
EFFICIENT VARIANT OF ALGORITHM FASTICA FOR INDEPENDENT COMPONENT
ANALYSIS ATTAINING THE CRAMÉR-RAO LOWER BOUND

Zbyněk Koldovský1,2 and Petr Tichavský1
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ABSTRACT
We propose an improved version of algorithm FastICA which
is asymptotically efficient, i.e., its accuracy attains the Cra-
mér-Rao lower bound provided that the probability distribu-
tion of the signal components belongs to the class of gener-
alized Gaussian distribution. Its computational complexity
is only slightly (about three times) higher than that of ordi-
nary symmetric FastICA. Simulation section shows superior
performance of the algorithm compared with JADE, and of
non-parametric ICA.

1. INTRODUCTION

Recently, blind techniques became very popular in the sig-
nal processing community, in particular, Independent Com-
ponent Analysis (ICA). The underlying task of ICA is an
instantaneous linear mixing model. In this case, the mixing
process can be expressed as

X = AS, (1)

where X is an d × N matrix with the (k, `)−th element
denoted xk`, d is the number of mixed signals and N is
the number of samples. Similarly, S denotes a matrix of
samples of the original signals sij . A is an unknown regular
d × d mixing matrix. It is assumed that sij are mutually
independent i.i.d. random variables with probability density
functions (pdf) fi(sij) i = 1, . . . , d.

There are several algorithms which have been developed
to solve the task. For instance, JADE [4] is based on the
approximation of kurtosis via cumulants, NPICA [1] uses
a nonparametric model of the density functions. Algorithm
FastICA [5] is based on Hyvärinen’s entropy approximation
which depends on a choice of a nonlinear function G(·).

This work is based on our recently published asymptotic
performance analysis of the algorithm FastICA [11] and the
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Cramér-Rao lower bound (CRB) for ICA [7, 9, 15, 10, 13],
where under certain conditions the accuracy of FastICA is
shown to be very close to the CRB provided that the func-
tion G(·) is a primitive function of the score function of
the estimated original signal, i.e., G(x) =

∫
ψ(x)dx =

−
∫ f ′

i(x)
fi(x)dx. Here, using the analysis, we derive an im-

proved algorithm which is under the same condition asymp-
totically efficient, i.e., its asymptotic performance achieves
the CRB.

In the next Section, the results of our previous work are
summarized. In Section 3, the improved algorithm is de-
rived and its properties are described. Section 4 presents
computer simulations in order to validate the efficiency.

2. RECENT RESULTS

2.1. The original FastICA algorithm

The algorithm FastICA was introduced in [5] in two ver-
sions: a one-unit approach and a symmetric one. The first
step, which is common for both versions and for many other
ICA algorithms, consists in removing the sample mean and
the decorrelation of the data X, i.e.,

Z = Ĉ−1/2 (X−X) (2)

where Ĉ is the sample covariance matrix, Ĉ = (X−X)(X−
X)T /N and X is the sample mean of the measured data.
The one-unit ICA is based on minimization/maximization
of the criterion c(w) = E[G(wT Z)−G0]2 where w is the
to-be found vector of coefficients that separates a desired
independent component from the mixture (one row of the to
be found separating matrix), E stands for the sample mean,
G(·) is a suitable nonlinear function, called contrast func-
tion, and G0 is the expected value of G(η) where η is a
standard normal random variable.

The symmetric FastICA estimates all signals in parallel,
and each step is completed by a symmetric orthogonaliza-



tion:

W+ ← g(WZ)ZT − diag[g′(WZ)1N ]W (3)
W ← (W+W+T )−1/2W+ (4)

where g(·) and g′(·) denote the first and the second deriva-
tive ofG(·), respectively. Recently, it was proposed to com-
plete the symmetric FastICA by a test of saddle points that
eliminates convergence to side minima of the cost function
[11].

The separation quality is treated by means of the so
called gain matrix, G = ŴA which characterizes the rela-
tive presence of j−th original signal component in the esti-
mated k−th component, j, k = 1, . . . , d.

2.2. Analysis of FastICA and the CRB

Let G1U and GSY M , respectively, be the gain matrix ob-
tained by the one-unit and the symmetric variant using a
nonlinear function g(·). It was shown in [11] that if g is suf-
ficiently smooth function, the original signals in the mixture
have zero mean and unit variance, and the following expec-
tations exist,

µk
def= E[skg(sk)] (5)

ρk
def= E[g′(sk)] (6)

βk
def= E[g2(sk)] (7)

then the normalized gain matrix elements N1/2G1U
k` and

N1/2GSY M
k` have asymptotically Gaussian distribution

N (0, V 1U
k` ) and N (0, V SY M

k` ), where

V 1U
k` =

γk

τ2
k

V SY M
k` =

γk + γ` + τ2
`

(τk + τ`)2
. (8)

with γk = βk − µ2
k, and τk = |µk − ρk|.

