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Abstract: We study Bayesian decision making based on observations of the price
dynamics (X; : t € [0,T]) of a financial asset, when the hypothesis is the classical
geometric Brownian motion and the alternative is a more general random diffu-
sion process. We obtain exact formulae — respectively bounds — for the minimal
mean decision loss (Bayes risk), and also for some generalized relative entropies
(Iy—divergences).
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1 Introduction

Let X; be the value of a financial asset (for instance, a stock index) at time ¢ > 0,
and suppose that for the description of X; we have the choice between the following
two models (H) and (A):

(H) the geometric Brownian motion X; of Samuelson (1965), which is for exam-
ple used in the Black-Scholes-Merton option pricing framework, and which is the
(strong, hence weak) solution of the stochastic differential equation (SDE)

dXt:CXtdt+UXtth, X() :ill'>0, (1)

with a given growth rate constant ¢ € R and volatility o > 0, and with a standard
Brownian motion W. The corresponding probability law of (1) (for infinite time
horizon) is denoted by P;

(A) the diffusion process X; which is the (weak) solution of the SDE
dXt = g(Xt) Xt dt + O'Xt th y Xo = > 0, (2)

with a given growth rate function g, with the same volatility o > 0 as in (), and
with a standard Brownian motion . The corresponding probability law of (2) (for
infinite time horizon) is denoted by Q.. We suppose that the equation (2) differs
from (1) in the sense that @, # P, for all z > 0.

In the hypothetic model H, the random process (X; : ¢ > 0) is a geometric Brownian
motion, i.e.
o2
Xy ==z exp(aWt+(c—7)t) , t>0. (3)
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At each fixed time ¢t > 0, X; is (in #, i.e. under P,) lognormally distributed. In
the alternative model (A), the random process (X; : ¢t > 0) need not (under Q)
be lognormally distributed.

Within the framework introduced above, we study Bayes decisions with binary
decision spaces D = {dy,d 4} and loss functions

L<dH,”H) L(dH,A) 0 Ly

L(dA,’H) L(dA,A) S\ Lnw 07 (4)

with losses Ly > 0 and L4 > 0. Thus, dy is assumed to be a zero-loss decision
under ‘H and d_4 is a zero-loss decision under A.

We are interested in Bayes decisions of the hypothesis H against the alternative .4
based on the random asset value observations X7 = (X; : ¢t € [0,7]). Formally,
the Bayes decisions can be considered as functions § = §(X7) of random paths X7
into {dy,da}. The Bayes decision function minimizes the risk (average loss)

pu Ly Prio(XT) =da |H] + pa La Prio(X") =dy | A] (5)

for given prior probabilities pyy = Pr[H] for H and pa = Pr[A] = 1 — py for
A (which describe the model risk knowledge at time ¢ = 0, prior to the random
asset value observations X7). If Ly = L4 = 1 then the Bayes risk is the minimal
average probability error (Bayes error) of the decision about H against A, and
the corresponding Bayes decision function represents a Bayes test of H against
A. Thus we have included into our considerations Bayes tests, and also the more
general Bayes decisions corresponding to unequal Ly and L 4.

Within the general statistical decision framework described above, the solution
X; of the modelling SDE (2) is typically not explicitly available, implying that
it is usually hard to obtain explicit values for the corresponding decision-theoretic
characteristics, such as the Bayes factor and the Bayes risk. Thus, it makes sense to
find some bounds on these characteristics, especially for a large observation duration
T. In order to do so, we use the following technical

Assumption Al. The non-stochastic condition

sup /aa+1 (g(eg))2 ds < o© (6)

a€R -1
holds.

It was proven in [3] that this assumption guarantees the existence and unique-
ness of a (weak) solution (Xy, Q) of (2) for all starting values z > 0; furthermore,
one has X; > 0 for all ¢ > 0 (Q,—almost surely).
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2 Bounds on prior- and loss-independent quanti-
ties
In a straightforward way, formally (and under Assumption Al also technically

correctly) one can obtain from the prior binomial probabilities py for H and
pa =1 — py for A the posterior probabilities

ost, T P
o= for H , 7
Pii (1—=pu) Zr + pu ()

post, T (1 _p'H) Zr £
= or A, 8

Pa (I=pu) Zr + pu ®)
with Girsanov-type density

dQz —ZT:exp</TMdWU—%/TMdU>.(9)

de [OaT] B o g
0 0

From this, one can compute the posterior odds ratio of A to H as

ost, T
) 1 _
p%stT = i Zr . (10)
T Pu

Thus, the corresponding Bayes factor BF = BFr of the decision in favour of A at
time T is given by
posterior odds ratio of A to H
BFr = = Zr. 11

T prior odds ratio of A to H r (11)
As usual, the Bayes factor BFr can be interpreted as the odds for A against
that are given by the data (here, the observed asset-value sample paths X7 in the
period [0,7T]). One can give the following bounds on the moments of BFr with
respect to the law P,:

Theorem 2.1. Let the Assumption A1 be satisfied. Then the following assertions
hold:

