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ABSTRACT. We present the first part of report about the research concerning appli-

cations of Rényi divergences in testing hypotheses about exponential models. We

focus on testing simple hypotheses about parameters in the case when our observa-

tions are independent and governed by a distribution of an exponential type. One

can find here the theoretic part and a description of the testing algorithm. In the

theoretic part we summarise basic terms and statements concerning testing using

the Rényi divergence statistics. The description of the algorithm then can be used

as a simplified software documentation. Moreover, a detailed list of treated distri-

butions can be find in the Appendix.

1. INTRODUCTION

In this report we deal with divergences of real orders r > 0 introduced by Rényi

[R61] for probability measures P, P0 with densities f, f0 on a σ-finite measure space
(X,A, µ) by the formulas:

Dr(P, P0) =
1

r − 1
ln

∫

frf1−r
0 dµ,

for r 6= 1, and

D1(P, P0) =

∫

f ln
f

f0
dµ (1.1)

where the integration extends over {x ∈ X : f(x) + f0(x) > 0} and the integrand is

assumed to be infinite if the numerator is positive and denominator is zero. Under

some restrictions on P, P0 he established the continuity

lim
r→1

Dr(P, P0) = D1(P, P0).

Later, Liese and Vajda [LV87] generalised the Rényi divergences to all real orders
r ∈ R by the formulas (1.1) and

D0(P, P0) = D1(P0, P ) (1.2)

Dr(P, P0) =
1

r(r − 1)
ln

∫

frf1−r
0 dµ, (1.3)

for r 6= 1, r 6= 0, where the convention about integrands are: 0 · y = 0 if 0 ≤ y ≤ ∞
and y/0 = ∞ if 0 < y ≤ ∞. These authors also precised and extended the continuity
law to all P, P0 as follows

lim
r↗1

Dr(P, P0) = D1(P, P0)

and noticed the skew symmetry about the order r = 1/2,

Dr(P0, P ) = D1−r(P, P0), r ∈ R.
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The only Rényi divergence which is symmetric for all P, P0 is that of the order
r = 1/2,

D1/2(P0, P ) = D1/2(P, P0) = 4 ln

∫
√

ff0 dµ.

It was introduced already by Bhattacharyya [Bh46] and is known as the Bhat-
tacharyya distance, see e.g. Zachs [Z71]. Another known members of the gen-

eralised Rényi divergence class are the information distances (Kullback distances)

(1.2) introduced by Kullback and Leibler [KL51].
The Rényi divergences are traditionally applied in the testing hypotheses about

statistical models with independent observations (see e.g. [MPV97] and references
therein), about random processes (see e.g. [P74] or [V90]) and also about random

fields (see e.g. [J88]).

Morales et al. [MPV00] for the first time pointed out that the Rényi divergences
between theoretical and empirical distributions from general exponential models

take on very simple form and that they are therefore suitable for testing hypothe-

ses. They illustrated this by testing simple hypotheses about exponential random
processes. In Morales et al. [MPPV04] this method was extended to composite hy-

potheses about exponential random processes, in particular about Lévy processes.
The aim of our research is to verify practical statistical applicability of the gen-

eralised Rényi divergences and the related Rényi statistics in testing hypotheses

about independent exponential models, and also about exponential random pro-
cesses and random fields. In this report we summarise the main results of this

research achieved in the period 2005-2006. We expect to continue this effort in the

future and summarise the more recent results in a subsequent reports.
Our research is mainly based on the results of [MPV00], [MPPV04] and on the

theoretical background concerning statistical exponential families provided by the
monographs of Brown [Br86] and Küchler and Sørensen [KS97]. For the sake of

completeness, in Sections 2-4 we summarise the basic concepts and facts estab-

lished in these references which are relevant for our research. In Section 5 the
detailed results of our research, focused on models with independent observations,

are presented. At the end of this report an appendix containing a list of basic expo-

nential distributions is attached.

2. NATURAL EXPONENTIAL FAMILIES

We consider exponential families in the so-called natural forms. Let X be a metric

observation space with the Borel field A of events and µ a σ-finite measure on A.

Further, let T = (T1, ..., Td) be a measurable mapping from X to R
d and Θ ⊂ R

d the
set of all θ = (θ1, ..., θd) for which

c(θ) :=

∫

X

exp{θ′T (x)} dµ < ∞

where ′ denotes here and in the sequel the vector or matrix transpose and we as-

sume column vectors. As well known, cf. [Br86], the set of natural parameters Θ is
convex and the cumulant generating function

κ(θ) = ln c(θ)

is convex on Θ and infinitely differentiable in the interior Θ.

By an exponential family of densities we mean the set E = {fθ : θ ∈ Θ} of
probability densities given by formula

fθ(x) = exp{θ′T (x) − κ(θ)} (2.1)

for every x ∈ X.



APPLICATIONS OF RÉNYI DIVERGENCES IN TESTING HYPOTHESES ABOUT EXPONENTIAL MODELS 3

Exponential families E of densities are specified by pairs (T, µ). We restrict our-
selves in this paper to the pairs for which E are minimal in the sense that densities

corresponding to different parameters cannot µ-a.s. coincide, see e.g. [Br86, p.2].

In these families the model is identifiable by the parameter and the function κ is
strictly convex on Θ. By [Br86, Th.1.9] this restriction means no loss of generality.

Further, we consider only the families E which are regular in the sense that Θ is
open, see again [Br86, p.2].

Denote by

κ̇ =
( ∂κ

∂θ1
, ...,

∂κ

∂θd

)′

the vector of first derivatives of κ, κ̇ : Θ → R
d, and by

κ̈ =
( ∂2κ

∂θi ∂θj
: 1 ≤ i, j ≤ d

)

the matrix of second derivatives of κ, κ̈ : Θ → R
2d.

Lemma 2.1. If X ∼ fθ and fθ ∈ E ≡ (T, µ) then

E T (X) = κ̇(θ) and Var T (X) = κ̈(θ). (2.2)

Proof. By [Br86, Th.2.2], the conditions for differentiation behind the integrals
∫

X

eθ′T (x)−κ(θ) dµ and

∫

X

(T (x) − κ̇(θ))eθ′T (x)−κ(θ) dµ

are satisfied. Since fθ is a probability density,
∫

X
eθ′T (x)−κ(θ) dµ = 1 and then

∫

X

(T (x) − κ̇(θ))eθ′T (x)−κ(θ) dµ = 0 ∈ R
d.

The last identity provides the first relation of (2.2). By applying operator ( ∂
∂θ1

, . . .

. . . , ∂
∂θd

) on the last identity - componentwise, we obtain the second relation. 2

Since κ is strictly convex on Θ, the mapping κ̇ : Θ → R
d is invertible, let us

denote by κ̇−1 its inverse, and the Fisher information κ̈(θ) is positive semidefinite.
Taking into account the minimality of E , one obtains that it is, in addition, positive

definite and therefore K, the range of κ̇, is an open convex subset of R
d. By [Br86,

Th.3.6] and [Br86, (2) on p.145], the observation x ∈ X with T (x) not in closure

of K are of µ-measure zero, i.e.

µ( T ∈ R
d\clK ) = 0.

Of particular interest are the families E which satisfy the stronger condition:

µ( T ∈ R
d\K ) = 0. In such families

P( T (X) ∈ bdK ) = 0 for X ∼ fθ for each θ ∈ Θ. (2.3)

Differences between probability densities from an arbitrary family (fθ : θ ∈ Θ)
defined w.r.t. a σ-finite measure µ on X can be characterised by the Rényi diver-

gences, cf. Rényi [R61], Csiszár [C95]. As started in Section 1, Liese and Va-
jda [LV87] introduced the extended class of Rényi divergences for densities fθ, fθ0

given by formulas (1.1), (1.2) and (1.3). They proved that for densities fθ, fθ0
∈

E ≡ (T, µ) with the cumulant generating function κ the Rényi divergences are ex-

pressed by

Dr(θ, θ0) =







1

r(r − 1)

[
κ
(
rθ + (1 − r)θ0

)
− rκ(θ) − (1 − r)κ(θ0)

]
,

if rθ + (1 − r)θ0 ∈ Θ

∞ otherwise

(2.4)

for all real r 6= 0, r 6= 1, and

D1(θ, θ0) = κ̇(θ)′ (θ − θ0) + κ(θ0) − κ(θ). (2.5)
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For example,

erθ+(1−r)θ0 − reθ − (1 − r)eθ0

r(r − 1)
=

λrλ1−r
0 − rλ − (1 − r)λ0

r(r − 1)

is the Rényi divergence Dr(θ, θ0) of Poisson distributions P, P0 (where λ = eθ and
λ0 = eθ0 are the corresponding rates), for all r different from 0 and 1, and

(θ − θ0)e
θ + eθ0 − eθ = λ

(
λ0

λ
− 1 − ln

λ0

λ

)

is the Kullback-Leibler divergence D1(θ, θ0).
If θ0 is in interior Θ then the distance

M(θ0) = inf
θ 6∈Θ

‖θ0 − θ‖

of θ0 from the complement of Θ is positive (infinite if Θ = R
d). The following

assertion is obvious.

