
Fuzzy Coalitional Structures
(ALTERNATIVES)∗

Milan Mareš
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Abstract. The uncertainty of expectations and vagueness of the interests
belong to natural components of cooperative situations, in general. Therefore,
some kind of formalization of uncertainty and vagueness should be included in
realistic models of cooperative behaviour. This paper attempts to contribute
to the endeavour of designing a universal model of vagueness in cooperative
situations. Namely, some initial auxiliary steps towards the development of
such a model are described. We use the concept of fuzzy coalitions suggested
in [1], discuss the concepts of superadditivity and convexity, and introduce a
concept of the coalitional structure of fuzzy coalitions.

The first version of this paper [10] was presented at the Czech-Japan Sem-
inar in Valtice 2003. It was obvious that the roots of some open questions can
be found in the concept of superadditivity (with consequences on some other
related concepts), which deserve more attention. This version of the paper
extends the previous one by discussion of alternative approaches to this topic.

1 Introduction

The classical mathematical model of cooperative behaviour, based on the concept of
coalitional game, is deterministic. In this paper, we focus our attention on the transferable
utility (TU) coalitional games (see, e. g., [9]). These games are characterized by a (non-
empty and finite) set of players, which generates the class of admissible coalitions, and
by total coalitional payoffs determining the common income of each coalition. Since
knowledge of both these components (coalitions and payoffs) is only vague, a fuzzification
of the original deterministic model appears desirable.

Two main approaches to the fuzzification of TU games can be found in the literature.
Some authors deal with the fuzzification of coalitions. This approach is based on the idea
that each player can participate in more than one coalition. The participation in particular
coalitions can be of different degree, which influences also the distribution of coalitional
payoff. This uncertainty is formally included into the model by fuzzification of coalitions –
each coalition is a fuzzy subset of the set of all players, as shown, e. g., in [1, 2, 3] and also
in [8]. The alternative approach to the fuzzification of TU games is concerned with the
expected coalitional payoffs. This type of uncertainty can be represented by considering
fuzzy payoffs (i.e., fuzzy numbers) instead of the traditional crisp characteristic function
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of the game. This model is described, e. g., in [4, 5, 7]. As the direct substitution of crisp
payoffs by fuzzy values leads to some formal difficulties, as shown, e. g., in [4], it appears
to be more adequate to transform this model into an alternative one where a fuzzy class
of deterministic games is investigated instead of the fuzzy games (with fuzzy payoffs). In
[6] and [7], we have shown that it is possible.

The presumed further research of fuzzy coalitional games could be oriented to the
construction of a unitary model of uncertainty in cooperation including both of the sources
of vagueness mentioned above. Recently, it has appeared useful to design theoretical tools
for its development, among which the tools for handling coalitional structures, their fuzzy
counterparts and their relevant properties play a significant role. In this contribution,
we propose the concept of the fuzzy coalitional structure based on the model of fuzzy
coalition from [1], and discuss the fuzzy analogies of superadditivity and convexity.

2 Crisp TU Coalitional Game

In the classical coalitional game theory (see e. g., [9] or introductory parts of [4]) the game
with transferable utility (TU game) is defined as a pair (I, v) composed by the set of players
I which is assumed to be non-empty and finite (without loss of generality we “name” the
players by natural numbers and set I = {1, 2, . . . , n}), and by the characteristic function
v. If we call every set of players K ⊂ I, including K = I and the empty set K = ∅,
a coalition, then the characteristic function v associates with every coalition K a real
number v(K) which represents the common expected payoff of coalition K. We suppose
that v(∅) = 0. If, for each pair of disjoint coalitions K, K ′ ⊂ I,

v(K ∪K ′) = v(K) + v(K ′) (1)

then we say that the game is superadditive. If, for each K, K ′ ⊂ I,

v(K ∪K ′) + v(K ∩K ′) = v(K) + v(K ′) (2)

then the game is called convex. Every partition of I into disjoint coalitions, let us denote
it K = {K1, . . . , Km}, Ki ∩ Kj = ∅ for i 6= j, K1 ∪ . . . ∪ Km = I, is called a coalitional
structure.

3 Fuzzy Coalitions

In the following sections, we denote for every set X by P(X) the class of all subsets of X.
We also accept the following notations – the symbol K (with eventual accents or indices)
denotes the crisp coalitions from P(I).

