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Introduction

classical state estimation
system described by a stochastic model exactly

state estimation with constraints
system only appoximated by a stochastic model

BUT
some extra knowledge available, for example

I train follows railway

I ship cruises the sea

I mass is non-negative

i.e. some unmodelled physical constraints exist
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Problem Formulation

a linear multisensor system is described by

xk+1 = Fkxk + Gkwk ,

z
(j)
k = H

(j)
k xk + v

(j)
k , j = 1, . . . ,N,

where xk ∈ Rnx is the state, z
(j)
k ∈ Rn

(j)
z are local measurement

coming from j-th sensor, the noises wk , vk are independent, . . .
the system state obeys equality or inequality constraints given by

ce(xk) = 0,

cn(xk) ≤ 0

the goal is to combine estimates based on the local data and to
respect the constraints
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Enforcing Constraints

the model approximates the system dynamics
⇒

the estimate need not to obey the constraints

various approaches to restore the constraints exist

I model projection or reduction

I modification of measurement model
constraint = additive information, dynamics model considered
to be accurate ⇒ this approach removes inadmissible states

I pdf truncation (inequality constraints)
I pseudomeasurements (equality constraints)

I estimate projection
⇒ this approach refines the approximation
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Proposed Density Interpretation
Problem Formulation

true system state follows unknown densities

p(x†k+1|x
†
k), p(x†0)

but the set Ck of admissible system states is known for each time k

Ck = {∀x†k : p(x†k) 6= 0}

and some approximation of the system dynamics is available,

p(xk+1|xk), p(x0)

The true measurement probability density is given by

p(z
(1)†
k , . . . , z

(N)†
k |x†k)

The model usually assumes that the density exists also for xk /∈ Ck ,

p(z
(1)
k , . . . , z

(N)
k |xk)
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Proposed Density Interpretation
Enforcing Constraints

I model projection or reduction = transition density transformation

CS : p(xk+1|xk)→ pC(xk+1|xk), pC(xk+1|xk) 6= 0⇒ xk+1 ∈ Ck+1

I modification of measurement model – fictive measurement ck

p(xk |Zk , ck) ∝ ICk (xk)p(xk |Zk),

where ICk is the indicator function, the relation results from
I fusion with noninformative constraining density

p(xk |ck) ∝ ICk (xk)

I zero noise measurements ck = 0

p(ck |xk) = δ(ck − ck(xk))

I estimate projection = estimated density transformation

Ck : p(xk |Zk)→ p(xk |Zk , ck), p(xk |Zk , ck) 6= 0⇒ xk ∈ Ck
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Fusion Problem

fusion of estimates

local measurements → local estimates
local estimates → fused estimate

uncostrained fusion

I fusion of decorrelated information

I computing the dependences of estimates

I respecting the unknown dependences

constrained estimation – the meaning of dependences unclear
⇒ respecting the dependences
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Covariance Intersection

I having consistent local estimates {x̂1,P1}, {x̂2,P2}, the fused
estimate {x̂,P} is consistent, i.e. P− E[(x− x̂)(x− x̂)T]≥ 0,
regardless the dependence of the local estimates

P−1x̂ = ωP−1
1 x̂1 + (1− ω)P−1

2 x̂2,

P−1 = ωP−1
1 + (1− ω)P−1

2 ,

for ω ∈ [0, 1]

I works well for unconstrained estimates (regular covariances)

I equality constrained estimates have singular covariances
if a linearised projection have been used
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Fusion of Singular Densities
estimates constrained in the same direction

fusion of approximated constrained estimates([
1
0 0.01

]−1

+

[
2 0
0 0.01

]−1
)−1

.
=

[
0.666 0

0 0.005

]
the pseudoinverse solution is OK([

1 0
0 0

]−1MP

+

[
2 0
0 0

]−1MP
)−1MP

=

[
2
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Figure: Covariance ellipses, xTPx = 1 (lines for singular covariances)
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Fusion of Singular Densities
estimates constrained in different directions

the approximation gives approximative results([
1 0
0 0.01

]−1

+

[
0.01 0

0 1

]−1
)−1

.
=

[
0.01 0

0 0.01

]
→
[

0 0
0 0

]
while the use of pseudoinverses spoils the fusion([

1 0
0 0

]−1MP

+

[
0 0
0 1

]−1MP
)−1MP

=

[
1 0
0 1

]
�
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Figure: Closer constrained direction ⇒ worse pseudoinverse solution
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Projection by Unscented Transformation
nonlinear equality constraint ⇒ nonlinear projection needed
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(a) pdf truncation
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(b) linear projection
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(c) projection by UT

a) pdf truncation (pseudomeasurements) gives inadequate results
b) linear projection leads to singular covariances
c) unscented transformation respects the constraint nonlinearity
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Estimators Architecture

Local Estimators
constraint in the loop

Prediction Filtering Constraining

Estimator A B

constraint outside the loop

Prediction Filtering Constraining

Estimator
C D

Fusion at the centre
A, C fusion of unconstrained estimates
B, D fusion of constrained estimates

Fusion Constraining
A/B/C/D 1

A/B/C/D 2
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Ground Tracking Example

I nearly constant velocity model – state x = [x , vx , y , vy ]T

I position measured by two sensors (different error covariances)

I circular road, tangent velocity

x2 + y2 − R2 = 0 position constraint

xvx + yvy = 0 velocity constraint

I estimate projection aprroach

π(x) =
[

Rx√
x2+y2

vxy2−vyxy
x2+y2

Ry√
x2+y2

−vxxy+vyx2

x2+y2

]T
I the proposed approaches compared
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Example Results

Table: Mean position and velocity errors at local estimator

C in the loop C outside the loop

ε̄(x̂P)position/velocity 4.34/2.41 12.78/6.90

ε̄(x̂F )position/velocity A 3.52/2.45 C 7.65/5.00

ε̄(x̂C )position/velocity B 3.29/1.34 D 3.76/1.51

Table: Mean position/ velocity errors after the fusion of local estimates

approach A B C D

ε̄(x̂Fusion)pos./vel . 2.75/2.27 2.40/1.01 6.88/4.86 2.91/1.20

ε̄(x̂C .Fusion)pos./vel . 2.49/1.04 2.39/1.01 3.53/1.43 2.91/1.20

+ opened questions (divergence between model and system,
incomplete constraint utilisation, projection design)
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Summary

I constrained estimation formulated in density framework

I estimate projection preferred to pseudomeasurements

I problems with singular densities referred

I derivative-free solution proposed

I various estimators designed

I their performance compared

Thank you for the attention.
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