Lemma 2.2. If θ = θ0 then the upper formula in (2.4) holds for all r ∈ R \ {0, 1}.
If θ 6= θ0 then the same formula holds for all r ∈ R \ {0, 1} which satisfy the condition

− M(θ0)

‖θ0 − θ‖ < r <
M(θ0)

‖θ0 − θ‖ .

3. CONVERGENT EXPONENTIAL FAMILIES

We shall consider exponential experiments such that the size t of observations
may come from an arbitrary directed set T . Set T is called directed if it is partially

ordered and every finite subset is dominated by an element from T . Typical exam-

ples are T = {0, 1, 2, ...} or T = [0,∞)d or T = {...,−1, 0, 1, ...}d. For a generalised
sequence (xt)t∈T with values in R we define limt xt = x if for every ε > 0 there

exists tε ∈ T for which t ≥ tε implies ‖xt − x‖ < ε.
Let Et ≡ (Tt, µt) be a generalised sequence of exponential families assumed in

Section 2, with the corresponding measure spaces (Xt,At, µt), functions κt and

with a common natural parameter space Θ = Θt. For simplicity we shall assume
that also the range K ∈ R

d of functions κ̇t is common. This way we may represent

observations on random sequences, processes and fields. This will be apparent from

the examples bellow.
As argued in the previous section, κ̇t is a homeomorphism of Θ and K, where

clK is the support of statistics Tt = Tt(Xt) for observations Xt distributed by any
density fθ,t from Et. By choosing a fixed θ∗ ∈ R

d and putting

κ̇−1
t (y) = θ∗ for all y ∈ R

d \ K (3.1)

we obtain an extension of functions κ̇−1
t on the whole space R

d.

Define the estimator

θ̂t = θ̂t(Tt) = κ̇−1
t (Tt) for Tt = Tt(Xt). (3.2)

As easy to verify, fθ̂t,t
(Xt) = maxθ fθ,t(Xt) whenever the maximum exists. Think-

ing about density fθ,t as about a function of θ ∈ Θ then we call it the likelihood

function. Therefore (3.2) can be viewed as a maximum likelihood estimator (MLE)

of the parameter θ0 figuring in the distribution density of the observation Xt.
Obviously, if family Et satisfies (2.3) then (by results mentioned in previous sec-

tion) P (Tt /∈ K) = 0. Since the MLE for data Xt exists if and only if Tt = Tt(Xt) ∈ K,
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it implies that θ̂t maximises the likelihood almost surely. We shall assume a weaker
condition than (2.3) is, namely,

lim
t→∞

P( Tt ∈ bdK ) = 0 for Tt = Tt(Xt), Xt ∼ fθ0,t ∈ Et. (3.3)

Under this assumption,

lim
t→∞

P

(

fθ̂t,t
(Xt) = max

θ
fθ,t(Xt)

)

= 1.

Let us now suppose that there exists a generalised sequence γt ↗ ∞ for which

lim
t

κt(θ)

γt
= κ(θ) for all θ ∈ Θ. (3.4)

By [Ro70, Th.10.8], κ(θ) is convex on Θ and the convergence is locally uniform. By
[Ro70, Th.25.7], if κ(θ) is differentiable then also

lim
t

κ̇t(θ)

γt
= κ̇(θ) for all θ ∈ Θ, where κ̇ =

(
∂κ

∂θ1
, ...,

∂κ

∂θd

)′
(3.5)

and this convergence is also locally uniform. If κ(θ) is moreover strictly convex and
infinitely differentiable on Θ, then κ̇(θ) is invertible and differentiable on Θ. In the

following definition we consider κ̇−1 extended on R
d by means of the same θ∗ as in

(3.1), and the matrices κ̈(θ) and their inverses κ̈(θ)−1.

Definition 3.1. A generalises sequence Et ≡ (Tt, µt), t ∈ T , of exponential models

under consideration is said to be convergent if (3.3) and (3.5) hold for γt and κ(θ)
specified above and, moreover, take place the locally uniform convergences

lim
t

κ̈t(θ)

γt
= κ̈(θ) for all θ ∈ Θ (3.6)

and

lim
t

κ̇−1
t (γt y) = κ̇−1(y) for all y ∈ R

d, (3.7)

as well as the law of large numbers

lim
t

Tt − ETt

γt
= 0 in probability (3.8)

and the central limit theorem

lim
t

Tt − ETt√
γt

= N(0, κ̈(θ0)) in distribution. (3.9)

For convergent exponential models Et, (3.6) implies

lim
t

γt κ̈t(θ)
−1 = κ̈(θ)−1 for all θ ∈ Θ (3.10)

in the locally uniform sense. Further, for these models (3.3) implies

lim
t

P (Tt /∈ K) = 0.

Since this report presents only asymptotic results, we are interested in “large” t, for

which events [Tt /∈ K] are “almost impossible”. Therefore in the rest of the report we
neglect these events, i.e. in all formulas and arguments we tacitly assume Tt ∈ K.

This considerably simplifies the following text. On the other hand, in each case the
eventuality Tt /∈ K can be discussed separately, and an obvious additional effort

leads to the extension or standart modification of formulas and arguments valid

also under this eventuality. For example, in this sense θ̂t is considered to be MLE,

as explained already after its definition (3.2).
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Lemma 3.2. If the exponential model Et is convergent then the MLE given by (3.2) is

consistent, i.e.

lim
t

‖θ̂t − θ0‖ = 0 in probability.

Proof. By Lemma 2.1, (3.3) and (3.8)

lim
t

Tt − κ̇t(θ0)

γt
= 0 in probability.

Hence (3.5) implies

lim
t

Tt

γt
− κ̇(θ0) = 0 in probability.

It follows from here and from the locally uniform convergence in (3.7) that

κ̇−1
t (Tt) = κ̇−1

t

(

γt

(

κ̇(θ0) +
Tt

γt
− κ̇(θ0)

))

converges in probability to θ0. 2

Lemma 3.3. For convergent exponential models the MLE (3.2) is asymptotically nor-

mal in the sense that

lim
t

√
γt (θ̂t − θ0) = N(0, κ̈(θ0)

−1) in distribution.

Proof. By Lemma 3.2 and (3.2)

Zt :=
Tt − ETt√

γt
and Yt :=

κ̇(θ̂t) − κ̇(θ0)√
γt

coincide. By the mean value theorem there exists θ̃t on the line joining θ0 and θ̂t

such that

Yt =
κ̈(θ̃t) (θ̂t − θ0)√

γt
=

√
γt

κ̈(θ̃t) (θ̂t − θ0)

γt

i.e. √
γt (θ̂t − θ0) = γt κ̈(θ̃t)

−1
Zt

where θ̃t tends by Lemma 3.2 in probability to θ0. The desired assertion thus fol-

lows from the locally uniform convergence in (3.10) and from (3.9). 2

Let kt be an increasing sequence of natural numbers. We say that an estimator

θ∗t is consistent of order kt if

lim
υ→∞

lim sup
t

P (kt‖θ∗t − θ0‖ > υ) = 0.

For example, the MLE θ̂t is under assumptions of Lemma 3.3 consistent of order
kt =

√
γt.

Lemma 3.4. Let the models under consideration be convergent and let θ1
t = θ1

t (Xt),
θ2

t = θ2
t (Xt) be two estimators consintent of order kt. Then for every r ∈ R the Rényi

divergence Dr = D
(t)
r satisfies the asymptotic relation

lim
t

k2
t

[
2

γt
Dr(θ

1
t , θ

2
t ) − (θ1

t − θ2
t )

′κ̈(θ0)(θ
1
t − θ2

t )

]

= 0 in probability.

Proof. Let us consider r ∈ R \ {0, 1}. From the consistence of estimators and from

Lemma 2.2, it follows that Dr(θ
1
t , θ2

t ) = D
(t)
r (θ1

t , θ2
t ) is given by the upper formula

in (2.4), where κ = κt now depends on t, with probability tending to 1.

In the rest of proof we assume that the upper formula in (2.4) holds. By the

mean value theorem and Taylor expansion it holds for every h ∈ R
d

κt(θ0 + h) = κt(θ0) + h′κ̇t(θ0) +
1

2
h′κ̈t(θh)h
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where, here and in the sequel, θh denotes a point from the line joining θ0 and θ0+h.
Then (2.4) implies for θ1

t = θ0 + αt and θ2
t = θ0 + βt, and for ξt = rαt + (1 − r)βt

Dr(θ
1
t , θ2

t )

γt
=

1

r(r − 1)

[
ξ′t κ̈t(θξt

) ξt

2γt
− r

α′
t κ̈t(θαt

) αt

2γt
− (1 − r)

β′
t κ̈t(θβt

) βt

2γt

]

.

