~�0(t)i = h� ln ti and h~�1(t)i = ht ln ti

leads to evaluation of unpleasant integrals. This evaluation can be avoided by employing

Theorem 4.1. By the continuity of �� = h~��(t)i,

�j = h~�j(t)i = lim
�!j

�(�+ 1)� �(1)
�(�� 1) for j 2 f0; 1g;

where the limit on the right leads to the values �j, j 2 f0; 1g given in (4.15), e. g. by
using the L'Hospital rule and the known formulas �0(1) = �
, �0(2) = 1 � 
. The

continuity and the inequality ��(f) � �� for � 2 (�1;1) follow from (4.14) and (4.15)

because D�(F0; F ) is nonnegative and continuous in � 2 IR and �(� + 1) is positive

and continuous in � 2 (�1;1). The condition for equality follows from the fact that

D�(F0; F ) is positive unless F = F0.

Since �(� + 1) = �(� � 1) �(� � 1), (4.14) and (4.15) can be replaced for � =2 f0; 1g
by

�� = �(�� 1)�
1

�(�� 1) and ��(f) = �(�� 1)
Z 1

0
f 1�� dx� 1

�(�� 1) :
(4.19)

Theorem 4.2 can be illustrated by Table 4.1 presenting actual values of the parameters

�� and ��(f) for selected parameters �. In this table f denotes any density considered

in Theorem 4.2.
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Table 4.1 Values of �� and ��(f) for selected � > �1.

� �� ��(f)

�1
2

4
3
(
p
� � 1) := 1:030

p
�D�1=2(F0; F ) + ��1=2 =

4
p
�
3

R 1
0 f

3=2 dx� 4
3

0 

:
= 0:577 I(F; F0) + �0 =

R 1
0 f ln f dx+ 


1
2

4� 2
p
�
:
= 0:455 2

p
�H(F0; F ) + �1=2 = 4� 2

p
�
R 1
0

p
fdx

1 1� 

:
= 0:423 I(F0; F ) + �1 = 1� 
 �

R 1
0 ln f dx

3
2

p
� � 4

3

:
= 0:439 3

p
�
4
D3=2(F0; F ) + �3=2 =

p
�
R 1
0

dxp
f
� 4

3

2 1
2

�2(F0; F ) + �2 =
R 1
0
dx
f
� 1

2

5
2

p
�
2
� 4

15

:
= 0:620 15

p
�

8
D5=2(F0; F ) + �5=2 =

p
�
2

R 1
0

dx
f3=2

� 4
15

3 5
6

:
= 0:833 6D3(F0; F ) + �3 =

R 1
0
dx
f2
� 1

6

4 23
12

:
= 1:917 24D4(F0; F ) + �4 = 2

R 1
0
dx
f3
� 1
12

Theorem 4.3. Consider the observations under the local alternatives with the limit

function `(x) of (3.8) and denote by U� any statistic from the class U� of (4.5). If

� > �1=2 then

1p
n
(U� � n��)

D�! N(m�(`); �
2
�) as n!1 (4.20)

where the parameters ��, m�(`) and �
2
� are continuous in the variable � 2 (�1=2;1),

given by (4.15) and by the formulas

m�(`) =
k`k2
2
�(�+ 1) (4.21)

and

�20 =
�2

6
� 1; �21 =

�3

3
� 3; �2� =

�(2�+ 1)� (�2 + 1)�2(�+ 1)
�2(�� 1)2 for � =2 f0; 1g:

(4.22)

