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Motivation

the problem of suitable sample size specification usually
overlooked in particle filtering
usually constant sample size is considered while estimate quality
varies
there are few sample size specification techniques adapting with
respect to point estimate quality but none respecting pdf estimate
quality

the aim of the proposed sample size specification technique is to
adapt the sample size such that the Kullback-Leibler distance
between the empirical filtering pdf and the true filtering pdf is
preserved
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State estimation

Consider a discrete time stochastic system:

xk+1 = fk (xk ,ek ), k = 0,1,2, . . . [p(xk+1|xk )]

zk = hk (xk ,vk ), k = 0,1,2, . . . [p(zk |xk )]

xk is nx dimensional state vector with p(x0)

zk is nz dimensional measurement vector

ek is white noise with known p(ek )

vk is white noise with known p(vk )

fk (·, ·) and hk (·, ·) are known vector functions

The aim of state estimation

p(xk |zk ) =?, with zk = [zT
0 , . . . z

T
k ]T
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Particle filter

General solution of the filtering problem

given by the Bayesian Recursive Relations (BRR).
closed form solution available for a few special cases only (e.g.
linear Gaussian systems).
usually approximate solution

Solution of the BRR by the particle filter

based on approximating the filtering pdf by a set of Nk samples
(particles) and corresponding weights as

rNk (xk |zk ) =

Nk∑
i=1

ω
(i)
k δ(xk − x(i)

k ),

x(i)
k - samples, ω(i)

k - normalized weights,
δ - the Dirac function (δ(x) = 0 for x 6= 0,

R
δ(x)dx = 1).
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Weighting

Sampling

Resampling

Initialization

compute the weights

{ω(i)
k }

Nk
i=1 ∝

p(zk |x
(i)
k )p(x(i)

k |x
∗(i)
k−1)

π(x(i)
k |x
∗(i)
k−1,zk )

draw new samples {x(i)
k }

Nk
i=1 from

π(xk |x
∗(1:Nk−1)
k−1 , zk )

generate {x∗(i)k }
Nk
i=1 by resampling with

replacement from {x(i)
k }

Nk
i=1 according

to P(x∗(i)k = x(i)
k ) = ω

(i)
k

draw {x(i)
0 }

N0
i=1 from p(x0|z−1) and set

ω
(i)
0 ∝ p(z0|x(i)

0 )

k = 0

k = k + 1
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Sample size specification

Only a few papers address sample size

Non-adaptive sample size specification
constant sample size, i.e. Nk = N
calculating N in advance according to a criterion evaluating
estimate quality
no increase of computational costs of the actual algorithm

Boers Y.
On the number of samples to be drawn in particle filtering
IEE Colloquium on Target Tracking: Algorithms and Applications, 1999.

Šimandl M. and Straka O.
Nonlinear estimation by particle filters and Cramér Rao bound.
Proceedings of the 15th triennial world congress of IFAC, 2002.
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Adaptive sample size specification

Adaptive techniques for sample size specification
always increase computational costs
empirical or criteria respecting point estimate quality:

Koller, Fratkina – Using learning for approximation in stochastic processes.
Proc. of 15th Int. Conf. on Machine Learning, 1998.

Fox – KLD sampling: Adaptive particle filter for mobile robot localization.
Advances in Neural Information Processing Systems, 2001.

Soto – Self adaptive particle filter
International Joint Conference on Artificial Intelligence Systems,2005

Straka, Šimandl – Adaptive particle filter based on fixed efficient sample size
Proceedings of the 14th IFAC symposium on System Identification, 2006

Lanz O. – An information theoretic rule for sample size adaptation in particle
filtering
14th International Conference on Image Analysis and Processing,2007
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Adaptation with fixed empirical pdf quality

Idea:
to keep Kullback-Leibler (KL) distance between empirical pdf rN
and true pdf p fixed and to adapt sample size accordingly

D(rN ,p)
4
=

∫
rN log

rN

p
dx =

∫
rN log

1
p

dx︸ ︷︷ ︸
K(rN ,p)

−
∫

rN log
1
rN

dx︸ ︷︷ ︸
H(rN )

K(rN ,p) – inaccuracy measuring actual discrepancy between rN
and p
H(rN) – Shannon differential entropy (SDE), further dropped as
H(rN) = −∞
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Adaptation with fixed empirical pdf quality (cont.)

