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Sequential Triangle Strip Generator Based

on Hopfield Networks

Jǐrı́ Š́ıma and Radim Lňenǐcka

Abstract

The important task of generating the minimum number of sequential triangle strips (tristrips)

for a given triangulated surface model is motivated by applications in computer graphics. This hard

combinatorial optimization problem is reduced to the minimum energy problem in Hopfield nets by a

linear-size construction. In particular, the classes of equivalent optimal stripifications are mapped one to

one to the minimum energy states that are reached by a Hopfieldnetwork during sequential computation

starting at the zero initial state. Thus the underlying Hopfield network powered by simulated annealing

(i.e. Boltzmann machine) which is implemented in a program HTGEN can be used for computing the

semi-optimal stripifications. Practical experiments confirm that one can obtain much better results using

HTGEN than by a leading stripification program FTSG althoughthe running time of simulated annealing

grows rapidly near the global optimum. Nevertheless, HTGENexhibits empirical linear time complexity

when the parameters of simulated annealing (i.e. the initial temperature and the stopping criterion) are

fixed, and thus provides the semioptimal offline solutions even for huge models of hundreds of thousands

of triangles within reasonable time.
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Sequential triangle strip, combinatorial optimization, Hopfield network, minimum energy, simulated

annealing.

J.Š.’s research was partially supported by the “Information Society” project 1ET100300517 and the Institutional Research

Plan AV0Z10300504. R.L.’s. work was partially supported byMinistry of Education, Youth and Sports of the Czech Republic

through the project 1M0572.
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I. SEQUENTIAL TRIANGLE STRIPS

Piecewise-linear surfaces defined by sets of triangles (triangulations) are widely used repre-

sentations for geometric models. Computing a succinct encoding of a triangulated surface model

represents an important problem in graphics and visualization. Current 3D graphics rendering

hardware often faces a memory bus bandwidth bottleneck in the processor-to-graphics pipeline.

Apart from reducing the number of triangles that must be transmitted it is also important to

encode the triangulated surface efficiently. A common encoding scheme is based on sequential

triangle strips which avoid repeating the vertex coordinates of shared triangle edges. Triangle

strips are supported by several graphics libraries (e.g. IGL, PHIGS, Inventor, OpenGL).

In particular, asequential triangle strip(hereafter brieflytristrip) of lengthm−2 is an ordered

sequence ofm ≥ 3 verticesσ = (v1, . . . , vm) which encodes the set ofn(σ) = m − 2 different

trianglesTσ = {{vp, vp+1, vp+2} | 1 ≤ p ≤ m − 2} so that their shared edges follow alternating

left and right turns as indicated in Fig. 1 by the dashed line.Thus a triangulation consisting

of a single tristrip withn triangles allows transmitting of onlyn + 2 (rather than3n) vertices.

In general, a triangulated surface modelT with n triangles that is decomposed intok tristrips

Σ = {σ1, . . . , σk} requires onlyn + 2k vertices to be transmitted. A crucial problem is to

decompose a triangulated surface model into the fewest tristrips. This stripification problem has

recently been proven to be NP-complete in [1] where also a more detailed discussion concerning

conventional stripification algorithms can be found including relevant references.

In the present paper, a new method of generating tristrips for a given triangulated surface

modelT with n triangles is proposed which is based on a linear-time reduction to the minimum

energy problem in a Hopfield networkHT which hasO(n) units andO(n) connections. This

approach has been inspired by a more complicated and incomplete reduction (e.g. sequential

cycles were not excluded) introduced in [2] which was supported only by experiments.

The paper is organized as follows. After a brief review of basic definitions concerning Hopfield

nets in Section II, the main construction of Hopfield networkHT for a given triangulationT is

described in Section III. The correctness of this reductionis formally verified in Section IV by

proving a one-to-one correspondence between the classes ofequivalent optimal stripifications of

T and the minimum energy states reached byHT during sequential computation starting at the

zero initial state (orHT can be initialized arbitrarily if one asymmetric weight is introduced).
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This provides another NP-completeness proof for the minimum energy problem in Hopfield nets.

