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Abstract: In this paper, we evaluate the use of extended Kalman �ltr (EKF), its
inovation known as DD2, and Unscented Kalman Filtr (UKF) for real-time estimation
of state-space model for tra�c control. The model is non-linear since it contains
non-linear relation between queue length and occupation, and unknown parameters.
Hence, the standard Kalman �lter is not suitable and we have to use EKF and its
inovations for estimation of the tra�c model.
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1. INTRODUCTION

In majority of cities, the number of cars in streets
is on the increase but the current structure of the
urban road network is not su�cient. In historical
heart of the city, construction of new roads is im-
possible. We approach this problem using better
tra�c control.
Our approach is to increase capacity of crossroads,
since they are critical points in the tra�c network.
For the increase of capacity of crossroads, an
algorithm was developed using the criteria of total
queue length reduction, i. e. sum of queues in
each arm of all crossroads. It is described in
Kratochvílová and Nagy (2004a); Kratochvílová
and Nagy (2004b).
At present, Kalman �lter can be used to estimate
model parameters because the current model is
simpli�ed by several limiting condition. At least
two of these conditions�(i) the linear relation

between queue length and occupation, and (ii)
unknown input/output�can be relaxed. Then,
some form of the extended Kalman �ltr must be
used to estimate the model.

2. STATE SPACE MODEL OF TRAFFIC
MICROREGION

State of the model is composed of: (i) queue
length, (ii) intensity of tra�c �ow, and (iii) oc-
cupancy. Observability of the model is achieved
by introduction of relations between queue length,
intensity and occupancy.
The state vector for this model is

xt+1 = [ξ1;t+1, ξ1;t, ξ2;t+1, ξ2;t, Ĩ1;t, Ĩ2;t,

Õ1;t, Õ2;t, Ĩ3;t]′ (1)

where:



ξ is a queue length,
Ĩ is a deviation from typical day in-
tensity,

Õ is a deviation from typical day oc-
cupancy.

The deviation from typical day intensity or occu-
pancy is de�ned as:

Ĩk;t+1 = Ik;t+1 − Īk;t+1, (2)
Õk;t+1 = Ok;t+1 − Ōk;t+1. (3)

Where:
I(O) is the current intensity (occu-
pancy),

Ī(Ō) is a typical day intensity (occu-
pancy),

k is an index of arms in crossroads.
Using (1), the state model can be written as

xt+1 = Atxt + Bt

[
z1;t

z2;t

]
+ Ft + et (4)

where the matrices A, B and F are displayed
in �gure 1,
zt is green time,
et is the noise.

δ- function is used to determine type of state on
an arm of a crossroad. We consider the following
options:
(1) δ = 0, if the capacity of the crossroad is big-

ger than number of cars entering the cross-
road,

(2) δ = 1, in other cases.
Simply said, if all cars on one arm go through the
crossroads in the period of green, then δ = 0. If
some car remain before the crossroad when the red
comes, then δ = 1. The value of each δ-function is
set deterministically using estimates of the queue
length.
Intensity and occupancy are measured in real time
by road detectors. The vector of measurements is

Y5;t =




I1;t+1

I2;t+2

O1;t+1

O2;t+2

y5;t




. (5)

Where:

y5;t is output from the crossroad.
Using (5), the output equation is given by

Y5;t = Cxt+1 + Gt + et, (6)

where:

C =




0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0

−α14 α14 −α24 α24 α14 α24 0 0 α35



,

Gt =




Ī1;t+1

Ī2;t+1

Ō1;t+1

Ō2;t+1

α14Ī1;t+1 + α24Ī2;t+1 + α35Ī3;t+



,

α is the ratio of cars which go from
arm i to arm j in the total number
of cars on the input

et is the output noise.

