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Abstract
We focus on describing an interacting particle system in the case when the set of sites, on which the particles move, has a structure different from the usually considered set Z

d. We have chosen
the tree structure with the dynamics that leads to one of the classical particle systems, called the zero range process. The reason for this choice was given by a motivation from queueing systems and

networks, since the zero range process corresponds to an infinite system of queues and the arrangement of servers in the tree structure is natural in a number of situations.
The main result of this work is a characterisation of invariant measures for some important cases of site-disordered zero range processes on a binary tree. Namely, the case when the single particle

law is a simple random walk on a binary tree. Another result is connected with the speed of convergence to equilibrium for the latter zero range process.

Introduction

Let us briefly introduce the so-called zero range process which is

one of the interacting particle systems presented in [4]. We start

with a description of a general interacting particle system. Let us

have an arbitrarily large system of indistinguishable particles (cus-

tomers or generally units) which move among sites (queues or gen-

erally nodes) in separate jumps. Let us denote by X the set of the

sites. By a jump we mean that one particle leaves its site for one

of its neighbouring sites. To describe the dynamics of jumps, we

can imagine that there is an exponential clock at every site, all

the clocks are mutually independent, and when the clock at site x
rings one particle jumps from x to y with a probability p(x, y). “Ex-

ponential clock” means that epochs between rings are independent

exponentially distributed random variables. The rate of the jump

then depends at least on the existence of a particle at the leaving

site x and in general can even depend on the number of particles

at all sites. This is the reason why we call these particle systems

interacting ones. Let us denote by η(x) the number of particles at

site x and by η = (η(x) : x ∈ X) one particular configuration of the

whole particle system. Moreover, we suppose that each site x ∈ X
has its own characteristic λx > 0, which we call the leaving rate.

Specifying the jump rates, one can obtain a whole range of in-

teracting particle systems which differ by the type of their inter-

actions. We are interested in the particular types of interactions

called “zero range,” for which the jump rate is only a function

g(η(x)) of the number of particles at the leaving site and its leav-

ing rate λx. It implies that interactions can occur among particles

at the same site. A particle system with these interactions is then

called a zero range process.

Set X of the sites on which the particles move can be finite or

countable, typically Z
d or a d-dimensional discrete torus. We shall

investigate in this paper the case where X is a binary tree . We as-

sume that the only possible movement of particles is between sites

which are neighbours on the tree. Each node x ∈ X, except for

the root, which has no ancestor, has exactly three neighbours: its

ancestor (parent) x−, its left descendant (child) x+ and its right de-

scendant (child) x+. We shall use notation x∼y for “x and y are

neighbours”.

Since the evolution of a system is given by individual jumps be-

tween sites, a configuration of particles η can be changed if one

particle jumps from a site x ∈ X to another site y ∈ X. We denote

this changed configuration by

ηxy(z) =







η(x) − 1 if z = x
η(y) + 1 if z = y
η(z) otherwise.

The transition η 7−→ ηxy for some x 6= y is the only possible transi-

tion in one jump.

We consider that this system evolves in time and its description is

given by the number ηt(x) of particles at each site x at each time

t. Since its dynamics is random and follows from exponentially

distributed clocks, we are going to define the particle system as a

Markov process with continuous time. We denote by θ(η, ζ) the

transition rates for every η 6= ζ. According to the previous de-

scription we put

θ(η, ζ) = θ(η, ηxy) if ζ = ηxy for any x 6= y
= 0 otherwise,

for every η 6= ζ where θ(η, ηxy) = g(η(x))λxp(x, y) for every x 6= y.

If we specially consider |X| < ∞ then the zero range process on

X is a canonical continuous-time Markov process with generator

matrix Q =
(

θ(η, ζ)
)

η,ζ∈X
. In the case when X is infinite we define

zero range processes in the following way.