In addition,HT combined with simulated annealing (i.e. Boltzmann machine) has been imple-

mented in a program HTGEN which is compared against a leadingstripification program FTSG

in Section V. Practical experiments show that HTGEN can compute much better stripifications

than FTSG although the running time of HTGEN grows rapidly when the global optimum is

being approached. Furthermore, we study empirically how tochoose the parameters of simulated

annealing (i.e. the initial temperature and the stopping criterion) so that the correct stripification

with a given number of tristrips is obtained in the shortest time. Moreover, the experiments show

the average linear time complexity of HTGEN when the parameters of simulated annealing are

fixed. Thus, one can use HTGEN for finding the semioptimal offline solutions even for huge

models of hundreds of thousands of triangles within reasonable time.

A preliminary version of this article appeared as extended abstracts [3] and [4] containing a

proof sketch and first practical experiments with HTGEN using “grid” models, respectively.

II. THE M INIMUM ENERGY PROBLEM

In his 1982 paper [5], John Hopfield introduced a very influential associative memory model

which has since come to be widely known as the (symmetric) Hopfield network. The funda-

mental characteristic of this model is its well-constrained convergence behavior as compared to

arbitrary asymmetric networks. Part of the appeal of Hopfield nets stems from their connection

to the much-studied Ising spin glass model in statistical physics [6], and their natural hardware

implementations using electrical networks [7] or optical computers [8]. Hopfield networks have

also been applied to the fast approximate solution of combinatorial optimization problems [9],

[10].

Formally, a Hopfield network is composed ofs computationalunits or neurons, indexed as

1, . . . , s, that are connected into an undirected graph orarchitecture, in which each connection

between uniti andj is labeled with an integersymmetric weightw(i, j) = w(j, i). The absence

of a connection within the architecture indicates a zero weight between the respective neurons,

and vice versa. Hereafter we assumew(j, j) = 0 for everyj = 1, . . . , s. Thesequential discrete

dynamics of such a network is here considered, in which the evolution of the networkstate

y
(t) = (y

(t)
1 , . . . , y

(t)
s ) ∈ {0, 1}s is determined for discrete time instantst = 0, 1, 2, . . . as follows.

The initial state y
(0) may be chosen arbitrarily, e.g.y(0) = (0, . . . , 0). At discrete timet ≥ 0,
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the excitationof any neuronj is defined as

ξ
(t)
j =

s
∑

i=1

w(i, j)y
(t)
i − h(j) (1)

including an integerthresholdh(j) local to unitj. At the next instantt+1, one (e.g. randomly)

selected neuronj computes its new outputy(t+1)
j = H(ξ

(t)
j ) by applying the Heaviside activation

function H(ξ) defined to be 1 forξ ≥ 0 and 0 for ξ < 0, that is, j becomesactive when

H(ξ
(t)
j ) = 1 while j will be passiveotherwise. The remaining units do not change their states,

i.e. y
(t+1)
i = y

(t)
i for i 6= j. In this way the new network statey(t+1) at timet + 1 is determined.

In order to formally avoid long constant intermediate computations when only those units

are updated that effectively do not change their outputs, amacroscopic timeτ = 0, 1, 2, . . . is

introduced during which all the units in the network are updated. A computation of a Hopfield

networkconvergesor reaches a stable statey(τ∗) at macroscopic timeτ ∗ ≥ 0 if y
(τ∗) = y

(τ∗+1).

The well-known fundamental property of a symmetric Hopfieldnetwork is that its dynamics is

constrained by theenergyfunction

E(y) = −
1

2

s
∑

j=1

s
∑

i=1

w(i, j)yiyj +

s
∑

j=1

h(j)yj (2)

which is a bounded function defined on its state space whose value decreases along any non-

constant computation path (to be precise it is assumed here without loss of generality [11] that

ξ
(t)
j 6= 0). It follows from the existence of such a function that starting from any initial state the

network converges towards some stable state correspondingto a local minimum ofE [5]. Thus

the cost function of a hard combinatorial optimization problem can be encoded into the energy

function of a Hopfield network which is then minimized in the course of computation. Hence, the

minimum energy problemof finding a network state with minimum energy is of special interest.

Nevertheless, this problem is in general NP-complete [6] (see also [12] for related results).

