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Abstract. Due to imperfections of imaging devices (optical degradations, limited resolution of
CCD sensors) and instability of the observed scene (object motion, media turbulence), acquired
images are often blurred, noisy and may exhibit insufficient spatial and/or temporal resolution. Such
images are not suitable for object detection and recognition. Reliable detection requires recovering
the original image. If multiple images of the scene are available, this can be achieved by image
fusion.

In this chapter we review the respective methods of image fusion. We address all three ma-
jor steps - image registration, blind deconvolution and resolution enhancement. Image registration
brings the acquired images into spatial alignment, multiframe deconvolution estimates and removes
the blur, and the spatial resolution of the image is increased by so-called superresolution fusion.
Superresolution is the main topic of the chapter. We propose a unifying system that simultaneously
estimates blurs and recovers the original undistorted image, all in high resolution, without any prior
knowledge of the blurs and original image. We accomplish this by formulating the problem as con-
strained least squares energy minimization with appropriate regularization terms, which guarantees
a close-to-perfect solution.

We demonstrate the performance of the method on many examples, namely on car license
plate recognition and face recognition. Both of these tasks are of great importance in security and
surveillance systems.

Key words: Image fusion, Multichannel systems, Blind deconvolution, Superresolution, Regular-
ized energy minimization

1. Introduction

Imaging devices have limited achievable resolution due to many theoretical and
practical restrictions. An original scene with a continuous intensity function o[ x, y]
warps at the camera lens because of the scene motion and/or change of the camera
position. In addition, several external effects blur images: atmospheric turbulence,
camera lens, relative camera-scene motion, etc. We will call these effects volatile
blurs to emphasize their unpredictable and transitory behavior, yet we will assume
that we can model them as convolution with an unknown point spread function
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(PSF) v[x,y]. This is a reasonable assumption if the original scene is flat and
perpendicular to the optical axis. Finally, the CCD discretizes the images and
produces a digitized noisy image g[i, j] (frame). We refer to g[i, j] as a low-
resolution (LR) image, since the spatial resolution is too low to capture all the
details of the original scene. In conclusion, the acquisition model becomes

gli, j1 = D((v * o[W(n1, n2)Dlx, y1) + nli, jl, ey

where n[i, j] is additive noise and W denotes geometric deformation (spatial warp-
ing) of the image. Geometric deformations are partly caused by the fact that the
image is a 2-D projection of a 3-D world, and partly by lens distortions and/or
motion of the sensor during the acquisition. D(-) = S(g * -) is the decimation
operator that models the function of the CCD sensors. It consists of convolution
with the sensor PSF gli, j] followed by the sampling operator S, which we define
as multiplication by a sum of delta functions placed on an evenly spaced grid. The
above model for one single observation g[i, j] is extremely ill-posed. Instead of
taking a single image we can take K (K > 1) images of the original scene and, in
this way, partially overcome the equivocation of the problem. Hence we write

gkli, j1 = D((vi * o[Wi(n1, no)DIx, y]) + nili, jl, (2)

where k = 1, ..., K and D remains the same in all the acquisitions. In the perspec-
tive of this multiframe model, the original scene o[x, y] is a single input and the
acquired LR images gi[i, j] are multiple outputs. The model is therefore called a
single input multiple output (SIMO) formation model. To our knowledge, this is
the most accurate, state-of-the-art model, as it takes all possible degradations into
account.

Because of many unknown parameters of the model, it is hard to analyze
(automatically or visually) the images g and to detect and recognize objects in
them. A very powerful strategy is offered by image fusion.

The term fusion means in general an approach to extraction of information
adopted in several domains. The goal of image fusion is to integrate complemen-
tary information from all frames into one new image containing information the
quality of which cannot be achieved otherwise. Here, the term “better quality”
means less blur and geometric distortion, less noise, and higher spatial resolution.
We may expect that object detection and recognition will be easier and more
reliable when performed on the fused image. Regardless of the particular fusion
algorithm, it is unrealistic to assume that the fused image can recover the original
scene o[ x, y] exactly. A reasonable goal of the fusion is a discrete version of o[x, y]
that has higher spatial resolution than the resolution of the LR images and that is
free of the volatile blurs. In the sequel, we will refer to this fused image as a high
resolution (HR) image f1i, j].