Let us turn our attention to the fuzzification of coalitions. First we notice that each
crisp coalition K can be identified with the vector

(τK(1), τK(2), . . . , τK(n)) , (3)

where, for every player i ∈ I, τK(i) = 1 iff i ∈ K and τK(i) = 0 iff i ∈ I −K.
If we accept the assumption that the players participate in coalitions only with some

part of their “power”, then we also accept that some players can participate in more than
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one coalition. Such “partial” participation can be formalized by means of the fuzzy set
theoretical tools (see [1, 2, 3]). Following Aubin [1], we define a fuzzy coalition L as a
fuzzy subset of I with membership function τL : I → [0, 1], where the value τL(i) ∈ [0, 1]
represents the degree in which player i ∈ I participates in fuzzy coalition L. The class
of all fuzzy coalitions in the game (I, v) is denoted by F(I) and we denote the fuzzy
coalitions by (eventually accented or indexed) letters L or M . Evidently, every fuzzy
coalition L can be identified with the n-dimensional vector

τL = (τL(1), τL(2), . . . , τL(n)) , τL(i) ∈ [0, 1], i = 1, 2, . . . , n. (4)

It is natural to expect that fuzzy and crisp coalitions are somewhat mutually related. It
turns out that the fuzzy coalitions may be considered as combinations of the cooperative
endeavour of deterministic sets of players. Let us make this informal claim more precise.

If L1, L2, . . . , Lm are fuzzy coalitions represented by vectors

(τL1(1), . . . , τL1(n)) , (τL2(1), . . . , τL2(n)) , . . . , (τLm(1), . . . , τLm(n))

and λ1, λ2, . . . , λm ∈ [0, 1] are real coefficients, then the real-valued vector

(λ1τL1(1) + λ2τL2(1) + . . . + λmτLm(1), . . . , λ1τL1(n) + λ2τL2(n) + . . . + λmτLm(n)) (5)

is called a combination of coalitions L1, L2, . . . , Lm. In abbreviatory form, we write λ1L1+
λ2L2+. . .+λmLm. If, moreover, λ1+λ2+. . .+λm 5 1 then vector (5) is called a subconvex
combination of L1, L2, . . . , Lm, and if the sum is equal to 1 then vector (5) is called a convex
combination of L1, L2, . . . , Lm.

The crisp coalitions deserve a special attention. Obviously, they can be considered
as special cases of fuzzy coalitions. Namely, they can be identified with those fuzzy
coalitions whose membership functions may take only values 0 or 1. The n players of the
game can form 2n crisp coalitions. To simplify the formulations of some statements, we
set N = 2n − 1.

Obviously each fuzzy coalition L characterized by vector τL can be expressed as a com-
bination of crisp coalitions. For example, setting λ1 = τL(1), λ2 = τL(2), . . . , λn = τL(n),
we obtain coalition L as combination of crisp one-player coalitions {1}, {2}, . . . , {n}. Such
a combination may be neither subconvex nor convex combination. In what follows, we are
interested in the representation of fuzzy coalitions by means of subconvex combination or
convex combinations of some crisp coalitions.

Observation 1. Every fuzzy coalition can be represented by a convex combination of
crisp coalitions.

Proof. This is a direct consequence of the fact that every nonempty convex compact set
in a finite dimensional space is a convex combination of its extreme points. Here the fuzzy
coalitions are represented by points of the unit hypercube [0, 1]n, and the crisp coalitions
are represented by the vertices of that hypercube. ¤

The following example shows that a fuzzy coalition can be represented by more than
one convex combinations of crisp coalitions.
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Example 1. Let us consider a three-players set I = {1, 2, 3} and its fuzzy coalition L
represented by the triple (τL(1), τL(2), τL(3)), where τL(1) = 1

3
, τL(2) = 1, τL(3) = 1

3
.

Then it can be represented either by a pair of crisp coalitions (I, K). τI(1) = τI(2) =
τI(3) = 1 and λI = 1

3
; K = {2}, i. e., τK(1) = τK(3) = 0, τK(2) = 1 and λK = 2

3
. Or, it

can be represented by a triple of crisp coalitions K1, K2, K3 ∈ P(I), where K1 = {1, 2},
K2 = {2, 3}, K3 = {2}, i. e.

