
Intro Distributed Bayesian decision-making Experiments

Distributed Bayesian Decision-Making:
Early Experiments

Václav Šḿıdl, Jozef Andrýsek
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Example: room temperature control

Fictitious room: Task:
control the room temperature

reliably: failures,

adaptively: changes in the
environment

Keywords: distributed control, multi-agent systems, holonic control,
autonomous control, etc...
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Example: room temperature control

Fictitious room: Decentralized control is
scalable: agents can be

added

cheaper: agents in devices

expensive: in terms of
communication

autonomous: agents follow their
own aims

“natural”: living creatures
behave this way.

Keywords: distributed control, multi-agent systems, holonic control,
autonomous control, etc...
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Václav Šḿıdl, Jozef Andrýsek Distributed Bayesian Decision-Making: Early Experiments



Intro Distributed Bayesian decision-making Experiments Example: room temperature control Theories and issues

Issues of multi-agent systems

Two autonomous agents:

A1 (cooling): aim 10± 1◦C

A2 (heating): aim 20± 1◦C

What if the current temperature is 18 ◦C?

scenarios:

1 Selfish agents: conflict

2 Cooperative agents: negotiation.
Negotiation rules, weights and cost/loss functions.... intelligence.

Hard to design these rules, functions, so that these are consistent. The
area is dominated by ad-hoc and heuristic solutions. Verification of
design is done via simulation.

“We need a theory!” – vice-president of Rockwell Automation, IFAC
congress 2005.
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Theories of multi-agent systems

Many theoretical results available based on:

1) Predicate logic,

2) Game theory,

3) Algorithmic information theory.

Provide guarantees of optimality at the cost of:

1. and 2. underrating of uncertainty,

3. assumptions of unlimited computing power.

Underrating the importance of uncertainty in the model may be
dangerous, e.g. when we are trying to control variables we do not observe.

4) Bayesian theory of Decision-Making:
Generates optimal strategies, if the decision-maker is the only active
element in the environment.

Proper combination of Bayesian decision-making with game theory is not
known to us. We propose a heuristic extension of the classical Bayesian
theory.
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Standard Bayesian decision-makers

Standard approach:

Model: probability density,

yt ∼ N (ayt−1 + ut , 1) .

Loss: function of observations,

L = (10− yt)
2 + u2

t

Fully probabilistic approach:

Model: probablity density

yt ∼ N (ayt−1 + ut , 1) .

Ideal: probablity density

yt ∼ N (10, 1) , ut ∼ N (0, 1).

Loss: KL divergence

L = D(Model ||Ideal)
In case of LQG, these are equivalent.

Negotiation: (exchange of knowledge and aims)

Standard approach: communication of loss functions and their
shaping.

Fully probabilistic approach: communication of ideal densities and
their combination. ⇐ same calculus, optimization of KL.

Václav Šḿıdl, Jozef Andrýsek Distributed Bayesian Decision-Making: Early Experiments



Intro Distributed Bayesian decision-making Experiments Merging of aims Merging of models

Standard Bayesian decision-makers

Standard approach:

Model: probability density,

yt ∼ N (ayt−1 + ut , 1) .

Loss: function of observations,

L = (10− yt)
2 + u2

t

Fully probabilistic approach:

Model: probablity density

yt ∼ N (ayt−1 + ut , 1) .

Ideal: probablity density

yt ∼ N (10, 1) , ut ∼ N (0, 1).

Loss: KL divergence

L = D(Model ||Ideal)
In case of LQG, these are equivalent.

Negotiation: (exchange of knowledge and aims)

Standard approach: communication of loss functions and their
shaping.

Fully probabilistic approach: communication of ideal densities and
their combination. ⇐ same calculus, optimization of KL.
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Merging of Aims

Aims of participants:

A1: target temperature is bIf1(T ) = N (10, 1),

A2: target temperature is bIf2(T ) = N (20, 1),

New target: a common distribution close to both aims.
Linear combination:

f̃ (T ) =
1

2
N (10, 1) +

1

2
N (20, 1) ,

≈ N (15, 26) ,

Geometric combination:

f̃ (T ) = N (10, 1)
1
2 N (20, 1)

1
2 ,

= N (15, 1) .
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Merging of Models

Much more demanding, since the agents work with different data,
different parameters, etc.

Rule: agents exchange density on variables that are known to both of
them.

Optimization results:

f̃
(
Θt |d1:t

)
= f

(
Θt |d1:t

)
exp

(∫
M(Ψ) log f (dt |Θt)

)
dΘt .
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Experimental room

Fictions room:

yt = ayt−1 + byt−2 + ut − vt + et .

Two agents A1 and A2:

A1: assigning values of ut with model:

yt = ayt−1 + byt−2 + ut + et .

A2: assigning values of vt with model:

yt = ayt−1 + byt−2 − vt + et .

Unaware of each others presence by design. Can they cooperate?
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Standard autonomous decision-makers
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Initially they push against each other, wasting a lot of energy.
Then, they give up a bit. They have learnt that their actions has smaller
effect then expected, and due to penalization of power they decrease
their effort.
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Synchronization of aims via linear combination

Linear fusion of aims is optimal in terms of preserving information.
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Drops of input power due to wider range set for aims.
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Synchronization of aims via geometric combination

Geometric combination
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More narrow aim, agents fully cooperate.
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Synchronization of aims via geometric combination

Merging of models

0 20 40 60 80 100 120 140 160 180 200
5

10

15

20

25

<− Learning phase

<− Cooler ON

<− Heater ON
<− Aim fusion<− Learning phase

<− Cooler ON

<− Heater ON
<− Aim fusion<− Learning phase

<− Cooler ON

<− Heater ON
<− Aim fusion

<− Model fusion

<− Learning phase

<− Cooler ON

<− Heater ON
<− Aim fusion

<− Model fusion

0 20 40 60 80 100 120 140 160 180 200
−4

−2

0

2

Temperature

Cooling
Heating

Even lower input power. Models are more unified. Further decrease of
beliefs in agents’ influence on the environment.

Václav Šḿıdl, Jozef Andrýsek Distributed Bayesian Decision-Making: Early Experiments



Intro Distributed Bayesian decision-making Experiments Room temperature control

Conclusion

Distributed Bayesian decision making is an attempt to extend
Bayesian theory of decision-making for multiple entities with limited
abilities.

Non-standard probabilistic operations are needed for exchange of
knowledge and aims.

Current experiments suggest that the approach is sensible, and
indicate directions for more theoretical work.

Future:

more complex systems (more agents, challenging models),
negotiation scenarios,
heterogenous enironments,
theoretical results of optimality.
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