Fusion of images acquired according to the model (2) is a three-stage process
— it consists of image registration (spatial alignment), which should compensate
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Figure 1. Image fusion in brief: Acquired images (left), registered frames (middle), fused image
(right).

for geometric deformations Wy, followed by a multichannel (or multiframe) blind
deconvolution (MBD) and superresolution (SR) fusion. The goal of MBD is to
remove the impact of volatile blurs and the aim of SR is to increase spatial res-
olution of the fused image by a user-defined factor. While image registration is
actually a separate procedure, we integrate both MBD and SR into a single step
(see Fig 1), which we call blind superresolution (BSR). The approach presented
in this chapter is one of the first attempts to solve BSR under realistic assumptions
with only little a priori knowledge.

Image registration is a very important step of image fusion, because all MBD
and SR methods require either perfectly aligned channels (which is not realistic)
or allow at most small shift differences. Thus, the role of registration methods is
to suppress large and complex geometric distortions. Image registration in general
is a process of transforming two or more images into a geometrically equivalent
form. From the mathematical point of view, it consists of approximating W,” !
and of resampling the image. For images which are not blurred, registration has
been extensively studied in the recent literature (see (Zitova and Flusser, 2003)
for a survey). However, blurred images require special registration techniques.
They can be, as well as the general-purpose registration methods, divided in two
groups — global and landmark-based ones. Regardless of the particular technique,
all feature extraction methods, similarity measures, and matching algorithms used
in the registration process must be insensitive to image blurring.

Global methods do not search for particular landmarks in the images. They
try to estimate directly the between-channel translation and rotation. In (Myles
and Lobo, 1998) they proposed an iterative method which works well if a good
initial estimate of the transformation parameters is available. In (Zhang et al.,
2000; Zhang et al., 2002) the authors proposed to estimate the registration param-
eters by bringing the channels into canonical form. Since blur-invariant moments
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were used to define the normalization constraints, neither the type nor the level
of the blur influences the parameter estimation. In (Kubota et al., 1999) they
proposed a two-stage registration method based on hierarchical matching, where
the amount of blur is considered as another parameter of the search space. In
(Zhang and Blum, 2001) they proposed an iterative multiscale registration based
on optical flow estimation in each scale, claiming that optical flow estimation is
robust to image blurring. All global methods require considerable (or even com-
plete) spatial overlap of the channels to yield reliable results, which is their major
drawback.

Landmark-based blur-invariant registration methods have appeared very re-
cently, just after the first paper on the moment-based blur-invariant features (Flusser
etal., 1996). Originally, these features could only be used for registration of mutu-
ally shifted images (Flusser and Suk, 1998), (Bentoutou et al., 2002). The proposal
of their rotational-invariant version (Flusser and Zitova, 1999) in combination
with a robust detector of salient points (Zitova et al., 1999) led to the registration
methods that are able to handle blurred, shifted and rotated images (Flusser et al.,
1999), (Flusser et al., 2003).

Although the above-cited registration methods are very sophisticated and can
be applied almost to all types of images, the results tend to be rarely perfect.
The registration error usually varies from subpixel values to a few pixels, so only
MBD and SR methods sufficiently robust to between-channel misregistration can
be applied to channel fusion. We will assume in the sequel that the LR images are
roughly registered and that W;’s reduce to small translations.

During the last twenty years, blind deconvolution has attracted considerable
attention as a separate image processing task. Initial blind deconvolution attempts
were based on single-channel formulations, such as in (Lagendijk et al., 1990;
Reeves and Mersereau, 1992; Chan and Wong, 1998; Haindl, 2000). A good
overview is in (Kundur and Hatzinakos, 1996a; Kundur and Hatzinakos, 1996b).
The problem is extremely ill-posed in the single-channel framework and cannot
be resolved in the fully blind form. These methods do not exploit the potential of
multiframe imaging, because in the single-channel case the missing information
about the original image in one channel cannot by supplemented by information
obtained from the other channels. Research on intrinsically multichannel methods
has begun fairly recently; refer to (Harikumar and Bresler, 1999; Giannakis and
Heath, 2000; Pai and Bovik, 2001; Panci et al., 2003; Sroubek and Flusser, 2003)
for a survey and other references. Such MBD methods break the limitations of
previous techniques and can recover the blurring functions from the degraded
images alone. We further developed the MBD theory in (Sroubek and Flusser,
2005) by proposing a blind deconvolution method for images, which might be
mutually shifted by unknown vectors. A similar idea is used here as a part of the
fusion algorithm to remove volatile blurs and will be explained more in Section 3.