τK1(1) = τK1(2) = 1, τK1(3) = 0; τK2(1) = 0, τK2(2) = τK2(3) = 1;

τK3(1) = τK3(3) = 0, τK3(2) = 1,

and λK1 = λK2 = λK3 = 1
3
. ¤

Let us note that each fuzzy coalition L from P(I), can be expressed as a convex
combination of all crisp coalitions K0, K1, . . . , KN , i. e., L = λ0K0 + λ1K1 + · · ·+ λNKN ,
where we denote K0 = ∅ and where some of the coefficients λj, j = 0, . . . , N , may vanish.
It means that L is characterized by an (N + 1)-dimensional vector (λ0, λ1, . . . , λN). Vice-
versa, each convex combination of all crisp coalitions represents some fuzzy coalition. In
other words, each non-negative vector (λ0, λ1, . . . , λN) whose components sum up to 1
represents certain fuzzy coalition. It follows from the previous example that the mapping
between fuzzy coalitions and vectors (λj)j=0,...,N is not one-to-one.

If, again following Aubin, we define a cooperative fuzzy game with transferable utility
as a function w that assigns to every fuzzy coalition L a real number w(L) and satisfies the
condition w(∅) = 0, then it is natural to ask which of such fuzzy games can be considered
as extensions of crisp games. It is rational to require that the payoffs to fuzzy coalitions
of such extensions are related in some specific way to the payoffs of the corresponding
crisp coalitions.

If a fuzzy coalition L is represented by a subconvex combination of crisp coalitions
(5), then it is natural to consider the analogous subconvex combination of the payoffs

λ1v(K1) + λ2v(K2) + . . . + λmv(Km). (6)

As there may exist several representations of a fuzzy coalition, we define the value v̄(L)
for any fuzzy coalition L by

v̄(L) = sup (λ1v(K1) + λ2v(K2) + . . . + λmv(Km) : (K1, K2, . . . , Km), (λ1λ2, . . . , λm)

which are subconvex combinations representing K). (7)

We already know that each fuzzy coalition L can be identified with a vector (λ0, λ1, . . .
. . . , λN) ∈ [0, 1]N such that L = λ0K0 + . . . + λNKN is a convex combination of all crisp
coalitions. The following Observation 2 shows that the class of all subconvex combination
in (7) can be reduced to the class of convex combinations of all crisp coalitions.

Observation 2. For every fuzzy coalition L, the value v̄(L) is given by

v̄(L) = sup (λ1v(K1) + λ2v(K2) + · · ·+ λNv(KN) : (K1, K2, . . . , Km), (λ1λ2, . . . , λm)

where K = λ0K0 + · · ·+ λNKN is convex combination of all coalitions.

Proof. We are to show that any subconvex combination of an arbitrary set of crisp
coalitions can be substituted by a convex combination of all crisp coalitions. This property
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is obvious. If for some fuzzy coalition L and a set of crisp coalitions K1, . . . , Km, with
coefficients λ1, . . . , λm, the relation

K = λ1K1 + · · ·+ λmKm

is true, then we put λj = 0 for j 6∈ {1, . . . , m},

L = λ0K0 + λ1K1 + · · ·+ λNKN

and
λ0v(K0) + λ1v(K1) + · · ·+ λNv(KN) = λ1v(K1) + · · ·+ λmv(Km),

where
λ0 + λ1 + . . . + λN−1 = λ1 + . . . + λm ≤ 1.

If the combination in (7) is subconvex but not convex, then we may put λ0 = 1 − (λ1 +
. . . + λm), and the statement is proved, as v(K0) = 0. ¤

In this way we have associated with every crisp game v exactly one fuzzy game w,
namely w = v̄.

Observation 3. If v is the characteristic function of a deterministic TU game, then
v̄(K) = v(K) for every crisp coalition K.

