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SUMMARY

Any cooperation in multiple-participant decision making (DM) relies on an exchange of individual
knowledge pieces and aims. A general methodology of their rational exploitation without calling for an
objective mediator is still missing. This paper proposes such a methodology in an important particular
case in which a participant performs Bayesian parameter estimation and it is offered a model relating
the observable data to their past history. The proposed solution is based on so called fully probabilistic
design (FPD) of DM strategies. The result reduces to an “ordinary” Bayesian estimation if the offered
model is the sample probability density function (pdf), i.e., if it provides additional observations.
Copyright c© 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Parameter estimation is a basic technique of adapting a model from a suitable class to the
modelled environment. The Bayesian estimation [1, 2] is a well established methodology
harmonized with decision making (DM) under uncertainty, which is always the ultimate
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modelling aim. This estimation is rather straightforward evaluation of the posterior
distribution, usually probability density function (pdf), of the unknown parameter given
the observed data and available prior knowledge. The most important problems inherent to
estimation are (i) modelling, i.e., design of the parameterized model, e.g. [3] (ii) knowledge
elicitation, i.e., construction of the prior pdf e.g. [2, 4] (iii) design of evaluation algorithms
for specific classes of parameterized models e.g. [5, 6, 7] (iv) analysis of the sensitivity and
reliability of the results, e.g. [16, 8].

Here, a specific problem of the knowledge elicitation is addressed that arises in cooperative
DM with multiple Bayesian participants. Among numerous variants, we focus on the
cooperation scenarios summarized in the paper [9]. For the current paper, the following
restrictions of the problem formulation are relevant (i) the respective participants use very
different models for describing the same observed data; this prevents them to share prior
knowledge on unknown parameters directly (ii) they decide on offering the knowledge to other
participants who, in turn, decide on the way and degree of its exploiting; no mediator is
supposed to perform this task.

Under these conditions, a participant can offer at most probabilistic distribution describing
the common data and the receiving participant has to decide whether and how to exploit them
for parameter estimation. This paper provides a justified algorithmic guideline how to do it
using the idea presented in [10]. The cited paper exploits the fact that data enter the parameter
estimation via a statistics in the form of a sample pdf and takes the knowledge offered in the
form of a pdf on data as an initial value in recursive evaluation of this statistics. Its heuristic
justification is supported here and generalized by applying so called fully probabilistic design
(FPD) of DM strategies [11, 12, 13] to the addressed problem.

Problem formulation, Section 3, follows Section 2 summarizing the notation. The solution
via FPD is in Section 4. The resulting generic algorithm and its stationary variant, Section 5,
are followed by discussion interpreting it, Section 6, and by conclusions, Section 7

2. SOME NOTATIONS

All vector quantities are assumed to be columns and ′ denotes transposition. Beside,

∝ is the proportionality symbol;

x∗ stands for a set of all values of a quantity x;

f(x) denotes probability density function (pdf) with names of the arguments referring to
random variables they describe;

dt denotes d̊-dimensional data record at discrete time t ∈ t∗ ≡ {1, 2, . . . , t̊}; it is treated as a
random variable;

dt denotes realization of multi-dimensional random variable dt;

d(t) ≡ (dt, dt−1, . . . , d1) is time sequence of data records;

Θ stands for a finite-dimensional unknown parameter;
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HOW TO EXPLOIT EXTERNAL MODEL OF DATA 3

φt−1 is a finite-dimensional state vector whose values are determined by a known deterministic
mapping from d(t− 1) and the initial state φ0; for presentation simplicity, φ0 is assumed
to be known and omitted in the conditions hereafter;

Ψt ≡ [d′t, φ
′
t−1]

′ is a data vector.

3. PROBLEM FORMULATION

A pair of DM units (participants) within a multiple-participant DM is considered. Each of
participants solves own DM task, while participants’ behavior have non-empty intersection.
By participant’s behavior, we understand all possible sequence of observed, decided and
considered random variables. The participant’s knowledge can be enriched by exploiting
available knowledge of another participant concerning the common, potentially observable,
part of their behaviors.