Superresolution has been mentioned in the literature with an increasing fre-



IMAGE FUSION 5

quency in the last decade. The first SR methods did not involve any deblurring;
they just tried to register the LR images with subpixel accuracy and then to resam-
ple them on a high-resolution grid. A good survey of SR techniques can be found
in (Park et al., 2003; Farsui et al., 2004). Maximum likelihood (ML), maximum
a posteriori (MAP), the set theoretic approach using POCS (projection on convex
sets), and fast Fourier techniques can all provide a solution to the SR problem. Ear-
lier approaches assumed that subpixel shifts are estimated by other means. More
advanced techniques, such as in (Hardie et al., 1997; Segall et al., 2004; Woods
et al., 2006), include shift estimation in the SR process. Other approaches focus
on fast implementation (Farsiu et al., 2004), space-time SR (Shechtman et al.,
2005) or SR of compressed video (Segall et al., 2004). Some of the recent SR
methods consider image blurring and involve blur removal. Most of them assume
only a priori known blurs. However, few exceptions exist. Authors in (Nguyen
et al., 2001; Woods et al., 2003) proposed BSR that can handle parametric PSFs
with one parameter. This restriction is unfortunately very limiting for most real
applications. Probably the first attempts for BSR with an arbitrary PSF appeared
in (Wirawan et al., 1999; Yagle, 2003), where polyphase decomposition of the
images was employed.

Current multiframe blind deconvolution techniques require no or very little
prior information about the blurs, they are sufficiently robust to noise and provide
satisfying results in most real applications. However, they can hardly cope with the
downsampling operator, which violates the standard convolution model. On the
contrary, state-of-the-art SR techniques achieve remarkable results in resolution
enhancement in the case of no blur. They accurately estimate the subpixel shift
between images but lack any apparatus for calculating the blurs.

We propose a unifying method that simultaneously estimates the volatile blurs
and HR image without any prior knowledge of the blurs and the original image.
We accomplish this by formulating the problem as a minimization of a regularized
energy function, where the regularization is carried out in both the image and blur
domains. Image regularization is based on variational integrals, and a consequent
anisotropic diffusion with good edge-preserving capabilities. A typical example of
such regularization is total variation. However, the main contribution of this work
lies in the development of the blur regularization term. We show that the blurs
can be recovered from the LR images up to small ambiguity. One can consider
this as a generalization of the results proposed for blur estimation in the case
of MBD problems. This fundamental observation enables us to build a simple
regularization term for the blurs even in the case of the SR problem. To tackle the
minimization task we use an alternating minimization approach, consisting of two
simple linear equations.

The rest of the chapter is organized as follows. Section 2 outlines the degrada-
tion model. In Section 3 we present a procedure for volatile blur estimation. This
effortlessly blends in a regularization term of the BSR algorithm as described in
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Section 4. Finally, Section 5 illustrates applicability of the proposed method to
real situations.

2. Mathematical Model

To simplify the notation, we will assume only images and PSFs with square
supports. An extension to rectangular images is straightforward. Let f[x,y] be
an arbitrary discrete image of size F' X F, then f denotes an image column vec-
tor of size F? x 1 and Ca{f} denotes a matrix that performs convolution of f
with an image of size A X A. The convolution matrix can have a different output
size. Adopting the Matlab naming convention, we distinguish two cases: “full”
convolution Cu{f} of size (F + A — 1)*> x A% and “valid” convolution CL{/}
of size (F — A + 1)> x A%. In both cases the convolution matrix is a Toeplitz-
block-Toeplitz (TBT) matrix. In the sequel we will not specify dimensions of
convolution matrices if it is obvious from the size of the right argument.

Let us assume we have K different LR frames {g;} (each of size G x G) that
represent degraded (blurred and noisy) versions of the original scene. Our goal
is to estimate the HR representation of the original scene, which we denoted as
the HR image f of size F X F. The LR frames are linked with the HR image
through a series of degradations similar to those between o[x,y] and g in (2).
First f is geometrically warped (Wy), then it is convolved with a volatile PSF (V)
and finally it is decimated (D). The formation of the LR images in vector-matrix
notation is then described as

g = DVkaf + Ny, (3)