Let Zt differs from Dr(θ
1
t , θ2

t )/γt by replacing all information matrices κ̈t(·)/γt in
the last formula by the differences κ̈t(·)/γt − κ̈(θ0). Then

Dr(θ
1
t , θ2

t )

γt
= Zt +

(αt − βt)
′ κ̈(θ0) (αt − βt)

2

If max{‖αt‖, ‖βt‖} ≤ εt, and if Γt(ε) = sup{κ̈t(·)/γt − κ̈(θ0) : ‖θ − θ0‖ ≤ ε}
then

|Zt| ≤ Γt(εt)
‖rαt + (1 − r)βt‖2 + |r|‖αt‖2 + |1 − r|‖βt‖2

2|r| |1 − r|
By the Minkowski inequality

‖rαt + (1 − r)βt‖2 ≤ r2‖αt‖2 + (1 − r)2‖βt‖2 ≤
(
r2 + (1 − r)2

)
ε2

t ,

so that

|Zt| ≤ ε2
t Γt(εt)

1

2

( |r| + 1

|r − 1| +
|r − 1| + 1

|r|

)

.

If

εt =
y

kt

for y positive and Cr stands for the constant on the right-hand side of the last upper

bound for |Zt|, then

k2
t |Zt| ≤ y2Γt

(
y

kt

)

Cr for all y positive.

The locally uniform convergence in (3.6) implies limt Γt(y/kt) = 0 for all y > 0.

The consistence of order kt means that, by selecting sufficiently large y > 0, one
can keep the probabilities of the event

max{‖αt‖, ‖βt‖} ≤ y

kt
, i.e. max{kt‖θ1

t − θ0‖, kt‖θ2
t − θ0‖} ≤ y,

arbitrarily close to 1 uniformly for all t large enough. By combining these facts one

obtains that for every δ > 0 there are y > 0 and t0 such that, with probability arbi-
trarily close to 1, t > t0 implies k2

t |Zt| < δ. The desired assertion is clear from here.

2

Example 3.5. I.i.d exponential observations.

Let T = {1, 2, ...} and E ≡ (T, µ) be an experiment considered in Section 2 with

T : X → R. If (Xt,At) = (Xt,At) then for Et ≡ (Tt, µt) with µt = µt and

Tt(Xt) =

t∑

i=1

T (Xi) for Xt = (X1, ..., Xt)

one obtains

κt(θ) = tκ(θ), κ̇t(θ) = tκ̇(θ) and κ̈t(θ) = tκ̈(θ).

The convergence conditions thus hold for γt = t. The MLE in this case satisfies the

relation

θ̂t = κ̇−1

(

1

t

t∑

i=1

T (Xi)

)

, (3.11)

provided the arithmetic mean is not in the boundary of range κ̇. ◦
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Example 3.6. Dependent Gaussian observations.

Consider a sequence of real numbers y1, y2, ... and a Gaussian random sequence
(Zi : i ≥ 1) with zero means and regular covariances Cij . Let Pθ, θ ∈ R, be

probability distributions of observations

Xi = θyi + Zi, i ≥ 1,

on the space X = R × R × . . . . Let t ∈ T = {1, 2, ...}, yt = (y1, . . . , yt), Zt =
(Z1, . . . , Zt) and Ct = (Cij)1≤i,j≤t. Then one easily obtains for the distributions

Pθ,t of Xt = (X1, . . . , Xt)

dPθ,t

dP0,t
(Xt) = exp

{

−1

2

[
(Xt − θyt)

′ C−1
t (Xt − θyt) −X′

t C−1
t Xt

]
}

.

Thus these models are exponential with the observation spaces Xt = R
t, µt = P0,t

and

Tt = Tt(Xt) = y′
t C−1

t Xt

κt(θ) =
θ2

2
y′

t C−1
t yt

Let

ρt := y′
t C−1

t yt → ∞ as t → ∞.

Then

κ̇t(θ) = θ ρt and κ̈t(θ) = ρt,

and strong regularity conditions hold for γt = ρt, κ(θ) = θ2/2, κ̇(θ) = θ and

κ̈(θ) = 1. The MLE is in this case given by the formula

θ̂t =
Tt

ρt
=

y′
tC

−1
t Xt

ρt
.

If Xt is distributed by Pθ0,t then

Tt = θ0ρt + y′
t C−1

t Zt

where y′
t C−1

t Zt ∼ N(0, ρt). It follows from here that the models Et are convergent

with γt = ρt. ◦

Example 3.7. Diffusion processes.

Let X = C[0,∞) and let Pθ, θ ∈ R, be distributions of diffusion processes (Xs :
s ≥ 0) defined by the stochastic differential equation

dXs = θ a(s)ds + dWs, s ≥ 0,

where a : [0,∞) → R is continuous and Ws is a standard Wiener process. For each

t ∈ R
+ and for the distributions Pθ,t of segments Xt = (Xs : 0 ≤ s ≤ t) one obtains

dPθ,t

dP0,t
(Xt) = exp

{

θ

∫ t

0

a(s)dXs −
θ2

2

∫ t

0

a2(s)ds

}

.

Thus the models with

Tt = Tt(Xt) =

∫ t

0

a(s)dXs, µt = P0,t and κt(θ) =
θ2

2

∫ t

0

a2(s)ds

are exponential. The situation is similar as in the previous example. If we put

ρt =
∫ t

0 a2(s)ds then we obtain the same formulas for κ̇t and κ̈t as before. Also if
limt ρt = ∞ then the convergences considered in (3.6) and (3.7) take place for the

same γt, κ, κ̇ and κ̈ as before. The MLE is given by the formula

θ̂t =
Tt

ρt
=

∫ t

0
a(s)dXs

ρt
.
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If Xt is distributed by Pθ0,t then

Tt = θ0ρt +

∫ t

0

a(s)dWs

where
∫ t

0
a(s)dWs ∼ N(0, ρt). Since

∫ t

0
a(s)dWs/ρt tends in probability to zero,

(3.8) and (3.9) hold. So the experiments Et are convergent with γt = ρt. ◦

Example 3.8. Poisson processes.

Let us consider T = [0,∞) and let X = (Xs : s ≥ 0) be the Poisson process with

X0 = 0, intensity eθ for θ ∈ Θ = R. Let Pθ be the probability distribution of X

on the Skorokhod space (X,A) of realisations of this process. Finally, consider the
right-continuous filtration (At) generated by X and denote by Pθ,t the restriction of

Pθ on At. Then the distribution density of the observations Xt = (Xs : 0 ≤ s ≤ t)
can be specified by the formula

dPθ,t

dP0,t
= exp

{
θ Xt − t(eθ − 1)

}

(see e.g. [GS75]). Hence we face here the system of exponential experiments
Et ≡ (Tt, P0,t), t ∈ T , with

Tt(Xt) = Xt and κt(θ) = t(eθ − 1).

It is easy to see that

θ̂t = θ̂t(Xt) = ln

(
Xt

t

)

is the MLE of the true parameter θ0 ∈ R. If Xt is distributed by Pθ0,t then

Xt ∼ Po(eθ0t).

It follows from here that (3.6) - (3.9) hold and the experiments Et are convergent

with γt = t. ◦

4. SIMPLE HYPOTHESES

The hypotheses testing problem studied in this section can be formulated as fol-

lows. Let the observed data Xt be distributed by a density fθ0,t from an exponential
family Et ≡ (Tt, µt) and let the generalised sequence Et, t ∈ T , be convergent in

the sense of Section 3. Let the tested null hypothesis H0 be specified as a subset
Θ0 of the parameter space Θ common for all families Et. The problem is to find a

generalised sequence of test statistics

St = St(Xt) : Xt → R

with a known asymptotic distribution F on R, identical for all hypothetical values
θ0 ∈ Θ0.

In this section we solve the problem of testing simple hypotheses H0 ≡ {θ0} by

using the collection of Rényi statistics

Dr,t = 2D(t)
r (θ̂t, θ0) = 2γtDr(θ̂t, θ0) (4.1)

where D
(t)
r (θ̂t, θ0) are the Rényi divergences, given by (2.4) and (2.5) with κ = κt

depending now on t, between the most likely distribution Pθ̂t,t defined by (3.2) and

the hypothetical distribution Pθ0,t. The third term in (4.1) shows that the Rényi

statistics can be expressed also using the parameter γt of convergence figuring in
(3.6) - (3.10) where Dr(·, ·) are given by (2.4) and (2.5) with κ the limit function

presented in (3.4).
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In the following theorem, χ2
k stands for the χ2-distributed random variable with

k degrees of freedom.

Theorem 4.1. Let Et, t ∈ T , be convergent. Then under any simple hypothesis H0 ≡
{θ0} ⊂ Θ, where Θ ⊆ R

d, all Rényi statistics (4.1) converge in distribution to χ2
d.

Proof. By Lemma 3.3, θ̂t is consistent of order
√

γt. The “estimator” θ̃t := θ0 is
consistent of the same order. Therefore, in view of Lemma 3.4, it is sufficient to

prove that under H0

Yt := γt(θ̂t − θ0)
′ κ̈(θ0) (θ̂t − θ0)

converges in distribution to χ2
d.

By Lemma 3.3,
√

γt(θ̂t − θ0) converges under H0 in distribution to N(0, κ̈(θ0)
−1).