The variance in (8) is minimized if the function g equals
to the score function ψk of the corresponding distribution.
It is shown to be close but not to coincide with the Cramér-
Rao lower bound [7], which is

CRB(Gk`) =
1
N

κk

κkκ` − 1
. (9)

where κk
def= E

[
ψ2

k(sk)
]
, k, ` = 1, . . . , d.

3. EFFICIENT FASTICA

3.1. Generalized symmetric FastICA

Consider a generalized version of the symmetric version of
FastICA, where the first step (3) of the iteration will be fol-
lowed by multiplying each row of W+ with suitable posi-
tive number ci i = 1, . . . , d before the symmetric orthogo-

nalization (4). One iteration of such algorithm can be writ-
ten in three steps:

W+ ← g(WZ)ZT − diag[g′(WZ)1N ]W (10)
W+ ← diag[c1, . . . , cd] ·W+ (11)
W ← (W+W+T )−1/2W+ (12)

The resultant method can be analyzed in the same way as
the plain symmetric FastICA in [11]. It can be derived that
the non-diagonal normalized gain matrix elements for this
method, N1/2GGS

k` , have asymptotically Gaussian distribu-
tion N (0, V GS

k` ), where

V GS
k` =

c2kγk + c2`(γ` + τ2
` )

(ckτk + c`τ`)2
. (13)

Note that the criterion (13) is invariant with respect to mul-
tiplying all parameters {ck} by the same factor.

Assume now that k is fixed and let ck be chosen, without
any loss in generality, as ck = 1. Then, minimization of the
expression (13) with respect to c`, ` 6= k, can be performed
analytically, and it gives (using the notation so that instead
of c`, we use ck,` to denote the other parameters in the case
that ck = 1)

cOPT
k,` = arg min

c`,ck=1
V GS

k` =
τ`γk

τk(γ` + τ2
` )

. (14)

Note that neither zero nor +∞minimizes (13) unless cOPT
k`

equals to it.
The optimum value of the criterion is

V OPT,k
k` = min

c`,ck=1
V GS

k` =
γk(γ` + τ2

` )
τ2
` γk + τ2

k (γ` + τ2
` )
. (15)

Note that the algorithm in (10)-(12) can be made even more
general if a different row of W, W+ in (10) have its own
nonlinear function gk(·).

In the special case that gk = ψk, i.e. equals to the score
function of the k−th signal for each k = 1, . . . , d, we get
βk = ρk = κk, µk = 1, and τk = γk = κk − 1. Then (15)
simplifies to

V OPT,k
k` =

κk

κkκ` − 1
= N CRB[Gk`].

This means that the estimator asymptotically attains the CRB
for N →∞.

3.2. Proposed algorithm

The proposed algorithm, called for brevity “Efficient Fas-
tICA” combines the idea of the generalized symmetric Fas-
tICA with an adaptive choice of the function g. The algo-
rithm consists of two steps: (1) original symmetric FastICA
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Fig. 1(a) Average SIRs of the three kinds of signals in Example 1.
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Fig. 1(b) Median SIRs of the same signals.

with the test of saddle points, and (2) a refinement. The re-
finement utilizes different nonlinearities g adaptively cho-
sen based on outcome of step 1.

The purpose of the step 1 is to quickly and reliably get
the primary estimates of the original signals. In this step,
therefore, the optional nonlinearity in the original symmet-
ric FastICA g(x) = tanh(x) is used in this paper due to its
universality, but other possibilities seems to give promising
results as well, e.g. g(x) = x

1+x2 .

3.2.1. Adaptive choice of the nonlinearities

Assume that ûk is the k−th estimated independent signal
component obtained in the step 1.

A straightforward solution would be to choose gk(·) as a
score function that belongs to the sample distribution func-
tion. This approach would have two flaws. First, the score
function is difficult to estimate using the given sample dis-
tribution of the component, because it needs not only the
probability density function but its derivative, also. The sec-
ond flaw is that a suitable g needs to be continuous and dif-
ferentiable.

We suggest an adaptive choice of gk that works well for
the class of generalized Gaussian distribution with parame-
ter α, denoted GG(α) (see Appendix B for details). This
class include Standard Gaussian and Laplacean distribution
for α = 2 and α = 1, respectively, and a uniform distribu-
tion in the limit α→∞. The score function of this distrib-
ution is proportional to g(x) = sign(x) · |x|α−1 (the scalar
multiplicative factor is irrelevant for usage in the FastICA).