Proof. Similarly as in the previous proof, (4.20) follows for all � > �1=2 from Theo-

rem 3.3. If � =2 f0; 1g then the expressions for m�(`) and �
2
� given in (4.21) and (4.22)

follow easily from the formulas given for m��(`) and �
2
�� in Theorem 3.3. The direct

evaluation of mj(`) and �
2
j from these formulas for j 2 f0; 1g is a somewhat tedious task.
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But using the continuity of m�(`) and �
2
� established in Theorem 4.1, we obtain mj(`)

and �2j given in (4.21) and (4.22) as the limits

mj(`) = lim
�!j

m�(`) and �2j = lim�!j
�2� for j 2 f0; 1g;

by using the continuity of the right-hand side of (4.21) and the L'Hospital rule, employing

the formulas

�(�+ k + 1) = (�+ k) (�+ k � 1) � � � (�+ 1)�(�+ 1);
�00(�+ 1) = 2�0(�) + ��00(�)

and

�00(1) =
�2

6
+ 
2; �00(2) =

�2

6
� 2
 + 
2

in addition to �0(1), �0(2) given above.

Theorem 4.3 provides a possibility to compare asymptotic relative e�ciencies of the

tests of hypothesis H0 : F0 � f0 based on the statistics U� 2 U�, � > �1=2. The Pitman
asymptotic relative e�ciency (ARE) of one test relative to another is de�ned as the limit

of the inverse ratio of sample sizes required to obtain the same limiting power at the

sequence of alternatives converging to the null hypothesis. If we de�ne the \e�cacies" of

the statistics U� 2 U� of Theorem 4.3 by

e�(U�) =
�2(�+ 1)

�2�
=
(m�(`))

2

�2�

 
2

k`k2

!2
for k`k2 6= 0

then at the sequences of alternatives (3.7)

ARE(U�1 ; U�2) =
e�(U�1)

e�(U�2)

(cf. Section 4 in Del Pino (1979)) where U�1 and U�2 are arbitrary statistics from U�1 and
U�2 . In Table 4.2 we present the parametersm�(`), �

2
� and �

2(�+1)=�2� for selected values

of � > �1=2. Table 4.2 indicates that the statistics U2 2 fT�2 ; ~T�2 ; ~T+�2 ; S�2 ; ~S�2 ; S
+
�2
g are

most asymptotically e�cient in the Pitman sense among all statistics U�, � > �1=2. This
extends the result about the asymptotic e�ciency of the Greenwood statistics (2S+�2 +

n+ 1)=(n+ 1)2 (see the discussion at the end of this section) on p. 1457 in Rao and Kuo

(1984).
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Table 4.2 The asymptotic parameters m�(`), �
2
� and e�(U�)

for selected statistics U� of Theorem 4.3.

� m�(`) �2� e�(U�)

0 k`k2
2

�2

6
� 1 :

= 0:645 1.550

1
2

k`k2
p
�
4

:
= k`k2

2
� 0:886 16� 5� :

= 0:292 2.690

1 k`k2
2

�2

3
� 3 :

= 0:290 3.448

3
2

k`k2 3
p
�
8

:
= 1:329 32

3
� 13�

4

:
= 0:457 3.871

2 k`k2 = k`k2
2
� 2 1 4.000

5
2

k`k2 15
p
�

16

:
= k`k2

2
� 3:323 128

15
� 29�

16

:
= 2:839 3.890

3 k`k2 3 = k`k2
2
� 6 10 3.600

4 k`k2 12 = k`k2
2
� 24 212 2.717

The general form of the asymptotic normality (4.20) as well as the continuity of the

parameters ��, m�(`) and �
2
� in � 2 (�1=2;1) established in Theorem 4.3 seem to be

new results. The special result for � = 0 seems also be new. The particular result for

� 2 (�1=2;1)�f0; 1g and U� = S+�� follows from the asymptotic normality obtained for

the statistics
n+1X
j=1

((n+ 1) (Yj � Yj�1))
� = �(�� 1)S+�� + n+ 1

by Del Pino, see p. 1062 in Del Pino (1979). The particular result for � = 1 and the

statistics U1 = S+�1 with �1 and �
2
1 given in the Tables 4.1 and 4.2 was obtained recently

by Misra and van der Meulen (2001) who however considered m-spacings for arbitrary

m � 1. They compared also the e�ciency of the test statistics for � = 0, � = 1 and

� = 2 with a similar conclusion as in the Table 4.2.