This means that

lim
t→∞

Yt =

d∑

i=1

Zi in distribution,

where Zi are independent and χ2
1-distributed random variables. 2

Theorem 4.1 provides a continuum of asymptotically α-level tests of the hypoth-

esis H0 ≡ {θ0}. The test with statistic Dr,t and critical value cα equal to the (1−α)-
quantile of χ2

d for α ∈ (0, 1) will be called Rényi (r, α)-test. If the asymptotic size α
is fixed in advance then we speak simply about Rényi r-test.

Remark 4.2. The well known likelihood ratio test of H0 ≡ {θ0} uses the generalised

likelihood ratio statistic

Qt = Qt(Xt) = −2 ln
fθ0,t(Xt)

fθ̂t,t
(Xt)

,

where θ̂t = θ̂t(Xt) is the MLE of θ0. Using the explicit formulas for densities fθ0,t and

fθ̂t,t
from Et we obtain that

Qt = 2
[

κt(θ0) − κt(θ̂t) + T ′
t (θ̂t − θ0)

]

.

Since Tt = κ̇(θ̂t) it follows from (4.1) and from formula (2.5) for D
(t)
1 (θ̂t, θ0) that

Qt = D1,t.

This means that for any α ∈ (0, 1) the Rényi (1, α)-test coincides with the asymp-

totically α-level generalised likelihood ratio test. Note that in accordance with sim-
plification which we formed under definition 3.1, we assume here for simplicity

that Tt = Tt(Xt) with Xt ∼ fθ0,t takes on the values in set K considered in (3.3),
the probability that Tt is not in K is negligible for t ∈ T of our interest.

The choice of the most appropriate r-test must be based on additional optimality

criteria, e.g. on the test powers under local alternatives. Below we introduce an
approach based on calculation and comparison of test powers for alternatives from

a neighbourhood of H0.

5. ALGORITHM FOR A SIMPLE HYPOTHESIS AND INDEPENDENT SAMPLES

Let us consider a statistical model with independent identically distributed ran-

dom variables X1, ..., Xn. Assume that the distribution of X1 is from an exponential
family E ≡ (T, µ) how they were introduced in Section 2 with X = R

k or X = N
k

(k stands for the dimension of random value X1). Recall that for this case

T : X → R
d and µ is a measure on X,

κ : R
d → R, κ(θ) = ln

∫

X
exp{θ′ T (x)} µ(dx) for every θ ∈ Θ ⊆ R

d.
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We can also consider whole observation Xn = (X1, ..., Xn)′ as one vector and
use the notation from Example 3.5 for a sequence of exponential families En.

Our aim is to design an algorithm which, for a data coming from the described

model X1, ..., Xn, makes the following statistical decisions:

1. to estimate parameter θ

2. to test a simple hypothesis H0 ≡ {θ0} against the double-sided alternative

3. to identify the model; i.e. to choose the most fitting one from a given finite

set of possible parameters.

The first task consists simply in finding the MLE θ̂n which we obtain as the solu-
tion of the following equation

κ̇(θ) =
1

n

n∑

i=1

T (Xi), (5.1)

c.f. (3.11).

The main task (the second one) is the construction of Rényi (r, α)- tests when an

asymptotic test level α ∈ (0, 1), a finite set R of Rényi orders and a hypothetical
value θ0 ∈ Θ are given. This task also includes an optimisation among these (r, α)-
tests with respect to r ∈ R for a fixed level α. We have chosen an approach based

on a comparison of exact test powers which are calculated for a representative set
of alternatives Θ1 from a neighbourhood of H0 ≡ {θ0}. Let us denote by

a = a(α, r, θ0, n) = Pθ0,n(Dr,n > cα),

b =
(

b(α, r, θ, n) : θ ∈ Θ1

)

=
(

Pθ,n(Dr,n > cα) : θ ∈ Θ1

)

exact test levels and exact test powers, respectively, where cα stands for the critical

value (equal to the (1 − α)-quantile of χ2
d) and Dr,n are the appropriate Rényi

statistics (4.1). Either we are able to find values a,b for the given distribution or

we numerically evaluate a,b by using statistical simulations (Monte Carlo method).

If we choose set of alternatives Θ1 of size m and we set

Θ1 = {θ1, ..., θm}

then we have for each order r ∈ R a vector
(
a(r),b(r, θ1), ...,b(r, θm)

)
to compare.

We employ the relative inefficiency method which says:

• compute relative inefficiency η(r, θi) = supr∗∈R b(r∗, θi)−b(r, θi) for each

r ∈ R and for each 1 ≤ i ≤ m

• then compute the maximum over alternatives from Θ1,
η(r) = sup1≤i≤m η(r, θi) for each r ∈ R,

• and, finally, find the value r∗ which minimises {η(r) : r ∈ R}.

On the basis of this optimisation we select the Rényi (r∗, α)-test which we use for

the final decision:

we reject hypothesis H0 ≡ {θ0} on the asymptotic level α if Dr∗,n > cα.

The third task is independent on the second one. It represents a classification
problem since it assumes that we have an a priori knowledge about the real param-

eter, particularly assumes that the true parameter is from a set

Θ2 = {θ1, ...θe}.

We can compute for every r ∈ R and every θi ∈ Θ2 the Rényi divergence Dr(θ̂n, θi),

given by (2.4), between the most likely distribution using MLE θ̂n and the hypothet-

ical distribution with parameter θi. Let us choose, for each fixed order r ∈ R, the
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Rényi divergence with the minimal value. It means, we obtain a mapping

s : r 7→ i
R → 1, ..., e

(5.2)

selecting for each order of Rényi divergences one parameter from Θ2. If a majority
of Rényi divergences will be minimal for the same one of parameters from Θ2, i.e.

there exists i such that #{r ∈ R : s(r) = i} > #{r ∈ R : s(r) 6= i}, (5.3)

then we decide that

the date come from the model with parameter θi.

Our algorithm solve the described tasks for the following list of distributions:

1 - Bernoulli

2 - Binomial

3 - Poisson

4 - Geometrical

5 - Negative binomial

6 - Multinomial

7 - Exponential

8 - Gaussian

9 - Gaussian mean-known

10 - Gaussian variance-known

11 - Gamma

12 - Gamma p-known

13 - Beta

14 - Lognormal

15 - Double exponential

16 - Weibull

17 - Reyliegh

18 - Maxwell

19 - Pareto

20 - Modular

21 - Inverse Gaussian

22 - Inverse gamma

23 - χ2
k

24 - Dirichlet

25 - Bivariate Gaussian.

See Appendix for a list of these distributions with a detailed description of their

parameters and their exponential representations.
In the rest of this section we introduce successively

* constants

* input variables

* derived variables
* calculation

* outputs

of the algorithm.

CONSTANTS

I = 11 ... the number of used Rényi orders;

R = (−2;−1.5;−1; ... ; 2; 2.5; 3 ) ... the vector of used Rényi orders,
size: 1 × I.

INPUT VARIABLES

x ... the data, size: k × n for distributions 6, 24, 25,
1 × n otherwise;

dis ... the type of distribution, dis ∈ {1, ..., 25}, see the list above;

p0 ... the hypothetical parameter when the density is considered in its
original form (see Appendix), size: d × 1;

α ... the asymptotic test level, α ∈ (0, 1), the default value is 0.05;

p1 ... the user-choice of alternatives from a neighbourhood of p0 (acts in
the calculation of test powers), size: d × m, for default values see h1;

p2 ... parameters for the identification of model, size: d × e,
(again consider the density in its original form);

next ... for some of distributions (dis ∈ {2, 5, 6, 9, 10, 12, 16, 19}) a known

value of a next parameter is needed, size: 1 × 1.
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DERIVED VARIABLES

n ... the size of data;

k ... the dimension of data, k is arbitrary positive natural for dis = 6 or 24,

k = 2 for dis = 25 and k = 1 otherwise;
m ... the number of alternatives for which test powers are calculated,

the default value is 20;

e ... the number of parameters from which the model is identified;
m̃ ... m + 1, the number of alternatives plus hypothesis;

h0 ... the hypothetical parameter θ0 if the density in its exponential form is
considered, a transformation (see Appendix) of p0, size: d × 1;

h ... the borders of interval Θ of possible values for parameter θ of the

given distribution, size: d × 2;
h1 ... the choice of alternatives, h1 is either a transformation of p1 or

a default choice obtained as a function of dis, h0 and h, size: d × m;

h2 ... a transformation of parameters p2 into the form of exponential
density, size: d × e;

hh ... alternatives h1 together with hypothetical parameter h0, size: d × m̃.

CALCULATION

At this moment, when a distribution dis is given, we need to know a particular

form of appropriate functions T, κ, κ̇ which appear in the exponential density of the

given distribution and also a particular transformation function π which transforms
parameters of the density in its exponential form into parameters of the original

density. It means we need a mapping which for each value dis picks up these appro-

priate functions. In the algorithm, there are used following algorithm–functions.
An input variable each of them is surely variable dis and therefore it is no need to

emphasise this fact in what follows.