Estimation of a suitable parameter α will be done by
fitting theoretical fourth order moment of the GG(α) dis-
tribution, which is m4(α) = Γ( 1

α )Γ( 5
α )Γ−2( 3

α ) with the
sample fourth-order moment,

m̂4k = 1̂T
N û·4k /N (16)

where {·}·4 denotes the elementwise fourth order power.
The result of the fitting, valid for m̂4k > limα→∞m4(α) =
9/5 = 1.8, is

α̂k = [η1
√
m̂4k − 1.8− η2(m̂4k − 1.8)]−1

with η1 ≈ 0.2906 and η2 ≈ 0.1851. If m̂4k ≤ 1.8 or
α̂k > 15 maximum power 14 in function gk is used to avoid
numerical problems of the algorithm. Details are deferred
to Appendix A.

The problem with the score function of the GG(α) dis-
tribution is that it is not continuous for α ≤ 1 and thus it
is not a valid nonlinearity for FastICA. For these α’s the
statistical efficiency cannot be achieved by the algorithm.

Our ad-hoc choice of g which produces excellent results
for supergaussian distributions GG(α) with α ≤ 2, better
than “gauss” in [5], is g(x) = x exp(−η3|x|) where η3 is
a suitable parameter. The optimum choice of η3 for the
Laplacean distribution can be found to be η3 ≈ 3.348. In
this paper we use this choice for all (supergaussian) compo-
nents obeying m̂4k > 3.

In summary, the nonlinearity of the choice is

gk(x) =


x exp(−η3|x|) for m̂4k > 3
sign(x) · |x|min {bαk−1,14} for m̂4k ∈ [1.8, 3]
sign(x) · |x|14 for m̂4k < 1.8

(17)

3.2.2. The Refinement

The fact that the asymptotic variance (13) cannot be min-
imized, in general, for all k, ` = 1, . . . , d jointly suggest
doing the refinement for each independent component sep-
arately [3]. The first step, that is the analogy of (10), is
common for all component together:
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Fig. 2 Quality of separation of 13 GG(α) components with α, respectively, equal to 0.1, 0.3, 0.5, 0.8, 1, 1.5, 1.9, 2, 2.1 ,2.5,
4, 8, and 10. Mean SIRs of the estimated signals are in the left diagram while in the right are median SIRs.

Step R1: For each k = 1, . . . , d, compute m̂4k in (16) and
gk in (17). Put

Ŵ+ = [ŵ+
1 , . . . , ŵ

+
d ]T . (18)

where

ŵ+
k = Zgk(ûk)− ŵk g

′
k(ûk)1N (19)

for k = 1, . . . , d. (Recall that ŵT
k Z = ûT

k ).
Step R2: For each k = 1, . . . , d, compute

µ̂k = ûT
k gk(ûk)/N, τ̂k = |µ̂k − ρ̂k|

ρ̂k = 1̂T
Ng

′
k(ûk)/N γ̂k = β̂k − µ̂2

k

β̂k = 1̂T
Ng

2
k(ûk)/N

(20)

For each k, ` = 1, . . . , d, compute

ck,` =

{
bτ`bγk

bτk(bγ`+bτ2
` )

for ` 6= k

1 for ` = k

Next, for each k = 1, . . . , d, compute

Ŵ+
k = diag[ck1, . . . , ckd] · Ŵ+ (21)

Ŵaux
k = (Ŵ+

k Ŵ+T
k )−1/2Ŵ+

k (22)

ŵREF
k = (Ŵaux

k )T
k,· (23)

The resultant k−th component estimate is ûREF
k = ZT ŵREF

k .
More detailed description of the algorithm will be provided
in [8].

4. SIMULATIONS

Three simulation experiments were carried out to approve
the efficiency of the proposed algorithm and to provide a

0The matlab code for the algorithm is made available at
http://www.utia.cas.cz/user data/scientific/SI dept/Tichavsky.html.

comparison with other well-known methods for ICA. For
this purpose, we chose the original version of the symmet-
ric FastICA [5] with nonlinearity “tanh”, JADE [4], and
NPICA [1].

There occur some random convergence failures in the
original FastICA and NPICA, which in our method are fixed
by the test of saddle points. To eliminate their effect in the
comparisons, both mean and median SIRs from each exper-
iment are shown.

