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ABSTRACT

Linear ICA model with additive Gaussian noise is frequently
considered in many practical applications, because it appro-
aches the reality often much better than the noise-free alter-
nate. In this paper, a number important differences between
noisy and noiseless ICA are discussed. It is shown that esti-
mation of the mixing/demixingmatrix should not be the main
goal, in the noisy case. Instead, it is proposed to compare
outcome of ICA algorithms with a minimum mean square
(MMSE) separation, derived for known mixing model. The
signal-to-interference-plus-noise ratio is suggested as the most
meaningful performance criterion. A simulation study that
compares a few well known ICA algorithms applied to noise
data is included.

1. INTRODUCTION

Recently, Independent Component Analysis (ICA) became
a very popular method for Blind Source Separation (BSS).
Its aim is to transform the mixed random signals into source
signals or components using the assumption that the source
signals are mutually independent. In this paper, we shall
consider an instantaneous linear mixing model. In the noisy
case, the mixing process can be expressed as

� � � 
 � � �
(1)

where
�

is a � � � matrix with the � � � � � �
th element de-

noted � ! # , � is the number of mixed signals and � is the
number of samples. Similarly,



denotes a matrix of sam-

ples of the original signals $ & ( .
�

is an unknown regular
� � � mixing matrix. The signals $ & ( are modeled as i.i.d.
random variables with probability density functions + & � $ & ( �

, � . � 1 1 1 � � and 4 � . � 1 1 1 � � [4] or as independent station-
ary Gaussian processes [10]. Finally,

�
denotes an additive

noise, independent of the signals. For simplicity, the noise
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can be assumed to be a matrix of i.i.d Gaussian random vari-
ables, each having zero mean and variance 6 8 .

The model (1) approaches reality better then the noise-
free one (without

�
) due to reasons like omnipresent sensor-

noise. Moreover, note that the importance of the noise con-
sideration is still greater in case of a more general convolutive
model [1] that is closely related to the ICA [2]. The filter-
truncation effect, which appears almost in all practical situa-
tions, can be modeled as the additive Gaussian noise thanks
to the Central Limit Theorem.

There are several special noisy models that are incorpo-
rated in (1), e.g., the “source” noise model [3]. Some other
authors consider a general noise covariance matrix 9 instead
of 6 8 : . Note, however, that if 9 is known a priori, the
latter model can be made equivalent to model (1) by pre-
multiplying the data with 9 ; = ? 8 .

While the noise-free model
� � � 


has been deeply in-
vestigated, i.e., theoretical limits for separation performance
have been derived [4, 5, 6, 7], and several efficient techniques
have been developed [8, 9, 10], little work dealing with the
noisy model have been conducted [11, 12, 13]. The noise is
frequently considered in simulations or in real applications,
though.

The paper is organized as follows. Section 2 points out
some important differences between the noisy and the noise-
free model and shows that the estimation of the mixing (or
demixing) matrix does not have such meaning as it is usually
thought. In Section 3, minimum mean square error (MMSE)
separation is discussed. It is shown that this should be re-
garded as the general optimal solution of the ICA. Finally,
Section 4 provides a comparison of several known ICA meth-
ods in a noisy environment.

2. BASIC MODELS DIFFERENCES

In this section, we will point out three important differences
between the noisy and noise-free models. The aim is to show
that the tasks differ essentially in their solutions. On the other
hand, the goals are the same: to retrieve the original sources.
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2.1. Identifiability

The well-known feature of the noise-free model
� � � �

is that it can be resolved up to the original order, signs and
scales of the original sources

�
. The only assumption is that

at most one of the signals
�

has a Gaussian distribution.
Note that the indeterminacy of scales of signals

�
is equiv-

alent with indeterminacy of norms of columns of the mixing
matrix

�
. Thus, fixing the variance of

�
, i.e. taking an as-

sumption based on some prior information, enables us to es-
timate the norms of columns of

�
and vice versa. However,

in practice, estimation of the original scales is irrelevant.
A necessary condition for estimability of any model pa-

rameter is the identifiability [15]. However, it was shown in
[16] that the very � is not identifiable in (1). This is not sur-
prising since � is indeterminable unless we know either the
norms of columns of

�
and the original scales of

�
. Without

knowing this, it is impossible to determine how much of the
energy of any transformed signal � � � � � � � � � � � �
corresponds to the noise.

To conclude: while the scales are irrelevant for signal
reconstruction in the noise-free model, it is not so in the noisy
model because of the ambiguity of noise variance.