BASIC FUNCTIONS

function TE: input has size k × n, output has size d × n,

purpose: on each column of input (of data nature) function T is applied
and the result is put down in the appropriate column of the output;

function KAPPA: input has size d × w, output has size 1 × w, w ∈ N,
purpose: on each column of input (of parameter nature) function κ is ap-

plied and the result is put down in the appropriate column of the output;

function DKAPPA: input has size d × w, output has size d × w, w ∈ N,

purpose: on each column of input (of parameter nature) function κ̇ is ap-
plied and the result is put down in the appropriate column of the output;

function PI: input has size d × w, output has size d × w, w ∈ N,
purpose: on each column of input (of parameter nature) function π is ap-

plied and the result is put down in the appropriate column of the output;

function INVPI: input has size d × w, output has size d × w, w ∈ N,

purpose: on each column of input (of parameter nature) function π−1 is
applied and the result is put down in the appropriate column of the output;

function MEAN: input has size k × n, output has size d × 1,
purpose: firstly, function TE is applied and then, for the result of d× n size,

a mean over each row is calculated, i.e. MEAN i = 1
n

∑n

j=1 TE ij

function MEAN2: input has size k × (n · w), output has size d × w,

purpose: on each (i-th) n-tuple of columns the function MEAN is applied
and the result is put down in i-th column of the output, for any 1 ≤ i ≤ w;
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function MLE: input has size d × w, output has size d × w, w ∈ N,
purpose: on each column of input (typically, it is output of function MEAN)

the inverse of function κ̇ is applied (or analogical equation (5.1) is solved)

and the result is put down in the appropriate column of the output.

FUNCTION OF RÉNYI STATISTICS

function DE

input: two matrices U1, U2, each has size d × w (typically, matrix U1

is an output of function MLE), it is also allowed that one of
the matrices has size d × 1 although w > 1. In this case the

missing columns are automatically filled by copies of this only
column to reach d × w size,

output: has size w × I,

purpose: each (i-th) row of the output is a vector of Rényi statistics
(Dr,n : r ∈ R) for i-th column of matrix U1 and i-th column

of matrix U2, i.e.

DE ij is Rényi statistic Dr,n(U1
: i , U2

: i) of order r = Rj given
by formula (4.1).

FUNCTIONS FOR OPTIMISATION

Let us fix the value of variable dis which indicates the given distribution and fix
asymptotic level α. In order to evaluate test powers of Rényi (r, α)-tests under local

alternatives h1 we use Monte Carlo simulation method which works very univer-

sally. It is based on a simulation of a big data file from the distribution dis. Let
us put these simulated values into the following special-formed matrix Y of size

k × (n · 104 · m̃) by analogy with the size of the real-input data

Y :

k ×







1 . . . n . . . 1 . . . n 1 . . . n . . . 1 . . . n . . .
... . . .

...
... . . .

... . . .

1 . . . n . . . 1 . . . n 1 . . . n . . . 1 . . . n . . .

︸ ︷︷ ︸

Y•11

︸ ︷︷ ︸

Y•1041

︸ ︷︷ ︸

Y•12

︸ ︷︷ ︸

Y•1042 . . . Y•104m̃

︸ ︷︷ ︸

block Y••1

︸ ︷︷ ︸

block Y••2 . . . Y••m̃

where each ‘block’ Y••i, for arbitrary 1 ≤ i ≤ m̃, containts in its columns indepen-

dent samples from distribution dis with a fixed parameter given by i-th column of
matrix hh. Furthemore, each block is divided into ‘packages’ Y•ji, for 1 ≤ j ≤ 104,

where one package means n samples.

We have chosen the number 104 of simulated packages per block in order to
obtain a given accuracy. We mean the accuracy of an evaluation of probability

P (f(Z) > c) where Z is a random variables, f is a real function on the values of Z
and c is a constant. We estimate this probability by

p̂ =
#{1 ≤ i ≤ 104 : f(zi) > c}

104
.

where z1, ..., z104 are simulated values from the distribution of Z. It follows from the

central limit theorem for independent Bernoulli samples that size 104 is sufficient
to guarantee that the error which we make using p̂ instead of exact probability

P (f(Z) > c) is less than 0.01 with assurance 95%.
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In our case, we are interested in probabilities Pi = Pθi,n(Dr,n(θ̂n, θ0) > cα) for
any 1 ≤ i ≤ m̃ and we estimate them by

p̂i =
#{1 ≤ j ≤ 104 : Dr,n(“Y•ji”, h0) > cα}

104
,

using simulated values in matrix Y. Here Dr,n(“Y•ji”, h0) means the Rényi statistic

of order r for an empirical distribution derived from the simulated data given by
block Y•ji of matrix Y (note that size of this block is the same as observed data size)

and for the hypothetical distribution with parameter h0. Using algorithm-functions

Dr,n(“Y•ji”, h0) = DE
(

MLE
(
MEAN(Y•ji)

)
, h0
)

for every 1 ≤ j ≤ 104 and every 1 ≤ i ≤ m̃.

We can apply algorithm-functions on whole matrix Y directly. Then each (j-th)
column of matrix

DE
(

MLE
(
MEAN2(Y)

)
, h0

)

(5.4)

corresponds to the Rényi statistic of ‘j-th’ order, i.e. order Rj , and each (i-th)

104-tuple of rows is used for calculation of estimate p̂i of probability Pθi,n(Dr,n

(θ̂n, θ0) > cα) where r = Rj , n = n and θi = hhi. In this context, let us introduce

function POWER

input: has size (104 · m̂) × I, it is typically the output of function DE

applied on Y as described in (5.4),

output: has size m̂ × I,
purpose: POWERij is an estimate of probability Phhi,n(DRj ,n > cα);

function OPT

input: has size m̂ × I, it is typically the output of function POWER,

output: is scalar from set {1, ..., I},
purpose: it indicates a ‘winning’ order of Rényi statistics following from

the minimax optimisation described in the previous (page 11).

DECISION FUNCTIONS

function TEST HYP: Inputs of this function are hypothetical parameter h0,

data x and the output of function OPT. Output of this function is one of
the decisions:

REJECT hypothesis H0 on level α if DE
(
MLE(MEAN(x)), h0

)

OPT
> cα,

DON’T REJECT hypothesis H0 on level α if DE
(
MLE(MEAN(x)), h0

)

OPT
≤ cα.

function IDENTIF: Inputs of this function are data x and collection h2 of the

only possible parameters of the given distribution dis. Output of this func-
tion is the most suitable parameter from this collection or the decision that

the identification is impossible. In the first step we calculate Rényi diver-

gences for the empirical distribution derived from data x and for differ-
ent hypothetical distributions where the appropriate parameters arise in

columns of h2. Using algorithm-functions, let us set

TAB = DE
(

MLE
(
MEAN(x)

)
, h2
)

a matrix of size e × I. Then, for each Rényi order r ∈ R (appropriate

column of TAB), we compare e values of divergences (in rows of TAB) and
choose the parameter (i.e. index of the row) corresponding to the minimal

divergence.
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Thus we obtain a vector (1 × I) of naturals from {1, . . . , e}, cf. function
s in (5.2). If the frequency of the most frequently chosen parameter has

absolute majority, i.e. (5.3) holds, then output is equal to this parameter,

otherwise we can not identify the model. Let this frequency is the second
output of function IDENTIF.

OUTPUTS

For task 1.: The maximum likelihood estimate of parameter is

MLE
(
MEAN(x)

)
when the exponential form of density is considered,

PI
(
MEAN(MLE(x))

)
when the original form of density is considered.

For task 2.: The test based on the Rényi divergence of order OPT was chosen

among other tests based on Rényi divergences of orders r ∈ R as the most optimal.

Depending on Boolean value of function TEST HYP, this test

{
REJECTS

DOES NOT REJECT

}

hypothesis that the parameter is equal to h0 on the asymptotic level α. See also the

table POWER of evaluated test powers and a test level.

For task 3.: By comparison of Rényi divergences computed for the empirical

distribution and different hypothetical distributions corresponding to parameters
from the given set Θ2 ≡ h2 we can decide that

(+) data comes from the model with parameter IDENTIF. For this parameter Rényi
divergences were minimal in IDENTIF(2) cases from I;

(−) since there is no majority of Rényi divergences choosing the same parameter
we can not decide for one of these parameters.

Here (+) and (−) are two disjoint variants of output for the third task.

APPENDIX

A list of (supported) distributions of a real random variable with an exponential

form of the density is presented in this appendix. For each distribution the following
characteristics are prescribed:

• state space X of the random variable;
• an original (it means commonly used) formula for the density with an

(original) notation of parameters; in the algorithm-part, we denote by p

the unknown parameter and by next the known parameter if any;
• an exponential form of this density with unknown (d-dimensional) param-

eter denoted in this report by θ (in the algorithm-part by h·);
• function π which provides the transformation of ‘exponential’ parameters

into ‘original’ parameters and vice versa (π−1);

• boundaries of convex set Θ of possible values for ‘exponential’ parameter,
written into a d × 2 matrix;

• function T which appears in the exponential form of the density;

• cumulant function κ and its derivative;
• the explicit formula for the maximum likelihood estimator MLE or an ap-

propriate equation which uniquely determines the MLE.
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1. Bernoulli distribution

X = {0, 1};

original density (with respect to the counting measure on X):

f(x) = px(1 − p)1−x;

its exponential representation:

fθ(x) =
1

1 + eθ
eθx

with respect to measure µ : x ∈ X 7−→ 1;

dimension of the parameter: d = 1;

parametrisation:

π(θ) =
eθ

1 + eθ
& π−1(p) = ln

(
p

1 − p

)

;

boundaries of Θ: h =
(
−∞ ∞

)
;

T(x) = x

κ(θ) = ln(1 + eθ)

κ̇(θ) =
eθ

1 + eθ
& MLE = ln







n∑

i=1

Xi

n −
n∑

i=1

Xi







.