Example 1. A Gaussian component, 10 Laplacean, and
10 components with Generalized Gaussian distribution with
parameter α ∈ [0.1, 10] were generated in 100 independent
trials. We have chosen the length of data N = 2000, which
is quite small for separation of 21 signals. In each trial,
the signals were mixed with a randomly generated matrix,
and separated by the proposed method and forenamed algo-
rithms. In Figure 1(a), the three diagrams show the average
SIRs of the Gaussian signal, of the first Laplacean, and of
the first with Generalized Gaussian distribution. Respect-
ing the proposed method (designated as EFICA), both the
theoretical SIRs estimated via (15) and the empirical (pen-
tagrams) are presented. The results can be compared with
those in Figure 1(b) where median SIRs from the same ex-
periment are presented. The theoretical SIRs and the CRB
are not included here, since they are derived only for mean
SIR.

Example 2. 13 signals with Generalized Gaussian distrib-
ution with different values of the parameter α taken from
interval [0.1, 10] were mixed with a random mixing matrix
and demixed. The experiment was repeated 100 times with
fixed length of data N = 5000. The results are plotted in
Figure 2(a) and 2(b).
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Fig. 3(a) Mean SIRs for various length of data.
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Fig. 3(b): Median SIRs.

Example 3. To demonstrate the performance of the method
for different lengths of data three signals with Gaussian,
Laplacean, and uniform distribution were mixed with a ran-
dom mixing matrix and demixed. The average and median
SIRs from 100 independent trials for each length of data are
plotted in Figure 3(a) and 3(b).
Example 4. In order to demonstrate the computational com-
plexity similar experiment to that in [1] was done. The aver-
age CPU time1 required by the compared methods is shown
in Fig. 4(a) for a various length of data when 6 generalized
Gaussian signals with a random parameter α ∈ [0.1, 10]
were separated. The results for a fixed length of data N =
1000 and a variable number of signals are in Fig. 4(b).
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Fig. 4 CPU time needed to separate (a) 6 signals of a various
lenght (b) various # of signals of a fixed length N = 1000.

1The experiment was performed in Matlab on a Pentium IV 2.4 GHz
PC with 512 MB of RAM.

Appendix A
To estimate the shape parameter α of Generalized Gaussian
variable we will use its fourth moment as a function of α
[14]

m4(α) def= E[x4] =
Γ( 1

α )Γ( 5
α )

Γ2( 3
α )

(24)

We consider that α ∈ (2,+∞). Following asymptotic ex-
pansion of the third order for α → +∞ was derived in
MapleTM

z(α) def=

√
m4(α)− 9

5
=
A

α
− B

α2
+ o(

1
α2

), (25)

where A =
√

30π
5 , B = 18

√
30ζ(3)
5π , and ζ(3) .= 1.202. To

invert the above relation, first, we use a substitution y = 1
α .

Now, we can write

y =
1
A
z +

B

A
y2 + o(y2) =

=
1
A
z +

B

A

(
1
A
z +

B

A
y2 + o(y2)

)2

+ o(y2) =

=
1
A
z +

B

A3
z2 + o(z2) (26)

Using the definition (25) of z follows

α ≈

(
1
A

√
m4(α)− 9

5
− B

A3

(
m4(α)− 9

5

))−1

(27)

Note thatm4(α) can be simply estimated as a sample fourth
moment of the corresponding variable.
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Fig. 3: Comparison of the inversion of (24) with the
approximation (27).



Appendix B

Generalized Gaussian distribution family

Introduce the generalized Gaussian density function with
parameter α, zero mean and variance one, as

fα(x) =
αβα

2Γ(1/α)
exp {−(βα|x|)α} (28)

where α > 0 is a positive parameter that controls the distri-
bution’s exponential rate of decay, and Γ(·) is the Gamma

function and βα =
√

Γ(3/α)
Γ(1/α) . This generalized Gaussian

family encompasses the ordinary standard normal distribu-
tion for α = 2, the Laplacean distribution for α = 1, and
the uniform distribution in the limit α→∞.

The k−th absolute moment for the distribution is

Eα{|x|k} =
∫ ∞

∞
|x|k fα(x)dx =

1
βk

α

Γ
(

k+1
α

)
Γ
(

1
α

) (29)

The score function of the distribution is

ψα(x) = −
∂fα(x)

∂x

fα(x)
=
|x|α−1sign(x)

Eα[|x|α]
(30)

Then, simple computations give

κα = Eα[ψ2
α(x)] =

Eα[|x|2α−2]
{Eα[|x|α]}2

=
Γ
(
2− 1

α

)
Γ
(

3
α

)[
Γ
(
1 + 1

α

)]2 (31)

Note that κα = +∞ for α ≤ 1
2 , κα = 1 for α = 2 (the

distribution is standard Gaussian), and κα → +∞ for α→
+∞ (the distribution approaches the uniform distribution
on < −

√
3,
√

3 >).
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