2.2. Optimum solution is ambiguous

There are several criteria for noise-less model separation [17]
such as mutual information of the separated signals, marginal
entropy of each of the separated signals, likelihood, etc. In
spite of leading to different algorithms, their common prop-
erty is the consistency of the mixing matrix estimation (up to
the indeterminacies). Even if an algorithm aims at qualities
of the separated signals only [18], the criterion, if suitable,
is optimized iff the separated signals equal the original ones,
i.e. the separating transformation equals the mixing matrix
inversion.

This is no longer truth when assuming model with addi-
tive noise, because the original signals cannot be separated
from noise. Thus, for instance, the mutual information of
signals � 	 � � � � � � 	 � �

(2)

is not minimized, in general, due to correlations caused by
the second (noise) term

� 	 � �
. Similarly, the entropy of

any of signals (2) need not to be minimum since the non-
gaussianity can be minimized in different directions

� �
.

In summary, while optimal solution of the noise-free model
is, obviously, achieved whenever the mixing matrix inversion
is retrieved, in noisy model (1), the optimality of the solution
depends on the criterion used for separation.

2.3. Equivariance

Several ICA algorithms [19, 18] have been shown to have
(at least asymptotically) equivariant performance, i.e. their
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Fig. 1. Mean bit error rate of separated BPSK signals in noisy
environment with � � 	 � �� � � �

�
computed from 100 trials for each� � � � � � � � � . MMSE solution is much proper than that minimizing

SIR (4), i.e. inversion of � .

accuracy is independent of the mixing matrix
�

(in the noise-
free environment). This is caused by equivariance property
[20] of the separating criterion used, e.g. mutual information.
However, in the noisy environment, many commonly used
criteria for separation are no more equivariant.

Let
�

be the separating matrix. Then the separated sig-
nals are  � � � � � � � � � � � �

(3)

An example of the equivariant criterion is the signal-to-inter-
ference ratio of the � -th separated signal defined by

SIR � � � � � � � � �$ &
� () � � � � � � � �

(4)

It is obvious that the criterion is optimized (maximized) for� � � 	 � . However, note that suitability of the criterion is
questionable since it disregards presence of the noise in the
separated signals. Moreover, any consistent estimator, that
maximizes (4), is not known (if it even exists [16]).

3. MMSE SEPARATION

The fact that the model (1) is not identifiable suggests aiming
at qualities of the separated signals rather than the estimation
of model parameters (see Fig. 1). Let

 *
� be the � -th separated

signal. The MMSE solution is defined as one that minimizes

E + �
*

� �  *
� � � - �

(5)

where
*

� denotes a random variable with the same distribu-
tion like the � -th original signal. We assume, for simplicity,
that the original signals have zero mean and unit variance.

The MMSE separation can be expressed analytically, if
the mixing matrix

�
is known. The resultant separating ma-

trix
�

is [21]

� / / 1 2 � � � � � � � � � � � � 	 � �
(6)
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It can be shown that (6) minimizes simultaneously the signal-
to-interference-plus-noise ratio (SINR) of the separated sig-
nals, for the � -th estimated signal, defined by

SINR � � � � � � � � �� �
	 �� � � � � � � � 	 � � � � �

	 � 

� �� 	

(7)

which is scale-invariant. Note that while the criterion (4) can
be arbitrarily large, the criterion (7) is bounded by its value
when taking

� � � � � 	 �
, i.e.

� � � SINR � � � � � �� �
	 �� � � � � 	 � � � � �

	 � 
 � � � � 
 � � � 	
�

(8)

where � � � � � � � � � 
 � � � 
 � � 
 . This bound depends on
the mixing matrix

�
and the noise variance � � only. A bound

that takes signals distributions and number of processed data
� into consideration (Cramér-Rao-like bound) has not yet
been derived in a closed form in the literature. Nevertheless,
as can be seen from simulations (Section 4), (8) provides a
more primitive but still useful ultimate bound that limits the
attainable one when processing finite amount of data.

In order to study influence of
�

and � on (8) following
asymptotic expansion for “small” � can be derived

� � � SINR � � �
� � � � � � �

� 
 � � � � � � �
where (9)


 � � � �
� � � � �

� ��
	 �� �

� � � 
 � � � 	 � � ��
	 � 


� � 	 � � � 
 � � � 	 � �

� � � � 
 , and � 
� denotes � -th row of
�

. We have fol-
lowing comments:

(1) It is obvious that if
�

is unitary, i.e.
� � 
 � � ,

the optimum solution is obtained by taking the separating
matrix

� � � � 
 � � 
 . This corresponds with the fact
that the noise

�
can be multiplied by an arbitrary unitary

matrix since it does not affect its covariance structure and the
noise signals remain independent. In that case, the noise can
be regarded as the “source” noise [3].