From KL distance to difference between inaccuracy and SDE K(p)

Instead of KL distance, inaccuracy will be further considered
the limiting value of inaccuracy K(rN ,p) is not zero
it can be shown that

lim
N→∞

K(rN ,p) = K(p,p) = H(p)

therefore the idea of monitoring the KL distance between rN and
p can be converted to monitoring the distance between
inaccuracy K(rN ,p) and SDE H(p) as

lim
N→∞

K(rN ,p)−H(p) = 0
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Adaptation with fixed empirical pdf quality (cont.)

The difference between inaccuracy and SDE

K(rN ,p)−H(p) =

1
N

∑N
i=1 w(x(i))

(
log 1

p(x(i))
−H(p)

)
1
N

∑N
j=1 w(x(j))

=
Y
W

= R

According to Central Limit Theorem

p(Y ) −−−−→
N→∞

N{Y : µY , σ
2
Y} p(W ) −−−−→

N→∞
N{W : µW , σ

2
W}

a quantile of R as a function of N can not be found directly
nevertheless the Geary-Hinkley transformation to normality can
be applied
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Adaptation with fixed empirical pdf quality (cont.)

Geary-Hinkley transformation to normality

T =
µW R − µY√

σ2
W

R2 − 2cov(Y ,W )R + σ2
Y

T has approximately standard normal distribution (under a certain condition)

µY = 0, µW = Eπ(W ) σ2
W =

1
N
[
Eπ(W 2)− E2

π(W )
]

σ2
Y =

1
N

[
Eπ(W 2L2)− 2Eπ(W 2L)

Eπ(WL)

Eπ(W )
+ Eπ(W 2)

E2
π(WL)

E2
π(W )

]
cov(Y ,W ) =

1
N

[
Eπ(W 2L)− Eπ(W 2)

Eπ(WL)

Eπ(W )

]
,

with W = w(x), L = log( 1
p(x) ) and Y = W (L−H(p))
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Adaptation with fixed empirical pdf quality (cont.)

The transformation holds for quantiles =⇒

N = t2
1−δ/2

σ2
W r2

1−δ/2 − 2cov(Y ,W )r1−δ/2 + σ2
Y

(µW r1−δ/2 − µY )2

with user specified parameters
confidence coefficient 1 − δ
value of 1 − δ/2 quantile r1−δ/2

and t1−δ/2 being 1− δ/2 quantile of the standard normal
distribution

The relation means that N given by it is necessary for the difference
K(rN ,p)−H(p) to be within the interval (−r1−δ/2,+r1−δ/2) with
probability 1− δ.
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Adaptation with fixed empirical pdf quality (cont.)

Computational aspects

The second moments Eπ(W ), Eπ(W 2), Eπ(WL), Eπ(W 2L),
Eπ(W 2L2) are computed using Monte Carlo method

1 NMC samples are firstly generated from π
2 the second moments are enumerated
3 the sample size Nk is calculated
4 Nk − NMC remaining samples are drawn from π

information measure adaptive PF (IM-APF)
if the condition for Geary-Hinkley transformation (coefficient of
variation of the denominator W is less than 0.39) is not fulfilled,
Chebychev inequality must be used (providing loose bound for
sample size)

N =
1
ε2δ

var(K(rN ,p)−H(p))
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Example: Adaptive particle filter with fixed empirical
density quality

System

xk+1 = ϕ1xk + 1 + sin(ωπk) + ek p(ek ) = G{ek ,3,2}
zk = ϕ2x2

k + vk p(vk ) = N{vk : 0,1}
p(x0) = N{x0 : 0,12}

ϕ1 = 0.5, ϕ2 = 0.2, ω = 0.04.

Particle filter
prior importance function
k = 0,1, . . .29, 1000 MC simulations
adaptive PF: 1− δ/2 = 0.99 and r1−δ/2 = 1
unadapted PF: N = NAV , N = 2NAV
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Example: Results
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Example: Point estimate quality

Comparison of point estimates quality

IM-APF PF, N = NAV PF, N = 2 · NAV

MSE 0.555 0.748 0.588
var(SE) 31.868 131.795 86.854

MSE - average mean squared error estimate

var(SE) - average variance of squared error
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Conclusion

A sample size adaptation technique was proposed.
The adaptation is done with respect to empirical pdf quality.
The difference between inaccuracy K(rN ,p) and Shannon
differential entropy H(p) = K(p,p) is kept within a user-specified
interval r with user-specified probability 1− δ/2.
Enumeration of the adapted sample size introduces little extra
computational overheads as the samples generated for
computing N are reused for computing the empirical pdf.
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