Let a common part of the behavior be d̊-dimensional data records d, observed at discrete
time moments τ ∈ t∗ ≡ {1, 2, . . . , t̊}. Formally speaking, at each time τ , both participants
observe realizations dτ of multi-dimensional random variable dτ and design own models of
its evolution. To formulate the problem, participants are distinguished by labels “first” and
“second”.

First participant
The participant models evolution of the considered random variable by a finitely parameterized,
time-invariant probability density function (pdf) with a finite memory

f1(dτ |d(τ − 1), φ0,Θ) = f1(dτ |φτ−1,Θ), τ ∈ t∗. (1)

A Bayesian type participant, which subjectively selects a prior pdf on parameters f1(Θ), is
considered. The joint pdf of data sequence up to the time t ∈ t∗ and the parameter, conditioned
on φ0, is defined through the chain rule [1] that gets under the assumption (1) the form

f1(d(t),Θ) =
t∏

τ=1

f1(dτ |φτ−1,Θ)× f1(Θ), t ∈ t∗. (2)

This participant plays an active role within the task considered. Its aim is to estimate unknown
parameter Θ using all knowledge available.

Second participant
The participant models the evolution of data by a conditional non-parameterized pdf

f2(dτ |d(τ − 1)), τ ∈ t∗. (3)

The joint pdf of data records observed up to time t ∈ t∗ is determined by (3) via the chain
rule as follows

f2(d(t)) =
t∏

τ=1

f2(dτ |d(τ − 1)), t ∈ t∗. (4)

Problem addressed
Let us assume there exist a non-empty subsequence of data records, d(̊k) ∈ d∗, k̊ ≤ t, on which
the first participant takes the model (4) as a reliable information source. Then, the description
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(4) can be exploited by the first participant to improve its knowledge on the common part of
behavior. Let us emphasize that the parameterized model of the first participant is assumed
to be fixed, thus the only part of participant’s knowledge which can be changed is its prior
pdf. Processing of the non-parameterized model (4), provided by the second participant, is
expected to improve the guess of the first participant about the unknown parameter Θ of the
model (1).

Note the following assumptions simplifying the explanations, but not influencing its
generality, are adopted.

A1 Participants model sequences of data records starting at the time τ = 1.
A2 Both models (2) and (4) describe the same data sequences, i.e., τ = 1, . . . , t. Generally,

these sequences can be different, but they must have a non-void intersection.
A3 The subsequence of data records d(̊k), k̊ ≤ t, on which the first participant takes model

(4) as reliable description of the reality, starts at time τ = 1.

Let us stress that the problem is formulated and treated regarding the first participant. The
second participant plays a passive role of the information source and does not participate in
the processing. The further explanation thus mainly concerns the first participant and if there
is no explicit indication, the first participant is considered.

4. FULLY PROBABILISTIC TREATMENT

The participant is provided with an external non-parametric data model f2(d(̊k)) describing
a part of data d(̊k), k̊ ∈ t∗ observed by the participant. It intends to exploit this additional
knowledge for estimation of parameter Θ of the own parameterized model f1(d(t)|Θ), which
describes the whole data history, including the part d(̊k) modelled by an external model. The
discrepancy in the modelled collections of random variables is the key obstacle in problem
formalization.

The proper knowledge incorporation should result in the model, which preserves the original
knowledge about data and parameter, while be enriched on the additional knowledge provided
by the outer model.

The proposed solution rests on three steps.

Step 1 To remove discrepancy between modelled collections of random variables
The outer description f2(d(̊k)), d(̊k) ∈ d∗(̊k) is extended to “two”-dimensional space
(d∗(̊k),Θ∗) such that the common marginal pdf of the resulting f2(d(̊k),Θ) coincides
with f2(d(̊k)).

Step 2 To ensure preserving the knowledge provided the participant’s model.
The model closest to the two-dimensional f1(d(̊k),Θ) is found within the set of models
resulting from Step 1.