In the rest of this section we consider the observations under the �xed alternative

F � f where f has a continuous derivative f 0 : [0; 1] 7! IR and denote by U� any statistic

from the set U� of (4.5). The functions from the class f�� : � 2 (�1=2;1)g satisfy the
assumption of Theorem 3.4. Therefore if � > �1=2 then Theorem 3.4 implies that

1p
n
(U� � n��(f))

D�! N(0; �2�(f)) for n!1 (4.23)

where the asymptotic parameters ��(f), �
2
�(f) are given by (4.6). Similarly as in the

previous two theorems, we are interested in explicit formulas for these parameters. By

Theorem 3.4, the asymptotic mean is for all � 2 IR given by the explicit formula presented
in Theorem 4.2. The only problem which remains is the formula for �2�(f), � 2 IR.
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The functions  �(t) = t� with � > �1=2 satisfy all assumptions of Remark 3.2 so that
we can consider the quantities

s2�(f) = �2 �(f); � 2 (�1=2;1)

de�ned there. By (3.36),

�2�(f) =
s2�(f)

�2(�� 1)2 for � 2 (�1=2;1)� f0; 1g: (4.24)

For s2�(f) and all � 2 (�1=2;1)�f0; 1g we can �nd on p. 521 of Hall (1984) an expression
which can be given the form

s2�(f) = �2(�� 1)2
�
�2�

Z 1

0
f 1�2�dx+ �2(�+ 1)��(F0; F )

�
(4.25)

for �2� de�ned by the formula of (4.22) corresponding to � =2 f0; 1g and

��(F0; F ) =
1

�2

Z 1

0

 
1

(f(x))�
� 1

F (x)

Z x

0
(f(y))1��dy

!2
f(x) dx for � 2 IR� f0g:

(4.26)

Since Hall (1984) gave no hint about derivation of his formula, let us mention that (4.25)

is obtained if we substitute  � for � in s
2
j(f), j 2 f1; 2; 3g from the proof of Theorem 3.4,

and then employ the expression

G(x) = �E(Z�)
Z x

0

 
1� Ff 0

f 2

!
1

f��1
dy

= �(�+ 1)
�
(�� 1)

Z x

0
(f(y))1��dy + (f(x))��F (x)

�
for G(x) of (3.28). By (4.24) and (4.25),

�2�(f) = �2�

Z 1

0
f 1�2�dx+ �2(�+ 1)��(F0; F ); � 2 (�1=2;1)� f0; 1g:

The �nal intuitively appealing form of the asymptotic variance

�2�(f) = (1 + 2�(2�� 1)D2�(F0; F ))�
2
� + �

2(�+ 1)��(F0; F ) (4.27)

follows by taking into account the formula for D2�(F0; F ) obtained from (4.17). The

peculiar expressions ��(F0; F ) �guring in (4.27) can be better understood if we take into

account the following facts.

Lemma 4.2. Under the present assumptions about the �xed alternative F � f , the

class f��(F0; F ) : � 2 IR� f0gg satis�es the relation

��(F0; F ) =
Z 1

0

 
f��

�
�
Z 1

0

f��

�
f dy

!2
f dx

=
Z 1

0

 
f��

�

!2
f dx�

 Z 1

0

f��

�
f dx

!2
(4.28)
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and this class is continuously extended to all � 2 IR by putting

�0(F0; F ) =
Z 1

0

�
ln f �

Z 1

0
(ln f) f dy

�2
f dx

=
Z 1

0
f ln2 f dx�

�Z 1

0
f ln f dx

�2
: (4.29)

All ��(F0; F ), � 2 IR, are nonnegative measures of divergence of F0 and F , re
exive in

the sense that ��(F0; F ) = 0 if and only if F = F0.