A stochastic variant of the Hopfield model called theBoltzmann machine[13] is also con-

sidered in which a randomly selected unitj becomes active at timet + 1, i.e. y
(t+1)
j = 1, with

probability P (ξ
(t)
j ) computed by applying the probabilistic activation function P : ℜ −→ (0, 1)

defined as

P (ξ) =
1

1 + e−2ξ/T (τ)
(3)
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where T (τ) > 0 is a so-calledtemperatureat macroscopic timeτ ≥ 0. This parameter is

controlled bysimulated annealing, e.g.

T (τ) =
T (0)

log2(1 + τ)
(4)

for τ > 0 and sufficiently high initial temperatureT (0). The simulated annealing is a powerful

heuristic method for avoiding the local minima in combinatorial optimization.

III. T HE REDUCTION

For the purpose of reduction the following definitions are introduced. LetT be a set of

n triangles that represents a triangulated surface model homeomorphic to a sphere in which

each edge is incident to at most two triangles. Moreover, choose and fix one of the two possible

orientations of this surface. An edge is said to beinternal if it is shared by exactly two triangles;

otherwise it is aboundaryedge. Denote byI and B the sets of internal and boundary edges,

respectively, in triangulationT . Furthermore, asequential cycleis a “cycled tristrip”, that is, an

ordered sequence of verticesC = (v1, . . . , vm) such thatvm−1 = v1 andvm = v2 wherem ≥ 4 is

even, which encodes the set ofm−2 different trianglesTC = {{vp, vp+1, vp+2} | 1 ≤ p ≤ m−2}.

Also denote byIC and BC the sets of internal and boundary edges of sequential cycleC,

respectively, that is,IC = {{vp, vp+1} | 1 ≤ p ≤ m−2} andBC = {{vp, vp+2} | 1 ≤ p ≤ m−2}.

An example of the sequential cycle is depicted in Fig. 2 whereits internal and boundary edges

are indicated by the dashed and dotted lines, respectively.In addition, letC be the set of all

sequential cycles inT .

For each sequential cycleC ∈ C one uniquerepresentativeinternal edgeeC ∈ IC can be chosen

as follows. Start with any cycleC ∈ C and choose any edge fromIC to be its representative edge

eC . Observe that for the fixed orientation of triangulated surface any internal edge follows either

left or right turn corresponding to at most two sequential cycles. Thus denote byC ′ the sequential

cycle having no representative edge so far which shares its internal edgeeC ∈ IC ∩IC′ with C if

suchC ′ exists; otherwise letC ′ be any sequential cycle with no representative internal edge or

stop if all the sequential cycles do have their representative edges. Further choose any edge from

IC′ \{eC} to be the representative edgeeC′ of C ′ and repeat the previous step withC replaced by

C ′. Clearly, each edge represents at most one cycle because setIC′ \ {eC} 6= ∅ always contains

only edges that do not represent any cycle so far. Otherwise,some other sequential cycleC ′′
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different from C would have obtained its representative edgeeC′′ from IC′ ∩ IC′′ , and hence a

representative edge would have already been assigned toC ′ (immediately aftereC′′ was assigned

to C ′′) beforeC is considered.

The Hopfield networkHT corresponding to triangulationT will now be constructed. For

each internal edgee = {v1, v2} ∈ I in T we introduce two neuronsℓe and re in HT with the

following meaning. The activity of either unitℓe (i.e. yℓe
= 1) or re (i.e. yre

= 1) will indicate

thate follows the left or right turn, respectively, along some tristripσ ∈ Σ (according to the fixed

orientation ofT ). Let Le = {e, e1, e2, e3, e4} with e1 = {v1, v3}, e2 = {v2, v3}, e3 = {v2, v4},

and e4 = {v1, v4} be the set of edges of the two triangles{v1, v2, v3}, {v1, v2, v4} that share

edgee. Denote byJe = {ℓf , rf | f ∈ Le ∩ I} the set of neurons that are associated with the

internal edges fromLe. Unit ℓe is connected with all neurons fromJe (via negative weights)

except for unitsre2 (if e2 ∈ I), ℓe, andre4 (if e4 ∈ I) whose states may encode a tristrip that

traverses edgee by the left turn. Such a situation (forLe ⊆ I) is depicted in Fig. 3 where the

edges shared by consecutive triangles of a tristrip are marked together with the associated active

neuronsre2, ℓe, re4. Similarly, unit re is connected with neurons fromJe except for unitsℓe1 (if

e1 ∈ I), re, andℓe3 (if e3 ∈ I) which serve to encode the right turn. Thus define the weights

w(i, ℓe) = w(ℓe, i) = −7 for i ∈ Jℓe
= Je \ {re2, ℓe, re4} ,

w(i, re) = w(re, i) = −7 for i ∈ Jre
= Je \ {ℓe1, re, ℓe3}

(5)

for each internal edgee ∈ I. Hence, the states of Hopfield networkHT with these negative

symmetric weights, which enforce locally the alternation of left and right turns, encode tristrips.