Step 3 To ensure incorporating knowledge from the outer model
The original prior pdf f1(Θ) of the parameter Θ is replaced by the pdf, which contains
the knowledge provided by the extended external model.
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Step 1 – Extension of the outer model

Meaningful extensions of the outer data model f2(d(̊k)) to a pdf f2(d(̊k),Θ) describing two-
dimensional space (d∗(̊k),Θ∗) has to combine the non-parametric data description at disposal
(4) and an arbitrary prior pdf f(Θ) expressing prior knowledge on the parameter Θ.

The chain rule applied to the most general possible extension

f2(d(̊k),Θ) =
k̊∏

k=1

f2(dk|d(k − 1),Θ)× f(Θ), k̊ ≤ t

would require the second participant to relate data not only to the past observed history but
also to the parameter Θ unused by it. This implies the need to restrict the possible extensions
by the following realistic assumption

f2(dk|d(k − 1),Θ) = f2(dk|d(k − 1)), k = 1, . . . , k̊, (5)

expressing the conditional independence of predictions made by the second participant on the
parameter unused for data modelling.

Then, the resulting joint descriptions, for the given f2(dk|d(k − 1)) and an arbitrary f(Θ),
read

f(d(̊k),Θ) =
k̊∏

k=1

f2(dk|d(k − 1))︸ ︷︷ ︸
outer model

× f(Θ)︸ ︷︷ ︸
guess on Θ

= f2(d(̊k))× f(Θ). (6)

Step 2 – Knowledge preservation

The optional pdf f(Θ) determines the possible joint pdf (6) for the given f2(dk|d(k − 1)).
The best extension of the outer model should properly describe data subsequence d(̊k), while
respecting available knowledge on Θ. Within the task considered, the proper selection of the
pdf f(Θ) is expected to provide the joint pdf, which is (6) as close as possible to the joint pdf
(2) for all d(̊k). In other words, the pdf f(Θ) that minimizes a “distance” between the pdfs
(2) and (6) is searched for while the pdfs f1(dk|φk−1,Θ), f1(Θ) and f2(d(̊k)) are given.

The Kullback-Leibler (KL) divergence D(f2||f1) [14] is known to be a good measure of
proximity of the pair of pdfs f2 ≡ f2(d(̊k),Θ), f1 ≡ f1(d(̊k),Θ). It is defined by the formula

D(f2||f1) ≡
∫
f2(d(̊k),Θ) ln

(
f2(d(̊k),Θ)

f1(d(̊k),Θ)

)
dd(̊k)dΘ. (7)

The choice of this version of the (asymmetric) KL divergence is heuristically motivated and
ex post justified by reasonable properties of the obtained solution, see Section 6.

Note that the multiple definite integration over the domain of its argument is denoted in
the simplified way by

∫
· dd(̊k)dΘ. Several integration signs are used whenever Fubini theorem

on multiple integration is exploited.
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The KL divergence (7) can be re-written as follows

D(f2||f1) =
∫
f(Θ)

ln
(
f(Θ)
f1(Θ)

)
+
∫
f2(d(̊k))

k̊∑
k=1

ln
(
f2(dk|d(k − 1))
f1(dk|φk−1,Θ)

)
dd(̊k)

 dΘ
=

∫
f(Θ)

ln
(
f(Θ)
f1(Θ)

)
+

k̊∑
k=1

∫
f2(d(k)) ln

(
f2(dk|d(k − 1))
f1(dk|φk−1,Θ)

)
dd(k)

 dΘ

=
∫
f(Θ)

ln
(
f(Θ)
f1(Θ)

)
−

k̊∑
k=1

∫
f2(dk, φk−1) ln(f1(dk|φk−1,Θ)) dd(k)︸ ︷︷ ︸

Ωk̊(Θ)

 dΘ

+
k̊∑

k=1

∫
f2(d(k)) ln(f2(dk|d(k − 1))) dd(k)︸ ︷︷ ︸

c(̊k)

(8)

= D
(
f(Θ)

∣∣∣∣∣∣∣∣ f1(Θ) exp(Ωk̊(Θ))∫
f1(Θ) exp(Ωk̊(Θ)) dΘ

)
+ c(̊k)− ln

(∫
f1(Θ) exp(Ωk̊(Θ)) dΘ

)
︸ ︷︷ ︸

the term independent of f(Θ)

.