Proof. Let K be a crisp coalition. Since K can be represented by the convex combination
with m = 1, λ1 = 1, K1 = K, we have v̄(K) ≥ v(K). Now suppose that v̄(K) > v(K).
Then there is a subconvex combination λ1K1 + · · ·+ λmKm of crisp coalitions such that

λ1v(K1) + · · ·+ λmv(Km) > v(K). (8)

There is no loss of generality in assuming that all coefficient λj, j = 1, 2, . . . ,m, are
positive. It follows that Kj = K for each j = 1, 2, . . . , m. Indeed, if player i does not
belong to coalition K, then

λ1τK1(i) + · · ·+ λmτKm(i) = 0, (9)

which is possible only if τKj
(i) = 0 for each j = 1, 2, . . . , m. Now suppose that i ∈ K and

i /∈ Kj for some j. Let J be the set of all indices j for which i /∈ Kj. Then we have

∑
j∈J

λjτKj
(i) +

∑

j /∈J

λjτKj
(i) = 1,

which can be satisfied only if J is empty. To complete the proof, we note that, for
K1 = K2 = · · · = Km = K, we have

λ1v(K1) + · · ·+ λmv(Km) = (λ1 + · · ·+ λm) v(K) ≤ v(K),

which contradicts (8).
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4 Convexity and Superadditivity

In this section we denote by M, L the fuzzy coalitions M = (τM(1), . . . , τM(n)), L =
(τL(1), . . . , τL(n)) and, in accordance with the principles of the fuzzy set theory, we define
their union and intersection by

M ∪ L = (max(τM(1), τL(1)), . . . , max(τM(n), τL(n))) ,

M ∩ L = (min(τM(1), τL(1)), . . . , min(τM(n), τL(n))) .

The fuzziness of coalitions leads to some difficulties if we are to consider their disjointness.
As a consequence, there can be some methodological problems if we want to distinguish
between superadditivity and convexity of games with fuzzy coalitions (see (1),(2)). There
exist, evidently, several possible views on this topic. Here, we choose the following very
simple one. In this section, we consider the fuzzy coalitional game (I, w) with fuzzy
coalitions and with characteristic function w as introduced in Section 3 and constructed
by means of (7).

We say that a game (I, w) with fuzzy coalitions is convex iff for any pair of fuzzy
coalitions K, L, analogously to (2),

w(M ∪ L) + w(M ∩ L) = w(M) + w(L). (10)

As the convexity does not require the disjointness of coalitions, there is no formal difficulty
with its re-formulation in the environment of fuzzy coalitions.

Observation 4. If (I, v) is a crisp convex TU game, then the game (I, v̄) with fuzzy
coalitions is convex in the sense of (10), too.

Proof. The statement follows from Remark 2, Observation 2 and from (7). If L is a convex
combination of {KL

1 , . . . , KL
m} and M is a convex combination of {KM

1 , . . . , KM
p }, with

some coefficients then L∪M can be expressed as convex combination of {KL
1 , . . . , KL

m, KM
1 ,

. . . , KM
p } characterizes L∪K with some coefficients. Due to the convexity of the original

crisp game the desired inequality is true. ¤

To define the superadditivity of games with fuzzy coalitions, we first say that two
fuzzy coalitions M, L are disjoint iff for all i ∈ I, min(τM(i), τL(i)) = 0. Then we say that
a TU game (I, w) with fuzzy coalitions is superadditive iff for any pair of disjoint fuzzy
coalitions K, L

w(M ∪ L) = w(M) + w(L). (11)

The following statements are obvious.

Remark 1. If a TU game with fuzzy coalitions is convex then it is superadditive.

Observation 5. If (I, v) is a superadditive crisp TU game, then (I, v̄) is superadditive
in the sense of (11).

Proof. The validity of this observation immediately follows from Remark 1, Observation 3
and from (10) and (11). ¤
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The concept of superadditivity (and, in some sense, also convexity) presented in the
previous section does not appear to be very satisfactory. The source of the doubts can be
found in the condition of disjointness, formulated above.

The disjointness of fuzzy coalitions formulated by the condition

min (τM(i), τL(i)) = 0 for all i ∈ I

exactly copies the analogous concept in the deterministic game theory, and also its prop-
erties (see proof of Observation 4, Observation 5 and Remark 1) are sufficiently similar to
the ones known in the deterministic theory. Nevertheless, its extreme form may be consid-
ered for too dogmatic in the case of the “weak” participation of players in fuzzy coalitions.
Let us consider a modified concept of disjointness and check its basic properties. We say
that fuzzy coalitions L, M are weakly disjoint if for each i ∈ I

τL(i) + τM(i) 5 1.

Remark 2. It is easy to see that any pair of disjoint fuzzy coalitions is also weakly
disjoint, and that two crisp coalitions K, K ′ are weakly disjoint iff they are disjoint.

