Jan Kracík

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic

Outline

- Bayesian Decision-Maker
- Multiple Agents
- Information Exchange between Bayesian Agents
- Concluding Remarks

Bayesian Decision-Maker (Agent)

- random quantities (data): actions a_t , innovations Δ_t , experience: $\mathcal{P}(t) = (a_1, \Delta_1, \dots, a_t, \Delta_t)$
- model of the system: $f(\Delta_t|a_t, \mathcal{P}(t-1), \Theta)$ Θ - unknown parameter
- prior pdf: $f(\Theta)$

Bayesian Theory:

ullet increasing experience $\mathcal{P}(t)$ modifies knowledge about ullet

Bayes Theorem

$$f(\Theta|\mathcal{P}(t)) \propto \prod_{\tau=1}^t f(\Delta_{\tau}|a_{\tau}, \mathcal{P}(\tau-1), \Theta) f(\Theta)$$

optimal decision strategy minimizes the expected loss

Bayesian Decision-Maker (Agent)

- random quantities (data): actions a_t , innovations Δ_t , experience: $\mathcal{P}(t) = (a_1, \Delta_1, \dots, a_t, \Delta_t)$
- model of the system: $f(\Delta_t|a_t, \mathcal{P}(t-1), \Theta)$ Θ - unknown parameter
- prior pdf: $f(\Theta)$

Bayesian Theory:

• increasing experience $\mathcal{P}(t)$ modifies knowledge about Θ

Bayes Theorem

$$f(\Theta|\mathcal{P}(t)) \propto \prod_{\tau=1}^{t} f(\Delta_{\tau}|a_{\tau}, \mathcal{P}(\tau-1), \Theta) f(\Theta)$$

optimal decision strategy minimizes the expected loss

Multiple Agents

- 2 agents
- the same random quantities a_t, Δ_t
- different models $f_1(\Delta_t|a_t, \mathcal{P}(t-1), \Theta_1), f_2(\Delta_t|a_t, \mathcal{P}(t-1), \Theta_2)$
- different parameters Θ_1, Θ_2
- posterior pdfs $f_1(\Theta_1|\mathcal{P}_1(t)), f_2(\Theta_2|\mathcal{P}_2(t))$ $\mathcal{P}_1(t), \mathcal{P}_2(t)$ consist of different realizations; not stored

cooperating agents → sharing knowledge

"How to improve $f_1(\Theta_1|\mathcal{P}_1(t))$ by $f_2(\Theta_2|\mathcal{P}_2(t))$?"

system model: $f(\Delta_t|a_t,\Theta)$ expert information: $h(\Delta,a)$

How to incorporate $h(\Delta, a)$ into the posterior pdf 'as a finite number of observations'?

$$f(\Theta|\mathcal{P}(t)) \propto f(\Theta) \prod_{\tau=1}^{t} f(\Delta_{\tau}|a_{\tau}, \Theta) =$$

$$= f(\Theta) \exp\left(t \int r(\Delta, a) \ln f(\Delta|a, \Theta) d\Delta da\right)$$

 $r(\Delta, a) \dots$ empirical pdf from $\mathcal{P}(t)$

 $f(\Theta|h) \propto f(\Theta) \exp(t \int h(\Delta, a) \ln f(\Delta|a, \Theta) d\Delta da)$

system model: $f(\Delta_t | a_t, \Theta)$ expert information: $h(\Delta, a)$

How to incorporate $h(\Delta, a)$ into the posterior pdf 'as a finite number of observations'?

$$f(\Theta|\mathcal{P}(t)) \propto f(\Theta) \prod_{\tau=1}^{t} f(\Delta_{\tau}|a_{\tau}, \Theta) =$$

$$= f(\Theta) \exp\left(t \int r(\Delta, a) \ln f(\Delta|a, \Theta) d\Delta da\right)$$

 $r(\Delta, a) \dots$ empirical pdf from $\mathcal{P}(t)$

 $f(\Theta|h) \propto f(\Theta) \exp\left(t \int h(\Delta, a) \ln f(\Delta|a, \Theta) d\Delta da\right)$

system model: $f(\Delta_t|a_t, \Theta)$ expert information: $h(\Delta, a)$

How to incorporate $h(\Delta, a)$ into the posterior pdf 'as a finite number of observations'?

$$f(\Theta|\mathcal{P}(t)) \propto f(\Theta) \prod_{\tau=1}^{t} f(\Delta_{\tau}|a_{\tau}, \Theta) =$$

$$= f(\Theta) \exp\left(t \int r(\Delta, a) \ln f(\Delta|a, \Theta) d\Delta da\right)$$