Proof. If  : [0; 1] 7! IR is continuous and F � f so that

inf
x2[0;1]

f(x) > 0 and sup
x2[0;1]

j (x) f(x)j <1

then

	(x) =
Z x

0
 (y) f(y) dy; x 2 (0; 1)

satis�es the equalityZ 1

0
( �	=F )2f dx =

Z 1

0
 2f dx�

�Z 1

0
 f dx

�2
: (4.30)

Indeed,
d

dx

	2

F
= �

�
	

F

�2
f +

2	 f

F

so that Z 1

0
( �	=F )2f dx =

Z 1

0
 2f dx�

Z 1

0

2	 f

F
dx+

Z 1

0

�
	

F

�2
f dx

=
Z 1

0
 2f dx�

 
	2(1)

F (1)
� lim

y#0

	2(y)

F (y)

!

=
Z 1

0
 2f dx� 	

2(1)

F (1)

because

j	(y)j � y sup
x2[0;1]

j (x) f(x)j

and

F (y) � y inf
x2[0;1]

f(x):

Now, by (4.30), (4.28) follows from (4.26). Since f is assumed to be bounded and bounded

away from 0,

lim
�!0

��(F0; F ) =
Z 1

0

 
lim
�!0

f�� � 1
�

�
Z 1

0
lim
�!0

f�� � 1
�

f dy

!2
f dx

=
Z 1

0

�
ln f �

Z 1

0
(ln f) f dy

�2
f dx

= �0(F0; F )
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which proves the continuity at � = 0. The re
exivity is clear from (4.28) and (4.29).

If � > �1=2 di�ers from 0 and 1 then the asymptotic variance �2�(f) given by (4.27)

exceeds the asymptotic variance �2� = �2�(f0) achieved under the hypothesis F0 � f0 by

a linear function of �2� with the coe�cients D2�(F0; F ) and ��(F0; F ) positive unless

F = F0. By using Theorem 4.1, we can �nd the missing formulas for �20(f) and �
2
1(f)

by taking limits in (4.27) for � ! 0 and � ! 1. Since the limits �20; �
2
1 were already

calculated in Theorem 4.2 and the limits �2
0(F0; F ); �

2
1(F0; F ) are clear from Lemma 4.2,

this last step of the present section is simple, and we can just summarize the results as

follows.

Theorem 4.4. The asymptotic formula of (4.23) is valid for all � > �1=2 when the
alternative F � f satis�es the assumptions of Theorem 3.4. The asymptotic means ��(f)

are given for all � 2 IR by the explicit formulas (4.14) { (4.17). The asymptotic variances
�2�(f) are given for all � 2 IR by (4.27) where the explicit formulas for D2�(F0; F ), � 2 IR
can be found in (4.16) { (4.17), for �2�, � 2 IR in (4.22) and for ��(F0; F ), � 2 IR in

(4.28) and (4.29). The asymptotic means and variances are continuous in the variable

� 2 (�1=2;1). The asymptotic means satisfy the inequality ��(f) � �� mentioned in

Theorem 4.2. The asymptotic variances satisfy the inequality �2�(f) � �2�. Both equalities

take place if and only if F = F0.

Proof. Clear from what was said above. The last inequality and the condition for

equality follow from (4.27) where D2�(F0; F ) and ��(F0; F ) are nonnegative measures of

divergence of F0 and F , equal zero if and only if F = F0.

Concrete forms of ��(f) and �
2
�(f0) = �2� were illustrated in the Tables 4.1 and 4.2.

The next table illustrates �2�(f) given by (4.28) for arbitrary f satisfying the assumptions

of Theorem 3.4.
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Table 4.3 Asymptotic variances �2�(f) for selected � > �1=2.