where ny, is additive noise present in every channel. The decimation matrix D =
SU simulates the behavior of digital sensors by first performing convolution with
the U x U sensor PSF (U) and then downsampling (S). The Gaussian function
is widely accepted as an appropriate sensor PSF and it is also used here. Its
justification is experimentally verified in (Capel, 2004). A physical interpretation
of the sensor blur is that the sensor is of finite size and it integrates impinging
light over its surface. The sensitivity of the sensor is highest in the middle and
decreases towards its borders with Gaussian-like decay. Further we assume that
the subsampling factor (or SR factor, depending on the point of view), denoted
by &, is the same in both x and y directions. It is important to underline that &
is a user-defined parameter. In principle, W can be a very complex geometric
transform that must be estimated by image registration or motion detection tech-
niques. We have to keep in mind that sub-pixel accuracy in g;’s is necessary for
SR to work. Standard image registration techniques can hardly achieve this and
they leave a small misalignment behind. Therefore, we will assume that complex
geometric transforms are removed in the preprocessing step and Wy, reduces to a
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small translation. Hence VW, = H, where H; performs convolution with the
shifted version of the volatile PSF vy, and the acquisition model becomes

g = Dka + 1, = SUka +ng. (4)

The BSR problem then adopts the following form: We know the LR images {g;}
and we want to estimate the HR image f for the given S and the sensor blur U. To
avoid boundary effects, we assume that each observation g captures only a part
of f. Hence Hy and U are “valid” convolution matrices Cy{A} and C}._,,  {u},
respectively. In general, the PSFs A are of different size. However, we postulate
that they all fit into a H X H support.

In the case of € = 1, the downsampling S is not present and we face a slightly
modified MBD problem that has been solved elsewhere (Harikumar and Bresler,
1999; Sroubek and Flusser, 2005). Here we are interested in the case of ¢ > 1,
when the downsampling occurs. Can we estimate the blurs as in the case £ = 1?
The presence of S prevents us from using the cited results directly. However, we
will show that conclusions obtained for MBD apply here in a slightly modified
form as well.

3. Reconstruction of Volatile Blurs

Estimation of blurs in the MBD case (no downsampling) attracted considerable
attention in the past. A wide variety of methods were proposed, such as in (Hariku-
mar and Bresler, 1999; Giannakis and Heath, 2000), that provide a satisfactory
solution. For these methods to work correctly, certain channel disparity is neces-
sary. The disparity is defined as weak co-primeness of the channel blurs, which
states that the blurs have no common factor except a scalar constant. In other
words, if the channel blurs can be expressed as a convolution of two subkernels
then there is no subkernel that is common to all blurs. An exact definition of
weakly co-prime blurs can be found in (Giannakis and Heath, 2000). Many prac-
tical cases satisfy the channel co-primeness, since the necessary channel disparity
is mostly guaranteed by the nature of the acquisition scheme and random pro-
cesses therein. We refer the reader to (Harikumar and Bresler, 1999) for a relevant
discussion. This channel disparity is also necessary for the BSR case.

Let us first recall how to estimate blurs in the MBD case and then we will
show how to generalize the results for integer downsampling factors. For the time
being we will omit noise 7, until Section 4, where we will address it appropriately.

3.1. THE MBD CASE

The downsampling matrix S is not present in (4) and only convolution binds the
input with the outputs. The acquisition model is of the SIMO type with one
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input channel f and K output channels g;. Under the assumption of channel
co-primeness, we can see that any two correct blurs /; and A satisfy

lgi*hj—g;*hll>=0. 6))

Considering all possible pairs of blurs, we can arrange the above relation into one
system
Nh=0, (6)

where h = [th, . ,h};]T and N’ consists of matrices that perform convolution
with g. In most real situations the correct blur size (we have assumed square
size H X H) is not known in advance and therefore we can generate the above
equation for different blur dimensions A x 5. The nullity (null-space dimension)
of N is exactly 1 for the correctly estimated blur size. By applying SVD (singular
value decomposition), we recover precisely the blurs except for a scalar factor.
One can eliminate this magnitude ambiguity by stipulating that 3’ , f[x,y] = 1,
which is a common brightness preserving assumption. For the underestimated
blur size, the above equation has no solution. If the blur size is overestimated,
then nullity(N") = (H; — H + 1)(H, — H + 1).

3.2. THE BSR CASE

Before we proceed, it is necessary to define precisely the sampling matrix S. Let
S{ denote a 1-D sampling matrix, where ¢ is the integer subsampling factor. Each
row of the sampling matrix is a unit vector whose nonzero element is at such a
position that, if the matrix multiplies an arbitrary vector b, the result of the product
is every e-th element of b starting from b . If the vector length is M then the size
of the sampling matrix is (M/e) X M. If M is not divisible by &, we can pad the
vector with an appropriate number of zeros to make it divisible. A 2-D sampling
matrix is defined by

§° =8t ®S?, 7

where ® denotes the matrix direct product (Kronecker product operator). Note that
the transposed matrix (S°)” behaves as an upsampling operator that interlaces the
original samples with (¢ — 1) zeros.