2. Binomial distribution

known parameter: ñ ∈ N
+;

X = {0, 1, ..., ñ};

original density (with respect to the counting measure on X):

f(x) =

(
ñ

x

)

px(1 − p)ñ−x;

its exponential representation:

fθ(x) =
1

(1 + eθ)ñ
eθx

with respect to measure µ : x ∈ X 7−→
(

ñ
x

)
;

dimension of the parameter: d = 1;

parametrisation:

π(θ) =
eθ

1 + eθ
& π−1(p) = ln

(
p

1 − p

)

;

boundaries of Θ: h =
(
−∞ ∞

)
;

T(x) = x

κ(θ) = ñ ln(1 + eθ)

κ̇(θ) =
ñeθ

1 + eθ
& MLE = ln







n∑

i=1

Xi

nñ −
n∑

i=1

Xi







.
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3. Poisson distribution

X = N;

original density (with respect to the counting measure on X):

f(x) =
λx

x!
e−λ;

its exponential representation:

fθ(x) =
1

exp(eθ)
eθx

with respect to measure µ : x ∈ X 7−→ 1
x! ;

dimension of the parameter: d = 1;

parametrisation:

π(θ) = eθ & π−1(λ) = ln(λ);

boundaries of Θ: h =
(
−∞ ∞

)
;

T(x) = x

κ(θ) = eθ

κ̇(θ) = eθ & MLE = ln

(

1

n

n∑

i=1

Xi

)

.

4. Geometrical distribution

X = N;

original density (with respect to the counting measure on X):

f(x) = p(1 − p)x;

its exponential representation:

fθ(x) = (1 − e−θ)e−θx

with respect to measure µ : x ∈ X 7−→ 1;

dimension of the parameter: d = 1;

parametrisation:

π(θ) = 1 − e−θ & π−1(p) = ln

(
1

1 − p

)

;

boundaries of Θ: h =
(

0 ∞
)
;

T(x) = −x

κ(θ) = − ln(1 − e−θ)

κ̇(θ) =
−e−θ

1 − e−θ
& MLE = ln







n∑

i=1

Xi + n

n∑

i=1

Xi







.

5. Negative binomial distribution

known parameter: r ∈ N
+;

X = N;



APPLICATIONS OF RÉNYI DIVERGENCES IN TESTING HYPOTHESES ABOUT EXPONENTIAL MODELS 19

original density (with respect to the counting measure on X):

f(x) =

(
r + x − 1

x

)

pr(1 − p)x;

its exponential representation:

fθ(x) = (1 − e−θ)r e−θx

with respect to measure µ : x ∈ X 7−→
(
r+x−1

x

)
;

dimension of the parameter: d = 1;

parametrisation:

π(θ) = 1 − e−θ & π−1(p) = ln

(
1

1 − p

)

;

boundaries of Θ: h =
(

0 ∞
)
;

T(x) = −x

κ(θ) = −r ln(1 − e−θ)

κ̇(θ) =
−re−θ

1 − e−θ
& MLE = ln







n∑

i=1

Xi + rn

n∑

i=1

Xi







.

6. Multinomial distribution

known parameter: ñ ∈ N
+;

X = {x ∈ {0, 1, ..., ñ}k+1 : x1 + ... + xk+1 = ñ} = {0, 1, ..., ñ}k ×{ñ− x1 − ...− xk};
original density (with respect to the counting measure on {0, 1, ..., ñ}k ):

f(x) =
ñ!

x1!...xk !(ñ−x1−...−xk)!
px1

1 ... pxk

k (1 − p1 − ... − pk)ñ−x1−...−xk ;

its exponential representation:

fθ(x) =
exp(θ1x1 + ... + θkxk)

(1 + eθ1 + ... + eθk)ñ

with respect to measure µ : x ∈ {0, 1, ..., ñ}k 7−→ ñ!
x1!...xk!(ñ−x1−...−xk)! ;

dimension of the parameter: d = k;

parametrisation:

π(θ) = π((θ1, ..., θk)) =

(
eθ1

1 + eθ1 + ... + eθk
, ...,

eθk

1 + eθ1 + ... + eθk

)

π−1(p1, ..., pk) =

(
p1

1 − p1 − ... − pk
, ...,

pk

1 − p1 − ... − pk

)

;

boundaries of Θ: h =






−∞ ∞
...

...
−∞ ∞




 ;

T(x) = x

κ(θ) = ñ ln(1 + eθ1 + ... + eθk)

κ̇(θ) =
( ñeθ1

1 + eθ1 + ... + eθk
, ...,

ñeθk

1 + eθ1 + ... + eθk

)
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MLE =







ln
(

n∑

i=1

X
(i)
1

nñ −
n∑

i=1

X
(i)
k

)

, ..., ln
(

n∑

i=1

X
(i)
1

nñ −
n∑

i=1

X
(i)
k

)







.

where X(1), ..., X(n) is a sample.

7. Exponential distribution

X = (0,∞);

original density (with respect to the Lebesgue measure restricted on X):

f(x) = λ exp(−λx);

its exponential representation:

fθ(x) = θ exp(−θx)

with respect to measure µ on X which is again the restricted Lebesgue measure;

dimension of the parameter: d = 1;

parametrisation:

π(θ) = λ & π−1(λ) = θ;

boundaries of Θ: h =
(

0 ∞
)
;

T(x) = −x

κ(θ) = − ln(θ)

κ̇(θ) = −1

θ
& MLE =

n
n∑

i=1

Xi

.

8. Gaussian distribution

X = R;

original density (with respect to the Lebesgue measure on X):

f(x) =
1√

2πσ2
exp

(

− (x − m)2

2σ2

)

;

its exponential representation:

fθ(x) =
1

√
π
θ2

exp(
θ2
1

4θ2
)

exp
(
−x2θ2 + xθ1

)

with respect to measure µ on X which is again the Lebesgue measure;

dimension of the parameter: d = 2;

parametrisation:

π(θ1, θ2) =

(
θ1

2θ2
,

1

2θ2

)

& π−1(m, σ2) =

(
m

σ2
,

1

2σ2

)

;

boundaries of Θ: h =

(
−∞ ∞
0 ∞

)

;

T(x) = (x,−x2)

κ(θ1, θ2) =
θ2
1

4θ2
+

1

2
ln

(
π

θ2

)

& κ̇(θ1, θ2) =

(
θ1

2θ2
, − θ2

1

4θ2
2

− 1

2θ2

)
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MLE =







1
n

n∑

i=1

Xi

1
n

n∑

i=1

X2
i − ( 1

n

n∑

i=1

Xi)2
,

1
2

1
n

n∑

i=1

X2
i − ( 1

n

n∑

i=1

Xi)2







.

9. Gaussian mean-known distribution

known parameter: m ∈ R;

X = R;

original density (with respect to the Lebesgue measure on X):

f(x) =
1√

2πσ2
exp

(

− (x − m)2

2σ2

)

;

its exponential representation:

fθ(x) =
1
√

π
θ

exp
(
−θ(x − m)2

)

with respect to measure µ which is again the Lebesgue measure on X ;

dimension of the parameter: d = 1;

parametrisation:

π(θ) =
1

2θ
& π−1(σ2) =

1

2σ2
;

boundaries of Θ: h =
(

0 ∞
)
;

T(x) = −(x − m)2

κ(θ) = 1
2 ln

(
π
θ

)

κ̇(θ) = − 1

2θ
& MLE =

n

2
n∑

i=1

(Xi − m)2
.