� �2�(f)

0 �20 +�0(F0; F ) = �2

6
� 1 +

R 1
0 f ln

2 fdx�
�R 1
0 f ln f dx

�2
1
2

�21
2

+ �
4
� 1

2
(F0; F ) = 17� 4� � �

�R 1
0

p
f dx

�2
1 [1 + �2(F0; F )]�

2
1 +�1(F0; F ) =

R 1
0
dx
f

�
�2

3
� 2

�
� 1

3
2

[1 + 6D3(F0; F )]�
2
3=2 +

9�
16
�3=2(F0; F ) =

R 1
0
dx
f2

�
32
3
� 3�

�
� �

4

�R 1
0

dxp
f

�2
2 [1 + 12D4(F0; F )�

2
2 + 4�2(F0; F )] = 2

R 1
0
dx
f3
�
�R 1
0
dx
f

�2
3 [1 + 30D6(F0; F )]�

2
3 + 36�3(F0; F ) = 14

R 1
0
dx
f5
� 4

�R 1
0
dx
f2

�2
The general form of the asymptotic normality (4.23) established by Theorem 4.4,

as well as the continuity of the asymptotic means an variances ��(f) and �
2
�(f) in the

parameter � > �1=2 and some explicit formulas for these parameters, seem to be new

results. However, in the references cited in Sections 1 and 2 one can �nd particular

versions of these results for some of the statistics U� from the set fT�� ; ~T�� ; S�� ; ~S�� ; S+��g
on their linear functions, some � > �1=2 and some distributions F � f:

Let us start with the statistic S+�0 proposed by Moran (1951). The asymptotic nor-

mality (4.23) for � = 0, U0 = S+�0 and f = f0 � 1 with the parameters �0(f0) = �0 and

�20(f0) = �20 given in Tables 4.1 and 4.2 was proved by Darling (1953). The result of Dar-

ling was extended to all positively valued step functions f and �0(f) and �
2
0(f) given in

Tables 4.1 and 4.3 by Cressie (1976). The result of Cressie was extended to f considered

in the present paper and satisfying the Lipschitz condition on [0; 1] by van Es (1992), and

to all f considered in the present paper by Shao and Hahn (1995). Cressie and van Es

studied S+�0 as the special case obtained for m = 1 from a more general statistic based

on m-spacings with m � 1. Van Es used the ideas and methods developed for m > 1 by

Vasicek (1976) and Dudewicz and van der Meulen (1981).

Greenwood (1946) introduced the statistic

n+1X
j=1

(Yj � Yj�1)
2 =

2S+�2 + n+ 1

(n+ 1)2

Kimball (1947) proposed the generalization

n+1X
j=1

(Yj � Yj�1)
� =

�(�� 1)S+�� + n+ 1

(n+ 1)�
; � 2 (0;1)

and Darling (1953) proved an asymptotic normality theorem equivalent to (4.23) for

� 2 (0;1)�f1g, U� = S+�� and f = f0 � 1. Weiss (1957) extended this result of Darling
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to positive piecewise constant densities f . Hall (1984) obtained the asymptotic normality

1p
n

�
~U� � �(�� 1)��(f)� 1

� D�! N(0; �2(�� 1)2�2�(f)) as n!1

for all statistics

~U� =
nX
j=2

(n(Yj � Yj�1))
�

= �(�� 1) ~S�� � �n(1� Yn + Y1) + n+ �� 1 = �(�� 1) ~S�� + n+Op(1)

(cf. (2.13) for � = �� and the proof of Theorem 3.1) with � 2 (�1=2;1)�f0; 1g for any
f considered in Theorem 4.4. Here ��(f) and �

2
�(f) are the same as in Theorem 4.4 and,

in fact, this Hall's result was one of the arguments used in the proof of Theorem 4.4.

The statistic S+�1 was proposed recently by Misra and van der Meulen (2001). These

authors proved the asymptotic normality (4.23) for � = 1, U1 = S+�1 and arbitrary f

considered there, with the parameters �1(f) and �
2
1(f) given in Tables 4.1 and 4.3.

We see that the present Theorem 4.4 uni�es and extends the results proved separately

in three di�erent situations for two particular statistics from the set (4.5). The formulas

for all asymptotic parameters ��(f) and �
2
�(f) of the statistics U� are shown to follow via

the asymptotic equivalence and continuity in � from Hall's formulas for the asymptotic

parameters of ~U� with � 2 (�1=2;1) di�erent from 0 and 1.
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