If we are to formulate the definition of superadditivity for weakly disjoint coalitions
instead of the usual disjointness considered earlier in this section then we say that the
fuzzy game (I, w) is strongly superadditive iff w(L ∪M) = w(L) + w(M) for each pair of
weakly disjoint coalitions L and M .

Remark 3. Obviously, any strongly superadditive fuzzy game is superadditive in the
above sense, and for disjoint crisp coalitions K, K ′, w(K ∪ K ′) = w(K) + w(K ′) turns
into (1) as follows from Observation 3.

Unfortunately, the implication between the convexity and superadditivity which we
know from the deterministic case and also from Remark 1 is not generally guaranteed for
the strong superadditivity, as shown in the next example.

Example 2. Let us consider 3-players coalitional game (I, v), I = {1, 2, 3},

v(∅) = 0, v({1}) = v({2}) = v({3}) = 1,

v({1, 2}) = v({1, 3}) = v({2, 3}) = 2, v(I) = 3.

This game is convex and superadditive in the deterministic sense, and, therefore, by
Observation 4, the corresponding v̄ is also convex. Let us consider fuzzy coalitions in this
game, and let us construct their characteristic function v̄ by means of (7). Let L, M be
fuzzy coalitions, such that

τM(1) = 1, τM(2) =
1

2
, τM(3) = 0, τL(1) = 0, τL(2) =

1

2
, τL(3) = 1.

We can see that coalitions M and L are weakly disjoint, and that

τL∪M(1) = τL∪M(3) = 1, τL∪M(2) =
1

2
, τL∩M(1) = τL∩M(3) = 0, τL∩M(2) =

1

2
.
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Furthermore, coalitions K, L,K ∪ L,K ∩ L can be expressed as convex combinations of
crisp coalitions

M =
1

2
{1, 2}+

1

2
{1}, L =

1

2
{2, 3}+

1

2
{3}

L ∪M =
1

2
I +

1

2
{1, 3}, L ∩M =

1

2
{2}+

1

2
∅.

Then it is possible to verify that, according to (7),

v̄(M) =
3

2
, v̄(L) =

3

2
, v̄(L ∪M) =

5

2
, v̄(L ∩M) =

1

2
,

which means that
v̄(L ∪M) < v̄(M) + v̄(L)

where M and L are weakly disjoint. Thus the convex game v̄ is not strongly superadditive.

5 Coalitional Structures

The concept which can be especially significant for the further processing of TU games
with fuzzy coalitions, namely for the definition of their core, is the concept of coalitional
structure. In our model, the coalitional structure is defined as any class of fuzzy coalitions
L = {L1, L2, . . . , Lm} such that, for all players i ∈ I,

τL1(i) + τL2(i) + · · ·+ τLm(i) = 1. (12)

It is easy to verify the validity of the following statements.

Remark 4. If the coalitions L1, L2, . . . , Lm in the above definition are crisp then they
form a coalitional structure in the deterministic sense of Section 2.

Observation 6. If a TU crisp game (I, v) is such that (I, v̄) is superadditive in the
sense of (11) and L = {L1, L2, . . . , Lm} is a coalitional structure, then

v̄(I) = v̄(L1) + v̄(L2) + · · ·+ v̄(Lm).

Proof. Each fuzzy coalition Lj from the structure L can be represented by some class

of crisp coalitions K
(j)
1 , . . . , K

(j)
pj with coefficients λ

(j)
1 , . . . , λ

(j)
pj . From Observation 2, we

obtain v̄(K
(j)
k ) = v(K

(j)
k ). Due to the finiteness of I , we may substitute the supremum

in (7) by maximum, and we may assume, without loss of generality, that K
(j)
1 , . . . , K

(j)
pj is

the very crisp representation of Lj for which also v̄(Lj) = λ
(j)
1 v(K

(j)
1 ) + · · ·+ λ

(j)
pj v(K

(j)
pj ).

It means that for every player i

τj(i) = λ
(j)
1 τ

K
(j)
1

(i) + · · ·+ λ(j)
pj

τ
K

(j)
pj

(i)

and the definitoric property (12) implies

m∑
j=1

(
λ

(j)
1 τ

K
(j)
1

(i) + · · ·+ λ(j)
pj

τ
K

(j)
pj

(i)
)

= 1.
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Then the superadditivity of (I, v̄) implies.

v̄(I) = v(I) =
m∑

j=1

pj∑

k=1

λ
(j)
k

(
v(K

(j)
k )

)
=

m∑
j=1

v̄(Lj). (13)

¤

Remark 5. Observations 4 and 5 imply the validity of (13) even if (I, v) is superadditive.