(a) For every real number a €]0,1[ there exist constants ¢; > 0 and ca > 0 such
that for all observation durations T > 0 and all starting asset values x > 0

EP,[(BFr)®] > exp ( —e—e T) . (12)
(b) For all observation durations T > 0 and all starting asset values x > 0
EP,[BFr] = 1. (13)

(c) For every real number a ¢ [0,1] there exist constants c3 > 0 and ¢4 > 0 such
that for all observation durations T > 0 and all starting asset values x > 0

EP,[(BFr)*] < exp (03 +ey T) . (14)
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An analoguous result can be obtained for the Bayes factor moments with respect
to the law Q.. Apart from the important Bayes factor, it is also useful to study
the “distance” between the two models (2) and (1), especially for large durations
T of the observation periods. For instance, one can investigate the I'I —divergences
between the two corresponding probability laws @), and P,, defined by

(e
QNP = /fa<dp

) ar..
T [O’T]

with the nonnegative functions f, : [0, co[— [0, oo[ defined by

—logp+p-—-1, if a=0,
falp) = ama if aeR\{0,1},
plogp+1—p, if a=1.

Basic facts on IT —divergences of general measures can be found e.g. in [1] and on
IT —divergences of discrete measures in [2]. Of course, I{ (Qz||P;) is nothing but
the diffusion version of the relative entropy (Kullback-Leibler information measure).
Again, because of the complexity of the models considered here, one usually has to
be satisfied by bounds which give a “rough, but definite” idea on what can happen
in the worst resp. best case. Such bounds on IX(Q,||P;) can be obtained by using
the bounds on the Bayes factor given in Theorem 2.1. In fact, one gets the following

Theorem 2.2. Let the Assumption A1 be satisfied. Then the following assertions
hold:

(a) For every real number o €]0,1[ there exist constants ¢; > 0 and ca > 0 such
that for all observation durations T' > 0 and all starting asset values x > 0

Ig(QmHPz) < ﬁ{l—exp(—01—C2T)}. (15)

(b) For every real number a ¢ [0,1] there exist constants c3 > 0 and ¢4 > 0 such
that for all observation durations T > 0 and all starting asset values x > 0

I (QallP2) < ﬁ {exp (cs+en ) =1 } : (16)

3 Bounds on the Bayes risk

In formula (5) of Section 1, we introduced the risk (average loss) of a decision func-
tion d7(X7T) = 6(XT) taking values in D = {d3;,d4}. If we reject the hypothesis
#H whenever the observed asset value sample path X7 = (X, : t € [0,T]) lies within
a critical region GT = 6" (d4), we can rewrite this risk in the form

Ro(GT) = pu Ly Po[GT] + pa La Q[T —G"].
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By means of the parameters
My = pu Ly and Ax = pala,
which carry combined prior and loss information, we obtain the formula
Ro(GT) = X Po[GT] + da (1 - Qu[G7]) (17)
By definition, the Bayes risk R minimizes the risk, i.e.
RY = minR,(GT), (18)

where the minimum is taken over all measurable sets GT C QT of sample paths.
By (17),

Ro(GT) = da + /(/\H—AABFT) dP,

GT
> A4+ / (Mg — A4 BFr) dP,
GTN{An<AaBFr}
> Aa + / (M — AaBFr) dP,. (19)
{Au<AaBFr}

Therefore, the Bayes risk is achieved by the decision rule §(X7) which rejects H
(decides for A) if the observed path X7 is contained in the sample path set

Gr.. = {Du < A\aBFr}, (20)

and rejects A (decides for ) if X7 is contained on the complement of this set.
Accordingly, with the help of (17) we obtain the Bayes risk as

RT = R,(GT.) = / Ay dPy + / s BFr dP,
GT

min

= /min{AH,)\A B]‘-T} de . (21)

QT

QT\GT

min

By using the same kind of argumentation as in Section 2, one can see that a direct
explicit formula for the Bayes risk is hard to obtain in our context, since the Bayes
factor involves the advanced concept of stochastic integrals. Thus, one aims at least
for some bounds on the Bayes risk. Applying part (a) of the Bayes-factor-treating
Theorem 2.1 at the formula (21) in a non-straightforward way, one arrives at the
following result concerning the Bayes risk R, especially in terms of the sample
path observation duration 7"
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Theorem 3.1. If Assumption A1 is satisfied, then there exist constants c¢s > 0 and
cg > 0 such that for all prior-loss-information parameters Ag > 0, Ay > 0 as well
as for all observation durations T > 0 and all starting asset values x > 0

RI > %exp(—%—ceT). (22)

Theorem 3.1 states that the Bayes risk under hypothesis and alternative given by
(1) and (2), cannot go to zero faster than exponentially in T.

In this talk, we shall also present (i) more precise bounds for R under more re-
strictive assumptions, (ii) an explicit formula for RY in the special case where A
is also a geometric Brownian motion (different from ), (iii) some sketches of the
underlying proofs, as well as (iv) illuminations on the special case of a “classical”
Bayesian testing set-up.

The full details of the abovementioned investigations will appear in [4].

Furthermore, we indicate how to generalize this framework to the time-inhomogeneous
case.
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