A naive approach, e.g. proposed in (Sroubek and Flusser, 2006; Chen et al.,
2005), is to modify (6) in the MBD case by applying downsampling and formu-
lating the problem as

mhin IN’[Ix ® SUTh|[?, ®)

where Ik is the K X K identity matrix. One can easily verify that the condition in
(5) is not satisfied for the BSR case as the presence of downsampling operators
violates the commutative property of convolution. Even more disturbing is the
fact that minimizers of (8) do not have to correspond to the correct blurs. We are
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going to show that if one uses a slightly different approach, reconstruction of the
volatile PSFs £y, is possible even in the BSR case. However, we will see that some
ambiguity in the solution of /y is inevitable.

First, we need to rearrange the acquisition model (4) and construct from the
LR images g a convolution matrix G with a predetermined nullity. Then we take
the null space of G and construct a matrix A, which will contain the correct PSFs
hy in its null space.

Let E X E be the size of “nullifying” filters. The meaning of this name will
be clear later. Define G := [Gy, ..., Gk], where Gy := Cj{gy} are “valid” con-
volution matrices. Assuming no noise, we can express G in terms of f, u and hy
as

G = S°FUH , ©))

where
H = [Ceptm (ST, ..., Cerlhx}(SH)T, (10)

U:=Cegypg_1{u}and F := CZE+H+U_2{f}.

The convolution matrix U has more rows than columns and therefore it is of
full column rank (see proof in (Harikumar and Bresler, 1999) for general convo-
lIution matrices). We assume that S°F has full column rank as well. This is almost
certainly true for real images if F has at least £?-times more rows than columns.
Thus Null(G) = Null(H) and the difference between the number of columns and

rows of H bounds from below the null space dimension, i.e.,
nullity(G) > KE* — (¢E + H — 1)*. (11)

Setting N := KE? — (¢E + H — 1)? and N := Null(@), we visualize the null space
as
ng; ... MmN

N=| 1 . | (12)
nK,1 ... DgN

where ny, is the vector representation of the nullifying filter 7y, of size E X E,
k=1,...,Kandn = 1,...,N. Let f, denote upsampled 7, by factor ¢, i.e.,
fikn = (S%) Nin. Then, we define

Culini} ... Culiiga}

N = : . : (13)
Culimnt ... Culiixn}
and conclude that
Nh=0, (14)
where h” = [hy,..., hg]. We have arrived at an equation that is of the same form

as (6) in the MBD case. Here we have the solution to the blur estimation problem
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for the BSR case. However, since S? is involved, ambiguity of the solution is
higher. Without proofs we provide the following statements. For the correct blur
size, nullity(N) = &*. For the underestimated blur size, (14) has no solution. For
the overestimated blur size H; x H,, nullity(N) = £2(H; — H + &)(H, — H + &).

The conclusion may seem to be pessimistic. For example, for £ = 2 the nullity
is at least 16, and for &£ = 3 the nullity is already 81. Nevertheless, Section 4 will
show that A plays an important role in the regularized restoration algorithm and
its ambiguity is not a serious drawback.

It is interesting to note that a similar derivation is possible for rational SR
factors € = p/q. We downsample the LR images with the factor ¢, thereby creating
¢°K images, and apply thereon the above procedure for the SR factor p.

Another consequence of the above derivation is the minimum necessary num-
ber of LR images for the blur reconstruction to work. The condition of the G
nullity in (11) implies that the minimum number is K > £2. For example, for
e = 3/2, 3 LR images are sufficient; for £ = 2, we need at least 5 LR images to
perform blur reconstruction.

4. Blind Superresolution

In order to solve the BSR problem, i.e, determine the HR image f and volatile
PSFs hy, we adopt a classical approach of minimizing a regularized energy func-
tion. This way the method will be less vulnerable to noise and better posed. The
energy consists of three terms and takes the form

K
E(t,h) = Z IDH,f — gil* + 2 Q(f) + BR(h). (15)
k=1

The first term measures the fidelity to the data and emanates from our acquisition
model (4). The remaining two are regularization terms with positive weighting
constants @ and £ that attract the minimum of E to an admissible set of solutions.
The form of E very much resembles the energy proposed in (Sroubek and Flusser,
2005) for MBD. Indeed, this should not come as a surprise since MBD and SR
are related problems in our formulation.