6 Monotonicity of Payoffs

Dealing with the topic of the fuzzy coalitions and their forming, it can be useful to mention,
at least briefly, the fundamental approach to the fuzzy coalitional pay-offs represented by
the characteristic function. In this section, we consider a coalitional game (I, v) with
fuzzy coalitions, and with characteristic function w assigning to each fuzzy coalition K its
(crisp) pay-off w(K). Some of those fuzzy coalitions are crisp, as mentioned in Section 3,
and then there may (but need not) exist some relation between crisp and fuzzy coalitions,
like (7).

In the previous sections, processing the concepts of superadditivity and convexity, we
have respected the classical paradigm of additivity of pay-offs. In the case of deterministic
coalitions, it is very natural, and also for the fuzzy coalitions it does not cause immediate
problems, as we could see in Section 4. However, certain irregularities in the relation be-
tween convexity and superadditivity (cf. Example 2) evoke the question, if the additivity
paradigm is adequate to the vague character of cooperation in fuzzy coalitions. Some
applications of fuzzy set theory were based on an alternative paradigm, namely on the
monotonicity principle. Let us test, at least very briefly, the behaviour of superadditivity
and convexity based on the monotonous characteristic function.

We suppose that our game (I, w) with fuzzy coalitions fulfils the following two prop-
erties for any fuzzy coalitions L, M :

w(∅) = 0, (14)

where ∅ is the empty (crisp) coalition (τ∅(i) = 0 for all i ∈ I),

if M ⊃ L then w(M) ≥ w(L)

where M ⊃ L means that τM(i) ≥ τL(i) for all i ∈ I.
(15)

In such game, we may define the modified concepts of superadditivity and convexity
as follows.

We say that (I, w) is m-convex iff for each pair of fuzzy coalitions L, M ,

max [w(L ∪M), w(L ∩M)] = max [w(M), w(L)] , (16)

where L ∪M and L ∩M are defined in Section 4.
We say that (I, w) is m-superadditive iff for any pair of weakly disjoint coalitions L, M

(see Section 4),
w(L ∪M) = max[w(M), w(L)]. (17)

The monotonicity condition (15), however natural it is (each fuzzy coalition can earn
at least as much as any smaller group of its members), appears to be strong regarding
convexity and superaditivity.
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Observation 7. Each game with fuzzy coalitions fulfilling (14) and (15) is m-superadditive
and m-convex.

Proof. Due to (15), w(L ∪M) = w(L ∩M), w(L ∪M) = w(M) and w(L ∪M) = w(L).
These inequalities immediately prove the statement. ¤

Remark 6. Evidently, if a game (I, w) with fuzzy coalitions fulfils (15) then w(I) =
w(L) = 0 for crisp I and any fuzzy coalition L.

The above remark opens interesting possibilities for the eventual development of the
core-like solution concept in games modeled on the monotonicity principle.

7 Concluding Remarks

The limited extend of this contribution admits to mention only the main ideas regarding
the fuzziness of coalitional cooperation. Even this brief presentation of the topic shows
that many other problems related to this concept become urgent. For example:

— The algorithm for computation of coefficients mentioned in the proof of Observa-
tion 3 and implicitely assumed in Remark 4 or in the proof of Observation 5.

— The method of quantitative measurement of “distance” between fuzzy coalitions.

— More advanced analysis of the superadditivity and convexity.

The solution of these problems may open the way to the natural transformation of the
presented model of fuzzy coalitions to the fuzzy classes of crisp TU games, analogously
to the fuzzification of payoffs suggested in [7].

It seems that the model of cooperation in fuzzy coalitions based on the paradigm
of monotonicity deserves more attention for its respect to the specific features of vague
structures of coalitions.
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[10] M. Mareš, M. Vlach: Fuzzy coalitional structures. In: V. Novák, J. Ramı́k (eds.):
Transactions of the 7th Czech–Japan Seminar on Data Processing and Decision-
Making Under Uncertainty, Valtice 2003. Technical University, Ostrava 2003, 51–57.

11