The basic properties of the KL divergence, stating that

D(f2||f1) ≥ 0 and D(f2||f1) = 0 iff f2 = f1 almost everywhere, (9)

imply that the pdf minimizing the KL divergence (8), denoted symbolically f(Θ|f1), is given
by the following explicit formula

f(Θ|f1) =
f1(Θ) exp(Ωk̊(Θ))∫
f1(Θ) exp(Ωk̊(Θ)) dΘ

. (10)

Note that the needed joint pdfs f2(Ψk) ≡ f2(dk, φk−1) are gained from the pdf f2(d(k)), k ≤ k̊.
For instance, if the state is in so-called phase form φk−1 = [d′k−1, d

′
k−2, . . . , d

′
k−n]′ with a finite

order n ≥ 1, the pdf f2(Ψk) is the marginal pdf f2(dk, . . . , dk−n) =
∫
f2(d(k)) dd(k − n− 1).

Especially simple and appealing variant is obtained when data vectors Ψk = [d′k, φ
′
k−1]

′

form a stationary process. Note that this process is defined by the initial state φ0, pdf
f2(dk|d(k− 1)) and by the definition of the state d(k− 1) → φk−1. In the stationary case, the
pdfs f2(Ψk) = f2(dk, φk−1) do not depend on k and

f(Θ|f1) ∝ f1(Θ) exp
(
k̊

∫
f2(Ψ) ln(f1(d|φ,Θ)) dΨ

)
, Ψ ≡ [d′, φ′]′. (11)

In summary, the pdf f(Θ|f1) (10) (or its special version (11)) defines the extension (6),
which is the nearest to the pdf (2) on the time interval k ∈ k∗ ≡ {1, . . . , k̊}.
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HOW TO EXPLOIT EXTERNAL MODEL OF DATA 7

Step 3 – Knowledge exploiting

Now the participant should modify its former prior pdf f1(Θ) to a pdf f(Θ) that includes
information obtained from the outer model (4). Sticking at the selected quantification of the
extension quality (7), we search for the minimizer, symbolically denoted f(Θ|f2),

f(Θ|f2) = arg min
f(Θ)

D

f2(d(̊k))f(Θ|f1)

∣∣∣∣∣∣
∣∣∣∣∣∣

k̊∏
k=1

f1(dk|φk−1,Θ)f(Θ)

 , (12)

where the pdf f(Θ|f1) is determined by (10). The first identity in (8) shows that

D

f2(d(̊k))f(Θ|f1)

∣∣∣∣∣∣
∣∣∣∣∣∣

k̊∏
k=1

f1(dk|φk−1,Θ)f(Θ)

= D(f(Θ|f1)||f(Θ)) + term independent of f(Θ).

This form and the cited basic properties of the KL divergence (9) imply that the minimizing
argument in (12) is

f(Θ|f2) = f(Θ|f1) =
f1(Θ) exp[Ωk̊(Θ)]∫
f1(Θ) exp[Ωk̊(Θ)] dΘ

, (13)

or, similarly to (11), for the stationary case

f(Θ|f2) = f(Θ|f1) ∝ f1(Θ) exp
(
k̊

∫
f2(Ψ) ln(f1(d|φ,Θ)) dΨ

)
. (14)

Definitely, the proposed construction leading to the final formula (13) is not the only possible
way of incorporating the knowledge offered by the second participant. Unlike others, possibly
more straightforward alternatives, this variant has highly desirable properties, see Section 6.

5. ALGORITHMIC SUMMARY

Recalling the problem of knowledge exploitation in the “two-participant” setup (Section 3),
the following algorithm can be advised.

The first participant aims to use the non-parametric model, provided by the second
participant, to improve the parameter estimation of the own model describing its environment.

Step 1 The second participant offers the non-parametric description of a common part of
data sequences to the first participant.

Step 2 The first participant selects the length k̊ of the subsequence d(̊k), on which it takes
the second participant’s model as a reliable description of reality.

Now the first participant has at disposal: its own model to be estimated f1(d(τ)|Θ), τ ≤ t; its
prior guess f1(Θ) on the unknown parameter Θ and the offered data model f2(d(̊k)) it trusts.
Its aim is to modify the prior pdf f1(Θ) so that it will reflect knowledge provided by the model
offered.