Definition 1

Let X be a full binary tree. Furthermore, let us consider

• bounded function g : N → [0,∞), such that g(0) = 0, g(k) > 0
otherwise, called the speed function

• transition probability (p(x, y) : x, y ∈ X), called the single parti-

cle law, such that p(x, y) = 0 if x 6∼ y,

• constants λx, such that 0 < λx ≤ Λ for every x ∈ X, called the

leaving rates or the environment when we mean the whole family

(λx : x ∈ X).
Then the zero range (ZR) process on binary tree X with speed

function g, with single particle law p(x, y) in non-homogeneous envi-

ronment (λx : x ∈ X), is the canonical Markov process
(

P η : η ∈ X
)

with state space

X := N
X = {η : X → N}

given by the infinitesimal generator

(Lf )(η) =
∑

x∈X

∑

y∼x

g(η(x)) λx p(x, y) [f (ηxy) − f (η)] (1)

for every η ∈ X and cylinder function f on X.

A function f : N
X → R is called the cylinder function if there ex-

ists a finite K ⊂ X such that f (η) = f (ζ) holds ∀ η, ζ ∈ X : (η(x) =
ζ(x) ∀ x ∈ K) .

Invariant measures

A very interesting problem concerning particle systems is to de-

scribe the set of invariant measures. A good reference on these

problems is paper [1]. In this paragraph we introduce some family

of probability measures on X which is a typical family of invariant

measures with respect to the zero range processes.

A probability measure µ on X is called invariant with respect to the

zero range process given by generator (1) if
∫

Lf dµ = 0 for each cylinder function f on X.

The following result is not surprising and follows from the specific

tree structure. For more details see [2].

Theorem 2 Let us assume g(k) = I[k>0] and p(x, y) 6= 0 iff x ∼ y.

Then product measures νϕ defined on space N
X by its marginal dis-

tributions:

νϕ(η : η(x) = k) =
( ϕ

λx

pop(x)

popr(x)

)k(

1 −
ϕ

λx

pop(x)

popr(x)

)

∀k ∈ N.

∀x ∈ X, is invariant for the zero range process on tree X. Here ϕ is

an arbitrary nonnegative constant satisfying ϕ < λx
popr(x)
pop(x)

∀x∈X.

Notation: pop(x) is an abbreviation for the probability of “path

from the root to node x at the k-th level” and similarly popr(x) ab-

breviates the probability of “path from x back to the root”.

Remark: Let us denote

c := inf
x

λx
popr(x)

pop(x)
> 0.

If c > 0 then Theorem 2 gives a whole set of invariant measures for

a given ZR process which is indexed by parameter ϕ. We get

ϕ ∈ [0, c) when c is attained by some x ∈ X and

ϕ ∈ [0, c] when c is not attained.

Simple random walk on tree

We focus now on a very interesting special case - we consider that

the single particle law of our ZR process is a simple random walk on

the tree. We mean that the jump probabilities at each node (except

for the root) are the same: a particle can jump from a given site to

its ancestor with probability q, to its left descendant with probabil-

ity p/2 and to its right descendant with probability p/2 too, where

p + q = 1 and 0 < p, q < 1. The probability of a jump from root to

the left is the same as to the right, equal to 1/2. The rates λx are

considered to be arbitrary laying in an interval (0, Λ].

Theorem 2 gives specially in this case the following set of product

invariant measures:

νϕ(η : η(x) = k) =
( ϕ

λx
(
p

2q
)|x|

)k(

1 −
ϕ

λx
(
p

2q
)|x|

)

(2)

∀x ∈ X, ∀k ∈ N, where ϕ ∈ Φλ and

Φλ := {0 ≤ ϕ < λx

(2q

p

)|x|
∀x ∈ X}.

There is a natural classification by parameter p, constant c and

the expected total number of particles on the binary tree

RTϕ :=

∞
∑

n=0

(
p

2q
)n

∑

|x|=n

ϕ
λx

1 − ϕ
λx

( p
2q)

|x|

(i) RTϕ < ∞ for some ϕ ∈ (0, c)

(ii) p ≤ q & RTϕ = ∞ for some ϕ ∈ (0, c) & c 6= 0

(iii) p > q & p/2 ≤ q

(iv) c = 0, excepting case (iii).