10. Gaussian variance-known distribution

known parameter: σ2 > 0;

X = R;

original density (with respect to the Lebesgue measure restricted on X):

f(x) =
1√

2πσ2
exp

(

− (x − m)2

2σ2

)

;

its exponential representation:

fθ(x) = exp

(
x

σ2
θ − θ2

2σ2

)

with respect to measure µ on X which is absolutely continuous with respect to the

Lebesgue measure with density 1√
2πσ2

exp(− x2

2σ2 );

dimension of the parameter: d = 1;

parametrisation:

π(θ) = θ & π−1(m) = m;

boundaries of Θ: h =
(
−∞ ∞

)
;

T(x) = x
σ2
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κ(θ) = θ2

2σ2

κ̇(θ) =
θ

σ2
& MLE =

1

n

n∑

i=1

Xi

11. Gamma distribution

X = R
+;

original density (with respect to the Lebesgue measure restricted on X):

f(x) =
ap

Γ(p)
e−axxp−1;

its exponential representation:

fθ(x) =
1

Γ(θ1)/θθ1

2

exp(θ1 ln x − θ2x)

with respect to measure µ on X which is absolutely continuous with respect to the

restricted Lebesgue measure with density 1/x;

dimension of the parameter: d = 2;

parametrisation:

π(θ1, θ2) = (θ1, θ2) & π−1(p, a) = (p, a);

boundaries of Θ: h =

(
0 ∞
0 ∞

)

;

T(x) = (ln x,−x)

κ(θ1, θ2) = ln Γ(θ1) − θ1 ln θ2

κ̇(θ1, θ2) =

(
Γ′(θ1)

Γ(θ1)
− ln θ2, −

θ1

θ2

)

MLE is the solution of the following equations

Γ′(θ1)

Γ(θ1)
− ln θ1 =

1

n

n∑

i=1

ln Xi − ln

(

1

n

n∑

i=1

Xi

)

θ2 =
θ1

1
n

n∑

i=1

Xi

.

12. Gamma p-known distribution

p > 0 is a known parameter;

X = R
+;

original density (with respect to the Lebesgue measure restricted on X):

f(x) =
ap

Γ(p)
e−axxp−1;

its exponential representation:

fθ(x) =
1

Γ(p)/θp
exp(−θx)

with respect to measure µ on X which is absolutely continuous with respect to the

restricted Lebesgue measure with density 1/xp−1;

dimension of the parameter: d = 1;
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parametrisation:

π(θ) = θ & π−1(a) = a;

boundaries of Θ: h =
(

0 ∞
)
;

T(x) = −x

κ(θ) = ln Γ(p) − p ln θ

κ̇(θ) = −p

θ
& MLE =

p

1
n

n∑

i=1

Xi

13. Beta distribution

X = (0, 1);

original density (with respect to the Lebesgue measure restricted on X):

f(x) =
xa−1(1 − x)b−1

B(a, b)
;

its exponential representation:

fθ(x) =
1

B(θ1, θ2)
exp(θ1 ln x + θ2 ln(1 − x))

with respect to measure µ on X which is absolutely continuous with respect to the

restricted Lebesgue measure with density 1
x(1−x) ;

dimension of the parameter: d = 2;

parametrisation:

π(θ1, θ2) = (θ1, θ2) & π−1(a, b) = (a, b);

boundaries of Θ: h =

(
0 ∞
0 ∞

)

;

T(x) = (ln x, ln(1 − x))

κ(θ1, θ2) = ln(B(θ1, θ2)) = ln Γ(θ1) + ln Γ(θ2) − ln Γ(θ1 + θ2)

κ̇(θ1, θ2) =

(
Γ′(θ1)

Γ(θ1)
− Γ′(θ1 + θ2)

Γ(θ1 + θ2)
,

Γ′(θ2)

Γ(θ2)
− Γ′(θ1 + θ2)

Γ(θ1 + θ2)

)

MLE is the solution of the following equations

1

n

n∑

i=1

ln(Xi) =
Γ′(θ1)

Γ(θ1)
− Γ′(θ1 + θ2)

Γ(θ1 + θ2)

1

n

n∑

i=1

ln(1 − Xi) =
Γ′(θ2)

Γ(θ2)
− Γ′(θ1 + θ2)

Γ(θ1 + θ2)
.

14. Lognormal distribution

X = R
+;

original density (with respect to the Lebesgue measure restricted on X):

f(x) =
1√

2πσ2x
exp

(

− (ln x − m)2

2σ2

)

;

its exponential representation:

fθ(x) =
1

√
π
θ2

exp(
θ2
1

4θ2
)

exp
(
−(ln x)2θ2 + ln xθ1

)
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with respect to measure µ on X which is absolutely continuous with respect to the
restricted Lebesgue measure with density 1/x;

dimension of the parameter: d = 2;

parametrisation:

π(θ1, θ2) =

(
θ1

2θ2
,

1

2θ2

)

& π−1(m, σ2) =

(
m

σ2
,

1

2σ2

)

;

boundaries of Θ: h =

(
−∞ ∞
0 ∞

)

;

T(x) = (ln x,−(ln x)2)

κ(θ1, θ2) =
θ2
1

4θ2
+

1

2
ln(

π

θ2
) & κ̇(θ1, θ2) =

(
θ1

2θ2
, − θ2

1

4θ2
2

− 1

2θ2

)

MLE =








1
n

n∑

i=1

ln Xi

1
n

n∑

i=1

(ln Xi)2 −
(

1
n

n∑

i=1

ln Xi

)2 ,
1
2

1
n

n∑

i=1

(ln Xi)2 −
(

1
n

n∑

i=1

ln Xi

)2








.

15. Double exponential distribution

X = R;

original density (with respect to the Lebesgue measure on X):

f(x) =
1

2b
exp(−|x|

b
);

its exponential representation:

fθ(x) =
θ

2
exp(−θ|x|)

with respect to measure µ which is again the Lebesgue measure on X;

dimension of the parameter: d = 1;

parametrisation:

π(θ) =
1

θ
& π−1(b) =

1

b
;

boundaries of Θ: h =
(

0 ∞
)
;

T(x) = −|x|
κ(θ) = ln 2 − ln θ

κ̇(θ) = −1

θ
& MLE =

n
n∑

i=1

|Xi|
.

16. Weibull distribution

known parameter: p > 0;

X = R
+;

original density (with respect to the Lebesgue measure restricted on X):

f(x) = cpxp−1 exp(−cxp);

its exponential representation:

fθ(x) = θ exp(−θxp)
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with respect to measure µ on X which is absolutely continuous with respect to the
restricted Lebesgue measure with density pxp−1;

dimension of the parameter: d = 1;

parametrisation:

π(θ) = θ & π−1(c) = c;

boundaries of Θ: h =
(

0 ∞
)
;

T(x) = −xp

κ(θ) = − ln θ

κ̇(θ) = −1

θ
& MLE =

n
n∑

i=1

Xp
i

.

17. Reyleigh distribution

X = R
+;

original density (with respect to the Lebesgue measure restricted on X):

f(x) =
x

b2
exp

(

− x2

2b2

)

;

its exponential representation:

fθ(x) = θ exp(−θx2)

with respect to measure µ on X which is absolutely continuous with respect to the
restricted Lebesgue measure with density x;

dimension of the parameter: d = 1;

parametrisation:

π(θ) =
1

2θ
& π−1(b2) =

1

2b2
;

boundaries of Θ: h =
(

0 ∞
)
;

T(x) = −x2

κ(θ) = − ln θ

κ̇(θ) = −1

θ
& MLE =

n
n∑

i=1

X2
i

.

18. Maxwell distribution

X = R
+;

original density (with respect to the Lebesgue measure restricted on X):

f(x) =
2

a3
√

2π
x2 exp

(

− x2

2a2

)

;

its exponential representation:

fθ(x) =
4

θ−3/2
√

π
exp(−x2θ)

with respect to measure µ on X which is absolutely continuous with respect to the

restricted Lebesgue measure with density x2;

dimension of the parameter: d = 1;
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parametrisation:

π(θ) =

√

1

2θ
& π−1(a) =

1

2a2
;

boundaries of Θ: h =
(

0 ∞
)
;

T(x) = −x2

κ(θ) = − 3
2 ln θ − ln(4/

√
π)

κ̇(θ) = − 3

2θ
& MLE =

3n

2
n∑

i=1

X2
i

.

19. Pareto distribution

known parameter: b > 0;

X = (b,∞);

original density (with respect to the Lebesgue measure restricted on X):

f(x) =
a

b

(
b

x

)a+1

;

its exponential representation:

fθ(x) = θbθ exp(−θ ln x)

with respect to measure µ on X which is absolutely continuous with respect to the

restricted Lebesgue measure with density 1/x;

dimension of the parameter: d = 1;

parametrisation:

π(θ) = θ & π−1(a) = a;

boundaries of Θ: h =
(

b ∞
)
;

T(x) = − lnx

κ(θ) = − ln θ − θ ln b

κ̇(θ) = −1

θ
− ln b & MLE =

n
n∑

i=1

ln
(

Xi

b

)
.

20. Modular distribution

see Gaussian mean-known.

21. Inverse Gaussian distribution

X = R
+;

original density (with respect to the Lebesgue measure restricted on X):

f(x) =

√

λ

2πx3
exp

(

− λ

2m2

(x − m)2

x

)

;

its exponential representation:

fθ(x) =
√

θ2 exp(−θ1
x

2
− θ2

1

2x
+
√

θ1θ2)

with respect to measure µ on X which is absolutely continuous with respect to the

restricted Lebesgue measure with density 1/
√

2πx3;
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dimension of the parameter: d = 2;

parametrisation:

π (θ1, θ2) =

(√

θ2

θ1
, θ2

)

& π−1(m, λ) =

(
λ

m2
, λ

)

;

boundaries of Θ: h =

(
0 ∞
0 ∞

)

;

T(x) =
(
−x

2 ,− 1
2x

)

κ(θ1, θ2) = −
√

θ1θ2 −
1

2
ln θ2 & κ̇(θ1, θ2) =

(

−1

2

√

θ2

θ1
, −1

2

(√

θ1

θ2
+

1

θ2

))

MLE =







1

( 1
n

n∑

i=1

Xi)(
1
n

n∑

i=1

1
Xi

) − 1
,

1
n

n∑

i=1

Xi

( 1
n

n∑

i=1

Xi)(
1
n

n∑

i=1

1
Xi

) − 1







.