3. THE EXTENDED KALMAN FILTER

The Kalman �lter is a well known tool for esti-
mation of parameters of linear stochastic system.
However, it can not be used when the relations be-
tween parameters are nonlinear or we do not know
all input/output for at some time. For this pur-
pose, the Kalman �lter was extended and is known
as the Extended Kalman Filter (EKF) Julier
and Uhlmann (1997); Maybeck (1993); Welch and
Bishop (2004).
Using EKF, we can estimate parameters of non-
linear model using linearization of partial deriva-
tives of the model function.
Here, we de�ne the basic stochastic di�erence
equation as follows,

xt+1 = f(xt, ut, vt), (7)

with a measurement equation,

yt = h(xt, ut, et). (8)

Here:
vt is the process noise,
et is the measurement noise.

The nonlinear function f in equa-
tion (7) relates the state x in time t
and t + 1. The nonlinear function h in
equation (8) relates the state x to the
measurement y in time t.

Translation of our basic equations
for the tra�c control to the non-linear
notation is not so transparent because
the equations must be linearized using
partial derivatives. It can be done as
follows:

xt+1 ≈ x̃t+1 + A(xt − x̂t) + V vt,(9)

yt ≈ ỹt + H(xt − x̃t) + Eet. (10)

Here:



At =




δ1;t δ1;tκ
I
1;t 0 0 δ1;tβ

I
1;t 0 δ1;tω

I
1;t 0 0

1 0 0 0 0 0 0 0 0
0 0 δ2;t δ2;tκ

I
2;t 0 δ2;tβ

I
2;t 0 δ2;tω

I
2;t 0

0 0 1 0 0 0 0 0 0
0 κI

1;t 0 0 βI
1;t 0 ωI

1;t 0 0
0 0 0 κI

2;t 0 βt
2;t 0 ωI

2;t 0
0 κO

1;t 0 0 ωO
1;t 0 βO

1;t 0 0
0 0 0 κO

2;t 0 ωO
2;t 0 βO

2;t 0
0 0 0 0 0 0 0 0 1




,

Bt =




−δ1;tS1 0
0 0
0 −δ2;tS2

0 0
0 0
0 0
0 0
0 0
0 0




, Ft =




δ1;tĪ1;t

0
δ2;tĪ2;t

0
0
0
0
0
0




,

Figure 1. Matrix of state space model

xt and yt are the actual state and
measurement vectors, respectively,

x̃t and ỹt are the approximate state
and measurement vectors,

x̂t is the a posteriori estimate of state
in time t,

vt and et are process and measure-
ment noises in time t, respectively,

A is the Jacobian matrix of partial
derivates of f with respect to x,

A[i,j] = ∂f[i]

∂x[j]
(x̂t, ut, 0),

V is the Jacobian matrix of partial
derivatives of f with respect to w,

V[i,j] = ∂f[i]

∂v[j]
(x̂t, ut, 0),

H is the Jacobian matrix of partial
derivatives of h with respect to x,

H[i,j] = ∂h[i]

∂x[j]
(x̃t, 0),

E is the Jacobian matrix of partial
derivatives of h with respect to v,

E[i,j] = ∂h[i]

∂e[j]
(x̃t, 0).

Using the above equations, time update and mea-
surement update equations can be formulated. It
is necessary to recalculate the prediction error,
process error, etc., as described in Welch and
Bishop (2004).
Time update equations are given by:

x̂/
t+1 = f(x̂t, ut, 0), (11)

P /
t+1 = At+1PtA

T
t+1 + Vt+1QtV

T
t+1. (12)

Here:
/ is a priori knowledge,
P is estimate error covariance,
P is process noise covariance,

Measurement update equations are:

Kt = P /
t HT

t (HtP
/
t HT

t + EtRtV
T
t )−1, (13)

x̂t = x̂/
t + Kt(yt − h(x̂/

t , 0)), (14)
Pt = (I −KtHt)P /

t . (15)

Here:
Kt is the Kalman gain,
R is the covariance of the output
noise.