Regularization Q(f) is a smoothing term of the form

o(f) = fLf, (16)

where L is a high-pass filter. A common strategy is to use convolution with the
Laplacian for L, which in the continuous case corresponds to Q(f) = f IV f?. Re-
cently, variational integrals Q(f) = f ¢(|Vf|) were proposed, where ¢ is a strictly
convex, nondecreasing function that grows at most linearly. Examples of ¢(s) are
s (total variation), V1 + s2 — 1 (hypersurface minimal function), log(cosh(s)), or
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nonconvex functions, such as log(1 + s2), s2/(1 + s%) and arctan(s?) (Mumford-
Shah functional). The advantage of the variational approach is that, while in smooth
areas it has the same isotropic behavior as the Laplacian, it also preserves edges in
images. The disadvantage is that it is highly nonlinear. To overcome this difficulty
one must use, e.g., the half-quadratic algorithm (Aubert and Kornprobst, 2002).
For the purpose of our discussion it suffices to state that after discretization we
arrive again at (16), where this time L is a positive semidefinite block tridiagonal
matrix constructed of values depending on the gradient of f. The rationale behind
the choice of Q(f) is to constrain the local spatial behavior of images; it resembles
a Markov Random Field. Some global constraints may be more desirable but
are difficult (often impossible) to define, since we develop a general method that
should work with any class of images.

The PSF regularization term R(h) directly follows from the conclusions of the
previous section. Since the matrix N in (13) contains the correct PSFs /; in its
null space, we define the regularization term as a least-squares fit

R(h) = |[Nh|> = " NTNR. (17)

The product N7 N is a positive semidefinite matrix. More precisely, R is a con-
sistency term that binds the different volatile PSFs to prevent them from moving
freely and, unlike the fidelity term (the first term in (15)), it is based solely on
the observed LR images. A good practice is to include with a small weight a
smoothing term h” Lh in R(h). This is especially useful in the case of less noisy
data to overcome the higher nullity of N.

The complete energy then takes the form

K
E(f,h) = )" IIDHif — gil* + of "Lf + B1INhI + Soh " Lh. (18)
k=1
To find a minimizer of the energy function, we perform alternating minimizations
(AM) of E over f and h. The advantage of this scheme lies in its simplicity. Each
term of (18) is quadratic and therefore convex (but not necessarily strictly convex)
and the derivatives w.r.t. f and h are easy to calculate. This AM approach is a
variation on the steepest-descent algorithm. The search space is a concatenation
of the blur subspace and the image subspace. The algorithm first descends in the
image subspace and after reaching the minimum, i.e., V¢£ = 0, it advances in
the blur subspace in the direction Vi E orthogonal to the previous one, and this
scheme repeats. In conclusion, starting with some initial h® the two iterative steps
are:

step 1. f" = arg mfin E(f,h™)

K K
& (O H{D'DH, +aL)f = ) H{D'g, (19)
k=1 k=1
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step2.  h"™! = arg mhin E(f",h)
&  (Ix  F'D'DF] + BiNTN + L)h = [Ix ® F' D’ ]g ,(20)

where F := Cy,{f}, g := [ng, s gIT(]T and m is the iteration step. Note that both
steps consist of simple linear equations.

Energy E as a function of both variables f and h is not convex due to the
coupling of the variables via convolution in the first term of (18). Therefore, it is
not guaranteed that the BSR algorithm reaches the global minimum. In our expe-
rience, convergence properties improve significantly if we add feasible regions for
the HR image and PSFs specified as lower and upper bounds constraints. To solve
step 1, we use the method of conjugate gradients (function cgs in Matlab) and
then adjust the solution " to contain values in the admissible range, typically, the
range of values of g. It is common to assume that PSF is positive (#; > 0) and that
it preserves image brightness. We can therefore write the lower and upper bounds
constraints for PSFs as hy, € (0, I)Hz. In order to enforce the bounds in step 2, we
solve (20) as a constrained minimization problem (function fmincon in Matlab)
rather than using the projection as in step 1. Constrained minimization problems
are more computationally demanding but we can afford it in this case since the
size of h is much smaller than the size of f.

The weighting constants @ and §; depend on the level of noise. If noise in-
creases, & and 8, should increase, and 8; should decrease. One can use parameter
estimation techniques, such as cross-validation (Nguyen et al., 2001) or expecta-
tion maximization (Molina et al., 2003), to determine the correct weights. How-
ever, in our experiments we set the values manually according to a visual assess-
ment. If the iterative algorithm begins to amplify noise, we have underestimated
the noise level. On the contrary, if the algorithm begins to segment the image, we
have overestimated the noise level.