(2) The first term of the expansion (9) shows that if we
want to achieve (approximately) uniform bound for all sig-
nals, we have to normalize rows of

� � 
 . This is in contrast
with an usual erroneous choice of

�
in experiments, where

mostly rows of
�

are normalized.
(3) The second term reflects non-unitarity of

�
. It van-

ishes whenever rows of
� � 
 are orthogonal. Finally, note

that accuracy of the asymptotic expansion (9) is violated when�
is nearly singular.
The following example shows, that common ICA tech-

niques (JADE, FASTICA) produce separated signals that are
closer to the MMSE solution than to

� � 
 �
, see Fig. 2.

The same fact is demonstrated in the example in Fig. 1,
where the goal is to separate BPSK signals from a noisy mix-
ture. Here, the ultimate criterion is the bit error rate. Again,
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Fig. 2. Elements of the separating matrix � acquired by several
techniques when � � � � �� �
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Fig. 3. Correlation coefficient of two MMSE components when� � � � � for mixing matrix � � � � �� � �

with varying parameter� � � � � � � . Matrix � is singular for � � � � � .

FastICA and JADE perform better than separation by the in-
verse of the true mixing matrix.

The last example (Fig. 3) indicates influence of the mix-
ing matrix on quality of separation. In the presence of the
noise, the signals that minimize the MMSE criterion may no
longer be uncorrelated. In the example, the correlation goes
up to 0.5, when a parameter � approaches 1.

The correlation of the MMSE solution has an adverse ef-
fect namely on algorithms which constrain the correlation of
the separated signals to be exactly zero [14].

4. CONCLUSIONS

It follows from the previous sections, that a fair comparison
of ICA algorithms in presence of additive noise requires (1) a
relevant criterion (we recommend to use the SINR and com-
pare it with the MMSE solution) and (2) a well thought-out
choice of the mixing matrix.

For example, a common mistake in testing performance
of separation techniques is to normalize rows of

�
with the

intention to get the energy of noise in the ideally separated
signals independent of

�
. Then, SIR is used as the criterion

for separation accuracy. This is wrong for several reasons
described above and may lead to wrong conclusions about

V ­ 875



10
−1

10
0

10
1

0

10

20

30

40

50

60
σ2=0

α
10

−1
10

0
10

1
0

10

20

30

40

M
ea

n 
S

IN
R

 [d
B

]

σ2=0.0001

α

10
−1

10
0

10
1

0

5

10

15

20

σ2=0.01

α

M
ea

n 
S

IN
R

 [d
B

]

10
−1

10
0

10
1

0

2

4

6

8

10

M
ea

n 
S

IN
R

 [d
B

]

σ2=0.1

α

EFICA
FastICA
JADE
EI
bound (8)

M
ea

n 
S

IN
R

 [d
B

]

Fig. 4. Quality of separation of 13 signals with Generalized Gaus-
sian distribution measured by mean SINR.

algorithm performance.
As an example of fair comparison using criterion (7) we

propose the following experiment: 13 signals of length �
�

� � � �
were mixed with a random mixing matrix in each trial.

The signals have Generalized Gaussian distribution [9] with
parameter � , respectively, equal to 0.1, 0.3, 0.5, 0.8, 1, 1.5,
1.9, 2, 2.1, 2.5, 4, 8, and 10. The mixing matrix is chosen
so that its inversion has unitary rows (due to uniform bound
(8) for each signal) and is well-conditioned (the ratio of the
maximum and the minimum eigenvalue is smaller than 100).

The mixed signals were corrupted by a Gaussian noise
with various � s, and separated by well-known ICA algo-
rithms: Extended Infomax (EI) [22], JADE [19], FastICA
[18] (the symmetric approach with “tanh” nonlinearity), and
EFICA [9]. Mean SINR of each estimated signal from 100
independent trials for each � is shown in figure 4. It is obvi-
ous that the mean SINR declines with growing “gaussianity”
( �

� �
) of the corresponding signal. However, note that the

differences in estimability of the signals are less significant
when � becomes large.
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