The standard state space model has not the input
in the measurement equation, but in the tra�c
state space model has one. It is not problem for
the EKF. This algorithm is quick and exact and
is described very often.
The main problem of this �lter is cause by the lin-
earization operation which may transform stable
nonlinear relation into unstable linear relations.
This is not acceptable for the task of tra�c con-
trol. We require the system to be stable at all
times.
Therefore, this �lter was found to be unsuitable
and we proceed with testing UKF and DD2 �lters.

4. THE UKF AND THE DD2 FILTER

4.1 The Unscented Kalman Filter

In the EKF, the state is approximated via a
Gaussian distribution using linearization. The Un-
scented Kalman Filter (UKF) solves this problem
using deterministic sampling approach. The state
is also approximated by a Gaussian distribution
but a it requires to evaluate minimal set of points
which are selected according to given rules. Com-
putational complexity of the UKF is comparable
to that of EKF.



Figure 2. Comparison of nonlinear transforma-
tions.

The UKF is based on unscented transformations
(UT). This is a method for calculating statistics
of a random variable under nonlinear transforma-
tion. We assume that x has mean value x and
covariance Px. The statistics are de�ned by a
matrix χ of 2L + 1 sigma vectors χi as follows:

χ0 = x , W0 = κ/(n + κ),
χi = x + χi, Wi = 1/(2(n + κ)),

i = 1, 2, · · · , n
χi = x− χi, Wi = 1/(2(n + κ)),

i = n + 1, · · · , 2n + 1

(16)

Comparison of UT with another trasformations is
displayed in Figure 2.
The time update and measurement update equa-
tions and each derivation can be found in Wan
and van der Merwe; van der Merwe (2004).
The UKF contains a tuning parameter κ. It can
be shown, that optimal value of this paramater
for a Gaussian distribution is n + κ = 3, where
n is dimension of the state, Duník (2005). How-
ever, for n > 3 the coe�cient κis negative. This
situation can cause instability of the algorithm.
Extra innovations of the UKF were developed to
avoid this problem. However, it is also possible to
set κ = 0. Then, we can use the standard UKF
without further inovations.

4.2 The DD2 Filter

The DD2 �lter for nonlinear estimation is based
on Taylor approximations. This �lter is based on
the idea of the DD1 �lter, which is described in
Schei (1997). The di�erence between the DD1 and
DD2 �lters is in the order of approximation. The
DD1 �lter is based on �rst-order approximation
and the DD2 is based on second-order approxi-
mation. The �lter works with general nonlinear
model of a dynamic system,

xt+1 = f(xt, ut, vt),

yt = h(xt, et),

where:
vt is process noise,
et is measurement noise.

In principle, the DD2 �lter corresponds to the
EKF except that the Jacobians (9), (10) are re-
placed by divided di�erences. The state update is
therefore the same as in the EKF. The di�erence
can also be found in the update of various covari-
ance matrices.
In the DD2 �lter, all matrices are decomposed into
Cholesky factors . Then, evaluation of �ltration
and prediction covariance matrices has the ad-
vantage in much smaller computational demands.
All operations of the �lter are de�ned directly on
the Cholesky factorsNorgaard et al. (1998); Duník
(2005).
The only problem with this algorithm is in de�-
nition of a nonlinear model of a dynamic system.
Our model has an input in the measurement equa-
tion which is not present in the model of the DD2
�lter. This can be solved by transformation of the
tra�c model.

5. CONCLUSION

In this paper, we presented tree �lters for nonlin-
ear state estimation of the state-space model for
tra�c control. The EKF algorithm is simple but
it can become unstable. This is not acceptable
and two more sophisticated �lters were tested.
First, the UKF is based on sampling, and its
computational demands is comparable to that of
EKF. Second, the DD2 �lter which replaces the
derivation by divided di�erences.
It appears that neither UKF or DD2 can be di-
rectly applied to our problem. Further modi�ca-
tions of these �lters are needed.
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