Furthermore, for each representative edgeeC (C ∈ C) define eitherjC = ℓeC
if eC follows

the left turn along sequential cycleC, or jC = reC
if eC follows the right turn alongC. Let

J = {jC |C ∈ C} be the set containing all such neurons whereasJ ′ = {ℓe, re 6∈ J | e ∈ I}

denotes its complement. The thresholds of neurons associated with internal edges are defined by

h(j) =







−5 + 2be(j) for j ∈ J ′

1 + 2be(j) for j ∈ J ,
(6)

wheree(j) = e denotes the internal edge which unitj ∈ {ℓe, re} is associated with, andbe ≤ 2

is the number of sequential cyclesC having e as their boundary edge and satisfyinge 6∈ LeC
,

that is,be = |{C ∈ C | e ∈ B′
C}| whereB′

C = (BC ∩ I) \ LeC
.

Nevertheless, the Hopfield networkHT must also avoid the states encoding cycled strips

of triangles along the sequential cycles that appear in triangulationT [1]. As follows from the
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analysis below (Section IV), such infeasible states would have less energy (2) than those encoding

the optimal stripifications. For this purpose, two auxiliary neuronsdC , aC are introduced inHT

for each sequential cycleC ∈ C. Unit dC will compute the disjunction of outputs from all

neuronsi associated with boundary edgese(i) ∈ B′
C of C (i.e. except for the edges ofLeC

).

Only if this neurondC is active, the activation of unitjC associated with representative edgeeC

will be enabled. Any tristrip may then pass through edgeeC along the direction ofC only if

some boundary edge ofC is a part of another tristrip crossing the sequential cycleC. This will

ensure that the states of Hopfield networkHT do not encode sequential cycles. In addition, unit

aC will balance the contribution ofdC to the energy whenjC is passive. As depicted in Fig. 4,

this is implemented for each sequential cycleC ∈ C by the following thresholds and symmetric

weights:

h(dC) = h(aC) = 1 , (7)

w(i, dC) = w(dC, i) = 2 for e(i) ∈ B′

C , (8)

w(dC, jC) = w(jC , dC) = 7 , (9)

w(dC, aC) = w(aC , dC) = 2 , w(jC , aC) = w(aC , jC) = −2 . (10)

This completes the construction of Hopfield networkHT .

Moreover, observe that the number of unitss = 2|I| + 2|C| = O(n) in HT is linear in terms

of triangulation sizen = |T | because the number of sequential cycles|C| can be upper bounded

by 2|I| = O(n) since each internal edge can belong to at most two cycles. Similarly, the number

of connections inHT can be upper bounded by7 · 2|I|+ 2 · 2|I|+ 3|C| = O(n) according to (5)

and (8)–(10) since again each internal edge may appear inBC for at most twoC ∈ C. Clearly,

the reduction can also be done within linear timeO(n).

IV. THE CORRECTNESS

The correctness of the reduction introduced in Section III will be verified by proving Theorem 1

below. LetST be the set of optimal stripifications with the minimum numberof tristrips for T .

DefineΣ ∈ ST is equivalentwith Σ′ ∈ ST if their corresponding tristrips encode the same sets

of triangles, i.e.Σ ∼ Σ′ iff {Tσ | σ ∈ Σ} = {Tσ′ | σ′ ∈ Σ′}. For example, two equivalent optimal

stripifications may differ in a tristripσ encoding triangles of sequential cycleC (i.e. Tσ = TC)
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which is split at two different positions. Moreover, let[Σ]∼ = {Σ′ ∈ ST |Σ′ ∼ Σ} be the class

of optimal stripifications equivalent withΣ ∈ ST and denote byST /∼ = {[Σ]∼ |Σ ∈ ST} the

partition of ST into these equivalence classes.