Results concerning characterization of the set I of invariant

measures.

(i) The measures νK = νϕ(· |
∑

x∈X η(x) = K) on N
X carried on

configurations with exactly a finite number K of particles are in-

variant measures which even form set Ie of extreme points for the

set of all invariant measures. If we start with an infinite configura-

tion then the clustering of particles will occur at nodes z such that

λz(
2q
p )|z| = c.

(ii) In this case the characterisation of I is the following:

V := {νϕ : ϕ ∈ Φλ} = Ie.

(iii) This case is abundant in the number of invariant measures and

set V of invariant measures following from Theorem 2 is too small

to describe the whole set I of invariant measures in this case. See

example below.

(iv) The measure ν0 (which is the Dirac measure carried on the zero

configuration) is the only invariant measure for this zero range pro-

cess.

Example 3 Let us consider p = 2/3, i.e. a special case of (iii). The

product measure νπϕ,λ with marginals

νπϕ,λ(η(x) = k) = (
πϕ(x)

λx
)k

(

1 −
πϕ(x)

λx

)

∀k ≥ 0 ∀x ∈ X

with πϕ(x) ∀x defined by the picture:

is invariant for the zero range process.

For more details see [2].

Speed of convergence to equilibrium

Let us consider the model from previous paragraph, where the sin-

gle particle law is a simple random walk on the full rooted binary

tree. We consider p ≤ 2/3 (we abandon not much interesting

case (iv)). However let us, in addition, assume that environment

(λx : x ∈ X), which was till now arbitrary, is chosen as:

λx = ( p
2q)

|x| for every x ∈ X. (3)

The reason is that then invariant measures (2) are site independent

and each its marginal distribution is the same geometrical distribu-

tion with parameter ϕ.

A known result called Equivalence of ensembles gives in this

case the following statement: For every ρ ∈ [0,∞)

µn,⌊ρ|Xn|⌋

(

ηn ∈ Xn,⌊ρ|Xn|⌋ : ηn(xi)=ki, 1 ≤ i ≤ l
)

n→∞
−→

νΦ(ρ)
(

η ∈ X : η(xi) = ki, 1 ≤ i ≤ l
)

pointwise, where for every n,K > 0 measure µn,K is the uniform

distribution on state space of finite approximations:

Xn,K := {η ∈ N
Xn :

∑

x∈Xn

η(x) = K}.

Xn ⊂ Xn+1 are finite connected subset of infinite tree X,
⋃

Xn = X,

K is a fixed number of particles on finite set of sites Xn. Here

Φ(ρ) = ρ
ρ+1.

It is often useful approach to consider in this way finite approx-

imation of our zero range process. We need only suitably restrict

the single particle law p(x, y) on Xn. Let us call them (n,K)-finite

ZR processes. Notice that they are finite state space Markov pro-

cesses with the unique invariant measure, the uniform distribution

µn,K and, moreover, under assumption (3) each (n,K)-finite ZR

process is reversible w.r.t. equilibrium measure µn,K.

Now we bring out a result concerning the speed of convergence

of each (n,K)-finite zero range process to its equilibrium. If we

denote by P
n,K
t the associated transition probability matrix at time

t then we obtain the following statement.

Theorem 4 There exists a constant 0 < C < ∞ such that for every

n ∈ N, K > 0, f on Xn,K, t > 0:

||P
n,K
t f − Eµn,Kf ||L2(µn,K) ≤ ‖f‖L2(µn,K) exp

{ −t

Cn2n(2q
p )n

(

1 + K
2n

)2

}

.

This result is a consequence of a rather general result on Poincaré

inequality from [3] and an employing the graph structure of the

binary tree. Cf. [2].
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