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Introduction

I The simultaneous problem of active fault detection and control is discussed.

I The problem is formulated as an extension of active fault detection.

I The computational complexity is reduced using the multiple models approach and rolling horizon technique.

From passive fault detection to active fault detection and control

Passive fault detection

I Available data zk = [uk , yk ] are used passively.

I Design methods are well established and quite simple.

I The quality of decision is influenced just by the
quality of model and used method.
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Figure: Passive fault detection

Active fault detection

I The input signal is designed to improve detection.

I The quality of decision is better due to probing.

I The design of active detector is more complex and
the control is not incorporated.

Active fault detection and control

I The observed system is actively probed and
controlled.

I The quality of decision is better with respect to
passive detection, but it is usually worse with respect
to active detection because of control aim.

I Computational complexity is further increased.
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Figure: Active fault detection and possibly control

Problem formulation

Description of the system S on the finite horizon F

I The problem is considered on the finite horizon F .

I The system is described at each time step
k ∈ T = {0, 1, . . . , F} by the discrete-time linear
Gaussian model

xk+1 = A (µk) xk + B (µk)uk + G (µk)wk , (1a)

yk = C (µk) xk + H (µk) vk . (1b)

I Switching between models is described by the
Markov chain with transition probabilities

Pi ,j = P(µk+1 = j |µk = i). (2)

I yk ∈ Rny is the output

I uk ∈ Uk ⊆ Rnu is the input
I x̄k = [xk , µk ] is the state

I xk ∈ Rnx is the common state of Gaussian models
I µk ∈M = {1, . . . , N} is the index denoting Gaussian

model in effect at time step k

I wk ∈ Rnx and vk ∈ Rny are mutually independent
zero-mean white Gaussian noises with identity
covariance matrices

I Initial condition x0 has Gaussian distribution with

mean-value x̂
′
k and covariance matrix P

′
x ,0. Initial

index of model µ0 is described by the probability
function P(µ0).

Active detector and controller [
dk
uk

]
= ρk

(
Ik0

)
, k ∈ T , (3)

ρk is unknown function, Ik0 = [yk
0 ,uk−1

0 , dk−1
0 ] is available information and dk is decision telling which model

most likely describes the behavior of the system S. Note that yk
0 represents the whole sequence of the variable

from time step 0 to k .

Criterion

J(ρF
0 ) = E


F∑

k=0

Ld
k(µk , dk) + αkLc

k(xk ,uk)

 , (4)

I Ld
k(µk , dk) is a scalar non-negative function that penalizes wrong decisions

I Lc
k(xk ,uk) is a scalar non-negative function that penalizes the state and input

I αk is a weighting coefficient

Information processing strategies

I Open loop – uses only a priori information.

I Open loop feedback – uses a priori information and data received up to the current time step.

I Closed loop – besides a priori information and data received up to the current time step takes into account that
future data will be obtained.

Aim

Find active fault detector and controller (i.e. functions ρF
0 ) that minimizes criterion (4) given constraints (1)

and (2) using closed loop information processing strategy.

Optimal active fault detector and controller

Backward recursive equation

V ∗
k

(
yk
0 ,uk−1

0

)
= min

dk∈M
E

{
Ld
k (dk , µk) |yk

0 ,uk−1
0 , dk

}
+

min
uk∈Uk

E
{

αkLc
k (xk ,uk) + V ∗

k+1

(
yk+1
0 ,uk

0

)
|yk

0 ,uk
0

}
,

(5)

The initial condition is V ∗
F+1 = 0 and the value of criterion is J∗ = J

(
ρF∗

0

)
= E

{
V ∗

0 (y0)
}
.

Optimal active fault detector and controller

d∗k = σ∗k

(
yk
0 ,uk−1

0

)
= arg min

dk∈M
E

{
Ld
k (dk , µk) |yk

0 ,uk−1
0 , dk

}
, (6)

u∗k = γ∗k

(
yk
0 ,uk−1

0

)
= arg min

uk∈Uk

E
{

αkLc
k (xk ,uk) + V ∗

k+1

(
yk+1
0 ,uk

0

)
|yk

0 ,uk
0

}
, (7)

Remarks on the optimal solution

I The optimal decision d∗k and optimal input u∗k are independent at time step k .
I The optimal decision d∗k minimizes average cost at time step k .
I The optimal input u∗k minimizes average future costs incurred by wrong decisions.
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Figure: Internal structure of active fault detector and controller

I The conditional probability P
(
µk |yk

0 ,uk−1
0

)
and conditional probability density function (pdf) p

(
yk+1|yk

0 ,uk
0

)
have to be computed using a nonlinear filter before the expectations in (5) can be evaluated.