S. Experiments

This section consists of two parts. In the first one, a set of experiments on syn-
thetic data evaluate performance of the BSR algorithm with respect to the SR
factor and compare the reconstruction quality with other methods. The second
part demonstrates the applicability of the proposed method to real data. Results
are not evaluated with any measure of reconstruction quality, such as mean-square
errors or peak signal to noise ratios. Instead we print the results and leave the
comparison to a human eye as we believe that in this case the visual assessment is
the only reasonable method.

In all the experiments the sensor blur is fixed and set to a Gaussian function
of standard deviation o = 0.34 (relative to the scale of LR images). One should
underline that the proposed BSR method is fairly robust to the choice of the Gaus-
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Figure 2. Simulated data: (a) original 150 X 230 image; (b) six 7 X 7 volatile PSFs used to blur the
original image.

sian variance, since it can compensate for insufficient variance by automatically
including the missing factor of Gaussian functions in the volatile blurs.

Another potential pitfall that we have to take into consideration is a feasible
range of SR factors. Clearly, as the SR factor € increases we need more LR images
and the stability of BSR decreases. In addition, rational SR factors p/q, where
p and ¢ are incommensurable and large regardless of the effective value of &,
also make the BSR algorithm unstable. It is the numerator p that determines the
internal SR factor used in the algorithm. Hence we limit ourselves to & between 1
and 2.5, such as 3/2, 5/3, 2, etc., which is sufficient in most practical applications.

5.1. SIMULATED DATA

First, let us demonstrate the BSR performance with a simple experiment. A 150 X
230 image in Fig. 2.a blurred with the six masks in Fig. 2.b and downsampled
with factor 2 generated six LR images. In this case, registration is not necessary
since the synthetic data are precisely aligned. Using the LR images as an input, we
estimated the original HR image with the proposed BSR algorithm for £ = 1.25
and 1.75. In Fig. 3 one can compare the results printed in their original size. The
HR image for &€ = 1.25 (Fig. 3.b) has improved significantly on the LR images
due to deconvolution, however some details on the column are still distorted. For
the SR factor 1.75, the reconstructed image in Fig. 3.c is almost perfect.

Next we compare performance of the BSR algorithm with two methods: in-
terpolation technique and state-of-the-art SR method. The former technique con-
sists of the MBD method proposed in (Sroubek and Flusser, 2005) followed by
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Figure 3. BSR of simulated data: (a) one of six LR images with the downsampling factor 2; (b)
BSR for £ = 1.25; (¢) BSR for e = 1.75.

standard bilinear interpolation (BI) resampling. The MBD method first removes
volatile blurs and then BI of the deconvolved image achieves the desired spatial
resolution. The latter method, which we will call herein a “standard SR algo-
rithm”, is a MAP formulation of the SR problem proposed, e.g., in (Hardie et al.,
1997; Segall et al., 2004). This method uses a MAP framework for the joint es-
timation of image registration parameters (in our case only translation) and the
HR image, assuming only the sensor blur (U) and no volatile blurs. For an image
prior, we use edge preserving Huber Markov Random Fields (Capel, 2004).

In the case of BSR, Section 3 has shown that two distinct approaches exist
for blur estimation. Either we use the naive approach in (8) that directly utilizes
the MBD formulation, or we apply the intrinsically SR approach summarized in
(14). Altogether we have thus four distinct methods for comparison: standard SR
approach, MBD with interpolation, BSR with naive blur regularization and BSR
with intrinsic blur regularization. Using the original image and PSFs in Fig. 2,
six LR images (see one LR image in Fig. 3.a) were generated as in the first
experiment, only this time we added white Gaussian noise with SNR = 50dB'.

Estimated HR images and volatile blurs for all four methods are in Fig. 4.
The standard SR approach in Fig. 4.a gives unsatisfactory results, since heavy
blurring is present in the LR images and the method assumes only the sensor
blur and no volatile blurs. (For this reason, we do not show volatile blurs in this
case). The MBD method in Fig. 4.b ignores the decimation operator and thus
the estimated volatile blurs are similar to LR projections of the original blurs.
Despite the fact that blind deconvolution in the first stage performed well, many