Step 3 The first participant

Copyright c© 2005 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2005; 18:1–15
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– extends one-dimensional data model f2(d(̊k)) to a set of “two”-dimensional pdfs
f∗(d(̊k),Θ) to combine own ideas about the unknown parameter Θ and the second
participant’s knowledge about the data d(̊k);

– selects the model f(d(̊k),Θ|f1) within the created set f∗(d(̊k),Θ), which is the
closest to the own “two”-dimensional model f1(d(̊k),Θ);

– modifies the original prior pdf f1(Θ) to the prior pdf f(Θ|f2) so that the “two”-
dimensional pdf f(d(̊k),Θ|f2) ≡ f1(d(̊k)|Θ)f(Θ|f2) is closest to f(d(̊k),Θ|f1).
Recall that the parameterized model f1(d(̊k)|Θ) is taken as the given one.

In Step 2 the following method can be used to select a non-subjective length k̊.

Step 2a The first participant may select k̊, expressing its trust in the information offered
by the second participant, using observed realizations of data d(t). It inserts them into
likelihood function on possible compared lengths k̊ι, ι = 1, . . . , ι̊,

L(d(t), k̊ι) =
t∏

τ=1

f(dt|d(t− 1), k̊ι), with (15)

f(dt|d(t− 1), k̊ι) ∝
∫
f1(dt|φt−1,Θ)f1(d(t− 1)|Θ)f1(Θ|f2, k̊ι) dΘ for k̊ = k̊ι,

where f1(Θ|f2, k̊ι) are modifications of the original prior pdf f1(Θ) by pdfs f2(d(̊kι)),
ι = 1, . . . , ι̊.

Typically, the first participant will select k̊ = arg maxk̊ι,ι=1,...,̊ι L(d(t), k̊ι).

6. VERIFICATION OF REASONABILITY OF f(Θ|f2)

The above construction contains heuristic steps like use of the extension step or the choice
of the KL-divergence version. Thus, it is important to check whether the result has desirable
properties in particular, practically important, cases.

6.1. Singularity of data models

Let us inspect behavior of the constructed pdf f(Θ|f2) when the data models are (partially)
singular.

Let for some k ∈ k∗ and a given value Θ the f1(dk|φk−1,Θ) = 0 on a set Ψ∗
0;k ⊂ Ψ∗ for

which
∫
Ψ∗

0;k
f2(Ψk) dΨk > 0. Then, it is easy to find that f(Θ|f2) = 0 for the considered Θ for

the considered Θ, see (13).
Thus, the parameter values, which lead to the essential discrepancy of predictions of

both participants, get zero probability. This property seems to be intuitively desirable. The
incorporation of the information contained in f2 fails completely if it happens for all Θ ∈ Θ∗.
This failure is good indicator of absolute incompatibility of both considered predictors. Of
course, it is responsibility of the first participant whether it takes such a situation seriously or
not.

Copyright c© 2005 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2005; 18:1–15
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HOW TO EXPLOIT EXTERNAL MODEL OF DATA 9

6.2. Case of measured data

Let us assume that the second participant observes realizations dk of data records dk, k ∈ k∗ ≡
{1, . . . , k̊} and thus it is able to construct the realizations Ψk of data vectors Ψk. The realization
Ψk of each data vector Ψk is equivalent to the pdf f2(dk, φk−1) = f2(Ψk) ≡ δ(Ψk −Ψk). The
used Dirac function δ(Ψk − Ψk) is the formal pdf of the probabilistic measure concentrated
on the realization Ψk. Thus, passing pdfs f2(Ψk) ≡ δ(Ψk − Ψk), k ∈ k∗, from the second
participant to the first one leads to the same result as observing the realized data vectors
Ψ(̊k) by the first participant. Inserting the discussed pdfs into the general formula for the pdf
f(Θ|f2), we get

f(Θ|f2) ∝ f1(Θ) exp

(∑
k∈k∗

∫
δ(Ψk −Ψk) ln(f1(dk|φk−1,Θ)) dΨk

)

= f1(Θ)
k̊∏

k=1

f1(dk|φk−1
,Θ) ∝ f1(Θ|d(̊k)). (16)

In other words, f(Θ|f2) reduces to the “ordinary” posterior pdf conditioned by the observed
data if the pdf f2(Ψk) is fully concentrated on the observations.