I A solution of backward recursive equation can not be expressed in a closed form and approximative techniques
for state estimation and solution of backward recursive equation have to be used.

Suboptimal active fault detector and controller

Nonlinear state estimation

I The optimal nonlinear filter consists of exponentially growing number of Kalman filters.

I The complexity can be reduced e.g. using merging pdf’s that correspond to model sequences µk
0 with the same

terminal model sequence µk
k−l

P
(
µk

k−l |y
k
0 ,uk−1

0

)
=

∑
µk−l−1

0

P
(
µk

0|y
k
0 ,uk−1

0

)
, (8)

p
(
xk |yk

0 ,uk−1
0 , µk

k−l

)
=

∑
µk−l−1

0

β
(
µk

0

)
p

(
xk |yk

0 ,uk−1
0 , µk

0

)
, (9) β

(
µk

0

)
=

P
(
µk

0|y
k
0 ,uk−1

0

)
P

(
µk

k−l |y
k
0 ,uk−1

0

). (10)

Solution of backward recursive equation

I Approximative solution is based on the rolling horizon technique.

I Numerical optimization is performed over a shorter horizon Fa and the Bellman function V ∗
k+Fa+1 is

approximated by V̄ ∗
k+Fa+1 = 0.

Figure: Rolling horizon technique

Illustrative example of active fault detection and control

I The time horizon is F = 40 and the observed/controlled system is described as follows

µk = 1 : xk+1 =

[
0.0707 −0.4826
0.8579 0.4996

]
xk +

[
0.2145
0.2224

]
uk +

[
0.003 0

0 0.003

]
wk ,

yk =
[
0 2.25

]
xk + 0.005vk ,

µk = 2 : xk+1 =

[
0.0707 −0.4826
0.8579 0.4996

]
xk +

[
1220.1973
1230.2104

]
uk +

[
0.003 0

0 0.003

]
wk ,

yk =
[
0 2.25

]
xk + 0.005vk .

The initial state x0 has mean x
′
0 = [0 0]T and covariance matrix P

′
x ,0 = 0.1I. The initial probabilities of models

are P(µ0 = 1) = P(µ0 = 2) = 0.5, the transition probabilities are P1,1 = P2,2 = 0.95 and P1,2 = P2,1 = 0.05.
The set of admissible inputs is Uk = {−0.8,−0.7,−0.6,−0.5,−0.4,−0.3,−0.2,−0.15,
−0.1, 0, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

I Cost functions Ld
k (µk , dk) and Lc

k (xk , uk) are given by

Ld
k (µk , dk) =

{
0 if µk = dk
1 if µk 6= dk

, (11) Lc
k (xk , uk) =

[
xr
k − xk

]T
Qk

[
xr
k − xk

]
+ rku

2
k , (12)

where Qk = I, rk = 0.001, and αk = 8.

I The reference state xr
k =

[
xr
1,k , x

r
2,k

]T
is defined as follows: x r

1,k = 0 for all k ∈ T and xr
2,k is the rectangular

signal with amplitude ±0.2667 and period 40 steps.

I Example of a simulation run and Monte Carlo simulation results
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Figure: Reference, true state and its estimate for ADC
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Figure: Reference, true state and its estimate for HCEC
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Figure: Upper: Indication of wrong decisions. Bottom: Input
trajectories

Table: Monte Carlo simulation results

NWD SExr
k−xk

ADC 25.47 5.8890
HCEC 30.58 5.9047

NWD is an average number of wrong decisions in per-
cents over the considered horizon and SEx r

k−xk
is an

average square error

I Summary of the example
I The static gain is the same for both models and thus the control is satisfactory in steady-state.
I Whenever the active fault detector and controller lacks sufficient information it automatically generates probing signal.
I The quality of the decision is better and quality of control is just slightly degraded as follows from the table.

Conclusion

I The problem of active fault detection and control was considered in multiple model framework.

I The multiple models can be used simply to describe fault-free and faulty behavior of the system.

I The general solution given by the backward recursive equation was approximated in the state estimation and
optimization steps.

I The illustrative example shows a situation where the simultaneous design of active fault detector and controller
brings improvement with respect to passive approach and separate design of the detector and controller.
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