 $r(\Delta, a)$... empirical pdf from $\mathcal{P}(t)$

 $f(\Theta|h) \propto f(\Theta) \exp\left(t \int h(\Delta, a) \ln f(\Delta|a, \Theta) d\Delta da\right)$

system model: $f(\Delta_t|a_t,\Theta)$ expert information: $h(\Delta,a)$

How to incorporate $h(\Delta, a)$ into the posterior pdf 'as a finite number of observations'?

$$f(\Theta|\mathcal{P}(t)) \propto f(\Theta) \prod_{\tau=1}^{t} f(\Delta_{\tau}|a_{\tau}, \Theta) =$$

$$= f(\Theta) \exp\left(t \int r(\Delta, a) \ln f(\Delta|a, \Theta) d\Delta da\right)$$

 $r(\Delta, a)$... empirical pdf from $\mathcal{P}(t)$

$$f(\Theta|h) \propto f(\Theta) \exp(t \int h(\Delta, a) \ln f(\Delta|a, \Theta) d\Delta da)$$

Comments

$$f(\Theta|h) \propto f(\Theta) \exp(t \int h(\Delta, a) \ln f(\Delta|a, \Theta) d\Delta da)$$

- $h(\Delta, a)$ is processed 'data-like'
- $h(\Delta, a)$ is taken as a finite number (t) of observations
- the method is technically feasible
- can be adapted for approximate learning (Quasi-Bayes)

- $\begin{array}{c} \bullet \text{ Participant 2:} \\ \text{ system model} \\ \text{ posterior pdf} \\ \text{ decision strategy} \end{array} \right\} f_2(\Delta_t, a_t, |\mathcal{P}(t-1)) \rightarrow f_2(\Delta, a, \phi)$
- Participant 1: $f_1(\Delta_t|a_t, \mathcal{P}(t-1), \Theta_1) \equiv f_1(\Delta_t|a_t, \phi_{t-1}, \Theta_1)$ $f_1(\Theta_1|f_2) \propto f_1(\Theta) \exp\left(T \int f_2(\Delta, a, \phi) \ln f_1(\Delta|a, \phi, \Theta_1)\right)$

- $\begin{array}{c} \bullet \text{ Participant 2:} \\ \text{ system model} \\ \text{ posterior pdf} \\ \text{ decision strategy} \end{array} \right\} f_2(\Delta_t, a_t, | \mathcal{P}(t-1)) \rightarrow f_2(\Delta, a, \phi)$
- Participant 1: $f_1(\Delta_t|a_t,\mathcal{P}(t-1),\Theta_1) \equiv f_1(\Delta_t|a_t,\phi_{t-1},\Theta_1)$ $f_1(\Theta_1|f_2) \propto f_1(\Theta) \exp\left(T \int f_2(\Delta,a,\phi) \ln f_1(\Delta|a,\phi,\Theta_1)\right)$

- $\begin{array}{c} \bullet \text{ Participant 2:} \\ \text{ system model} \\ \text{ posterior pdf} \\ \text{ decision strategy} \end{array} \right\} f_2(\Delta_t, a_t, |\mathcal{P}(t-1)) \rightarrow f_2(\Delta, a, \phi)$
- Participant 1: $f_1(\Delta_t|a_t,\mathcal{P}(t-1),\Theta_1) \equiv f_1(\Delta_t|a_t,\phi_{t-1},\Theta_1)$ $f_1(\Theta_1|f_2) \propto f_1(\Theta) \exp\left(T \int f_2(\Delta,a,\phi) \ln f_1(\Delta|a,\phi,\Theta_1)\right)$

Concluding Remarks

- information exchange via pdfs quantities in common
- based on a method for incorporating information in form of pdf of data
 - attempt to extend Bayesian theory
 - practically feasible
 - ad hoc
 - theoretical base is missing
- open problems:
 - How to avoid a repeated incorporation of the same information?
 - How to select proper T?
 - How to proceed in case of partially quantities?

Concluding Remarks

- information exchange via pdfs quantities in common
- based on a method for incorporating information in form of pdf of data
 - attempt to extend Bayesian theory
 - practically feasible
 - ad hoc
 - theoretical base is missing
- open problems:
 - How to avoid a repeated incorporation of the same information?
 - How to select proper T?
 - How to proceed in case of partially quantities?