6.3. Interplay of parametric and non-parametric estimation

The expression for the posterior pdf used in (16) can be re-written in the following slightly
modified form

f1(Θ|d(t)) ∝ f1(Θ) exp

(
t∑

k=1

∫
δ(Ψk −Ψk) ln(f1(dk|φk−1,Θ)) dΨk

)

= f1(Θ) exp

(
t

∫
1
t

t∑
k=1

δ(Ψ−Ψk) ln(f1(d|φ,Θ)) dΨ

)

≡ f1(Θ) exp
(
t

∫
s(Ψ|Ψ(t)) ln(f1(d|φ,Θ)) dΨ

)
. (17)

In the formula (17) all realized data vectors enter via the (formal) sample pdf

s(Ψ|Ψ(t)) =
1
t

∑
k∈k∗

δ(Ψ−Ψk). (18)

This non-parametric estimate of the distribution of data vector Ψ enters any Bayesian
parametric estimation whose parameterized model depends on the discussed data vector Ψ.
Thus, the nonparametric estimation “precedes” the parametric one. As the second participant
offers information in the space of data vectors only, it is natural to search for established
ways of incorporating prior knowledge into the non-parametric estimation. The methodology
based on Dirichlet processes is available to this purpose. It is well developed for independent
observations [15] so that we restrict ourselves to this case in this paragraph. It makes no harm
as we take the subsequent notes as an additional check only.

Let Ψk, k ∈ k∗, be mutually independent with a common, time-invariant, unknown pdf
f1(Ψ). Within the cited framework, the prior distribution of this infinite-dimensional parameter
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is modelled as a Dirichlet process and it is determined by an expected value, say g(Ψ), and
by a scalar precision parameter, say ν0 > 0. Let us take the pdf f2(Ψ) offered by the second
participant as the parameter of the prior Dirichlet process g(Ψ) ≡ f2(Ψ). The conjugation of
Dirichlet process implies that the f1(Ψ) remains to be Dirichlet process also a posteriori. The
posterior expected value and precision parameter νt assigned after observing Ψ(t) becomes

f1(Ψ|Ψ(t), f2) ≡ νt − ν0
νt

s(Ψ|Ψ(t)) +
ν0
νt
f2(Ψ) (19)

νt ≡ t+ ν0.

The product t×s(Ψ|Ψ(t)), defining the posterior pdf (17), can be interpreted the expectation of
the unknown pdf f(Ψ) multiplied by νt, i.e., νt×f1(Ψ|Ψ(̊t), f2), in the special, non-informative
case obtained for ν0 → 0. By replacing this estimate in (17) by the informative estimate (19),
we get

f(Θ|d(̊t), f2) ∝ f1(Θ)

× exp

(
t∑

k=1

∫
δ(Ψk −Ψk) ln(f1(yk|ψk,Θ)) dΨk + ν0

∫
f2(Ψ) ln(f1(y|ψ,Θ)) dΨ

)
,

which, for ν0 = k̊, coincides with the ordinary Bayesian learning that exploits the recommended
prior pdf f(Θ|f2) (13).

7. CONCLUSIONS

The elaborated methodology of passing external knowledge in terms of data distribution
into a parametric estimation seems to posses a wide range of desirable properties, including
simplicity. The application range is even wider: it includes not only the motivating cooperation
of participants but also quantification of prior knowledge, re-sampling of continuous time
signals, approximation of complex models by simpler ones etc. These applications together with
encouraging experiments will be described in independent papers which are under preparations.
The attempt to focus on the problem, its solution and basic interpretation made us to omit
experiments of this type here. We however want to stress that the derived methodology is very
practical and vital for applications with a few data like those met in nuclear medicine [17, 18].
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9. M. Kárný and T.V. Guy, “On dynamic decision-making scenarios with multiple participants”, in Multiple
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