22. Inverse Gamma distribution

X = R
+;

original density (with respect to the Lebesgue measure restricted on X):

f(x) =
ap

Γ(p)
exp(−a

x
)x−p−1;

its exponential representation:

fθ1,θ2
(x) =

θθ1

2

Γ(θ1)
exp(−θ2

1

x
− θ1 ln x)

with respect to measure µ on X which is absolutely continuous with respect to the
restricted Lebesgue measure with density 1/x;

dimension of the parameter: d = 2;

parametrisation:

π(θ1, θ2) = (θ1, θ2) & π−1(p, a) = (p, a);

boundaries of Θ: h =

(
0 ∞
0 ∞

)

;

T(x) =
(
− lnx,− 1

x

)

κ(θ1, θ2) = ln Γ(θ1) − θ1 ln θ2 & κ̇(θ1, θ2) =

(
Γ′(θ1)

Γ(θ1)
− ln θ2, −

θ1

θ2

)

MLE is the solution of the following equations

ln θ1 −
Γ′(θ1)

Γ(θ1)
=

1

n

n∑

i=1

ln(Xi) + ln

(

1

n

n∑

i=1

1

Xi

)

θ2 =
θ1

1
n

n∑

i=1

1
Xi

.

23. χ2 with k degrees of freedom distribution

X = R
+;
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original density (with respect to the Lebesgue measure restricted on X):

f(x) =
1

2k/2Γ(k
2 )

x
k
2
−1 exp(−x

2
);

its exponential representation:

fθ(x) =
1

2θ/2Γ( θ
2 )

exp

(

θ
ln x

2

)

with respect to measure µ on X which is absolutely continuous with respect to the

restricted Lebesgue measure with density 1
x exp(−x

2 );

dimension of the parameter: d = 1;

parametrisation:

π(θ) = θ & π−1(k) = k;

boundaries of Θ: h =
(

0 ∞
)
, (note that Θ = (0,∞) is assumed);

T(x) = lnx
2

κ(θ) =
θ

2
ln 2 + ln Γ(

θ

2
) & κ̇(θ) =

ln 2

2
+

Γ′( θ
2 )

2Γ( θ
2 )

MLE is the solution of the following equation

1

n

n∑

i=1

ln
Xi

2
=

Γ′( θ
2 )

Γ( θ
2 )

.

24. Dirichlet distribution

X = {x ∈ (0,∞)k+1 : x1 + ... + xk+1 = 1} = (0,∞)k × {1− x1 − ... − xk};
original density (with respect to the Lebesgue measure on (0,∞)k):

f(x) =
Γ(
∑k+1

j=1 αj)
∏k+1

j=1 Γ(αj)
xα1−1

1 ... xαk−1
k (1 − x1 − ... − xk)αk+1−1;

its exponential representation:

fθ(x) =
Γ(
∑k+1

j=1 θj)
∏k+1

j=1 Γ(θj)
exp
(

θ1 ln x1 + ... + θk ln xk + θk+1 ln(1 − x1 − ... − xk)
)

with respect to measure µ on (0,∞)k which is absolutely continuous with respect

to the Lebesgue measure on (0,∞)k with density 1
x1

1
x2

... 1
xk

1
1−x1−...xk

;

dimension of the parameter: d = k + 1;

parametrisation:

π(θ1, ..., θk+1) = (θ1, ..., θk+1) & π−1(α1, ..., αk+1) = (α1, ..., αk+1);

boundaries of Θ: h =






0 ∞
...

...

0 ∞




 ;

T(x) = (ln x1, ..., ln xk, ln(1 − x1 − ... − xk))

κ(θ1, ..., θk+1) = − ln Γ(
∑k+1

j=1 θj) +
∑k+1

j=1 ln Γ(θj)

κ̇(θ1, ..., θk+1) =

(

Γ′(θj)

Γ(θj)
−

Γ′(
∑k+1

j=1 θj)

Γ(
∑k+1

j=1 θj)
: j = 1, ..., k + 1

)
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MLE is the solution of the following equations

1

n

n∑

i=1

ln X
(i)
j =

Γ′(θj)

Γ(θj)
− Γ′(

∑k+1
l=1 θl)

Γ(
∑k+1

l=1 θl)
for j = 1, ..., k + 1

where X(1), ..., X(n) is a sample.

25. Bivariate Gaussian distribution

X = R
2;

original density (with respect to the Lebesgue measure on X):

f(x, y) =
1

2π|Σ|1/2
exp

{

−1

2

(

x−m1 y−m2

)

Σ−1

(
x−m1

y−m2

)}

=
1

2π|Σ|1/2

exp
{

− 1
2 Tr

(

Σ−1
(
x
y

)
(x y)

)

+ (x y)Σ−1
(
m1

m2

)}

exp
{

1
2 (m1 m2) Σ−1

(
m1

m2

)}

where Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)

;

its exponential representation:

fθ(x, y) =

√

θ1θ3 − θ2
2

2π

exp
{

−θ1
x2

2 + θ2xy − θ3
y2

2 + θ4x + θ5y
}

exp
{

1
2 (θ4 θ5)

(
θ1 −θ2

−θ2 θ3

)−1(θ4

θ5

)}

with respect to measure µ which is again the Lebesgue measure on X;

dimension of the parameter: d = 5;

parametrisation:

(
θ1 − θ2

−θ2 θ3

)

= Σ−1 &

(
θ4

θ5

)

= Σ−1

(
m1

m2

)

,

i.e.

π(θ1, θ2, θ3, θ4, θ5) =

(
θ3

θ1θ3 − θ2
2

,
θ1

θ1θ3 − θ2
2

,
θ2√
θ1θ3

,
θ2θ5 + θ3θ4

θ1θ3 − θ2
2

,
θ1θ5 + θ2θ4

θ1θ3 − θ2
2

)

π−1(σ2
1 , σ2

2 , ρ, m1, m2) =

(
1

σ2
1(1 − ρ2)

,
ρ

σ1σ2(1 − ρ2)
,

1

σ2
2(1 − ρ2)

,

m1

σ2
1(1 − ρ2)

− ρm2

σ1σ2(1 − ρ2)
,

m2

σ2
2(1 − ρ2)

− ρm1

σ1σ2(1 − ρ2)

)

;

boundaries of Θ: h =









0 ∞
−∞ ∞
0 ∞

−∞ ∞
−∞ ∞









;

T(x, y) =
(

−x2

2 , xy,−y2

2 , x, y
)

κ(θ1, θ2, θ3, θ4, θ5) = ln 2π − 1

2
ln(θ1θ3 − θ2

2) +
1

2
(θ4 θ5)

(
θ1 − θ2

−θ2 θ3

)−1(
θ4

θ5

)
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let us set

∆ := (θ4 θ5)

(
θ1 − θ2

−θ2 θ3

)−1(
θ4

θ5

)

=
1

θ1θ3 − θ2
2

(θ4 θ5)

(
θ3 θ2

θ2 θ1

)(
θ4

θ5

)

=
θ3θ

2
4 + 2θ2θ4θ5 + θ1θ

2
5

θ1θ3 − θ2
2

then

κ̇(θ1, θ2, θ3, θ4, θ5) =
1

2

1

θ1θ3 − θ2
2

(
−θ3 + θ2

5 − θ3∆, 2θ2 + 2θ4θ5 + 2θ2∆,

−θ1 + θ2
4 − θ1∆, 2θ3θ4 + 2θ2θ5, 2θ2θ4 + 2θ1θ5

)
;

let us set

Υ =
1

n2

n∑

i=1

X2
i

n∑

i=1

Y 2
i − 1

n2
(

n∑

i=1

XiYi)
2 +

1

n3

n∑

i=1

Xi

n∑

i=1

Yi

n∑

i=1

XiYi +

− 1

n2

n∑

i=1

Xi

n∑

i=1

Y 2
i − 1

n2

n∑

i=1

X2
i

n∑

i=1

Yi

then

MLE =
1

Υ

(

1

n

n∑

i=1

Y 2
i − (

1

n

n∑

i=1

Yi)
2,

1

n

n∑

i=1

XiYi −
1

n2

n∑

i=1

Xi

n∑

i=1

Yi,

1

n

n∑

i=1

X2
i − (

1

n

n∑

i=1

Xi)
2,

1

n2

n∑

i=1

Xi

n∑

i=1

Y 2
i − 1

n2

n∑

i=1

XiYi

n∑

i=1

Yi,

1

n2

n∑

i=1

X2
i

n∑

i=1

Yi −
1

n2

n∑

i=1

XiYi

n∑

i=1

Xi

)

.
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