! The signal-to-noise ratio is defined as SNR = lOlog(o-fc /o-ﬁ), where o and o, are the image
and noise standard deviations, respectively.
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Figure 4. Comparison of four different SR approaches (¢ = 2): (a) standard SR method, (b)
MBD followed by bilinear interpolation, (c) naive BSR approach and (b) proposed intrinsic BSR
approach. Volatile blurs estimated by each method, except in the case of standard SR, are in the top
row. Due to blurring, the standard SR method in (a) failed to reconstruct the HR image. MBD in (b)
provided a good estimate of the blurs in the LR scale and performed correct deconvolution but the
HR image lacks many details as simple interpolation increased resolution. Both BSR approaches in
(c) and (d) gave close to perfect results. However in the case of the naive approach, inaccurate blur
regularization resulted in several artifacts in the HR image.

details are still missing since interpolation in the second stage cannot properly
recover high-frequency information. Both the naive and the intrinsic BSR methods
outperformed the previous approaches and the intrinsic one provides a close-to-
perfect HR image. Due to the inaccurate regularization term in the naive approach,
estimated blurs contain tiny erroneous components that resulted in artifacts in the
HR image (Fig. 4.c). However, a more strict and accurate regularization term in
the case of the intrinsic BSR approach improved results, which one can see in
Fig. 4.d.

5.2. REAL DATA

The next two experiments demonstrate the true power of our fusion algorithm. We
used real photos acquired with two different acquisition devices: webcamera and
standard digital camera. The webcam was Logitech QuickCam for Notebooks Pro
with the maximum video resolution 640 X 480 and the minimum shutter speed
1/10s. The digital camera was 5 Mpixel Olympus C5050Z equipped with 3%
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optical zoom. In both experiments we used cross-correlation to roughly register
the LR images.

In the first one we hold the webcam in hands and captured a short video se-
quence of a human face. Then we extracted 10 consecutive frames and considered
a small section of size 40 x 50. One frame with zero-order interpolation is in
Fig. 5.a. The other frames look similar. The long shutter speed (1/10s) together
with the inevitable motion of hands introduced blurring into the images. In this
experiment, the SR factor was set to 2. The proposed BSR algorithm removed
blurring and performed SR correctly as one can see in Fig. 5.b. Note that many
facial features (eyes, glasses, mouth) indistinguishable in the original LR image
became visible in the HR image.

8
1 8

Figure 5. Reconstruction of images acquired with a webcam (¢ = 2): (a) one of ten LR frames
extracted from a short video sequence captured with the webcam, zero-order interpolation; (b) HR
image and blurs estimated by the BSR algorithm. Note that many facial features, such as glasses,
are not apparent in the LR image, but are well reconstructed in the HR image.

The second experiment demonstrates a task of license plate recognition. With
the digital camera we took eight photos, registered them with cross-correlation
and cropped each to a 100x50 rectangle. All eight cuttings printed in their original
size (no interpolation), including one image enlarged with zero-order interpola-
tion, are in Fig. 6.a. Similar to the previous experiment, the camera was held in
hands, and due to the longer shutter speed, the LR images exhibit subtle blurring.
We set the SR factor to 5/3. In order to better assess the obtained results we took
one additional image with optical zoom 1.7x (close to the desired SR factor 5/3).
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This image served as the ground truth; see Fig. 6.c. The proposed BSR method
returned a well reconstructed HR image (Fig. 6.b), which is comparable to the
ground truth acquired with the optical zoom.

b. C.

Figure 6. Reconstruction of images acquired with a digital camera (¢ = 5/3): (a) eight LR images,
one enlarged with zero-order interpolation; (b) HR image estimated by the BSR algorithm; (c)
image acquired with optical zoom 1.7x. The BSR algorithm achieved reconstruction comparable to
the image with optical zoom.

6. Conclusions

In this chapter we proposed a method for improving visual quality and spatial
resolution of digital images acquired by low-resolution sensors. The method is
based on fusing several images (channels) of the same scene. It consists of three
major steps — image registration, blind deconvolution and superresolution en-
hancement. We reviewed all three steps and we paid special attention to superreso-
lution fusion. We proposed a unifying system that simultaneously estimates image
blurs and recovers the original undistorted image, all in high resolution, without
any prior knowledge of the blurs and original image. We accomplished this by
formulating the problem as constrained least squares energy minimization with
appropriate regularization terms, which guarantees a close-to-perfect solution.
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Showing the good performance of the method on real data, we demonstrated
its capability to improve the image quality significantly and, consequently, to
make the task of object detection and identification much easier for human ob-
servers as well as for automatic systems. We envisage the application of the
proposed method in security and surveillance systems.
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