Theorem 1:Let HT be a Hopfield network corresponding to triangulationT with n triangles

and denote byY ∗ ⊆ {0, 1}s the set of stable states that can be reached during sequential

computation byHT starting at the zero initial state. Then each statey ∈ Y ∗ encodes a correct

stripificationΣy of T and has energy

E(y) = 5(k − n) (11)

where k is the number of tristrips inΣy. In addition, there is a one-to-one correspondence

between the classes of equivalent optimal stripifications[Σ]∼ ∈ ST /∼ having the minimum

number of tristrips forT and the states inY ∗ with minimum energyminy∈Y ∗ E(y).

Proof: Stripification Σy is decoded fromy ∈ Y ∗ as follows. Denote byI0 = {e ∈ I |

yℓe
= yre

= 0} the set of internal edgese ∈ I whose associated neuronsℓe, re are both passive

and letI1 = I \ I0 be its complement. LetΣy contain each ordered sequenceσ = (v1, . . . , vm)

of m ≥ 3 vertices that encodesn(σ) = m − 2 different triangles{vp, vp+1, vp+2} ∈ T for

1 ≤ p ≤ m − 2, such that their edgese0 = {v1, v3}, em = {vm−2, vm}, andep = {vp, vp+1} for

1 ≤ p ≤ m − 1 satisfy e0, e1, em−1, em ∈ I0 ∪ B and e2, . . . , em−2 ∈ I1. Notice thatσ ∈ Σy

with n(σ) = 1 encodes a single triangle with all its edges inI0 ∪ B. It will be proven thatΣy

corresponding to any stable statey ∈ Y ∗ is a correct stripification ofT .

We will first observe that every neuronj ∈ J ′ ∪ J associated with an internal edge is passive

if there is an active uniti ∈ Jj (see (5) for the definition ofJj). Indeed, for each unitj ∈ J ′∪J

the number of positive weights (8) contributing to its excitationξj is at mostbe(j) ≤ 2 and these

are subtracted within thresholdh(j) according to (6). Hence, even if all the unitsi ∈ Jj are

passive,ξj ≤ 5 for j ∈ J ′ due to (6) whereasξj ≤ 6 for j ∈ J may include positive weight

(9). Thus, any active uniti ∈ Jj contributing toξj via negative weight (5) ensures that unitj is

passive. By the construction ofHT , this guarantees that setsTσ, σ ∈ Σy, are pairwise disjoint,

and that eachσ ∈ Σy encodes a set of different triangles whose shared edges follow alternating

left and right turns.

Further, it must also be checked that stripificationΣy covers all triangles inT , that is,
⋃

σ∈Σy
Tσ = T . According to the definition ofΣy it suffices to prove that there is no sequential
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cycle C = (v1, . . . , vm) (recall vm−1 = v1, vm = v2) such thatep = {vp, vp+1} ∈ I1 for all

p = 1, . . . , m − 2. On the contrary suppose that suchC exists, which impliesBC ∩ I ⊆ I0. It

follows that unitjC ∈ J associated witheC = eq for some1 ≤ q ≤ m−2 could not be activated

during sequential computation ofHT starting at the zero state (i.e.y
(t)
jC

= 0 for any t ≥ 0)

since its positive thresholdh(jC) defined in (6) can only be reached by the weight (9) fromdC .

However,dC computes the disjunction of outputs from neuronsi associated withe(i) ∈ B′
C ⊆ I0

according to (7) and (8), which are passive in the course of computation. Hence,y(t)
dC

= 0 for

t ≥ 0 making also unitaC passive. Thuseq ∈ I0, which is a contradiction. This completes the

argument forΣy to be a correct stripification ofT .

Furthermore, assume thatΣy containsk tristrips. From the definition ofΣy, each tristrip

σ ∈ Σy is encoded usingn(σ)− 1 edges fromI1. Hence, the number of active units inJ ′∪J is

|I1| =
∑

σ∈Σy

(n(σ) − 1) = n − k . (12)

We will show that each active neuronj ∈ J ′ ∪ J is accompanied with a contribution of−5 to

the energy (2) which gives (11) according to (12). Assume that a neuronj ∈ J ′ ∪ J is active

which impliesyi = 0 for all units i ∈ Jj. Moreover, neuronj is connected tobe(j) units dC

for C ∈ C such thate(j) ∈ B′
C , which are active since the underlying disjunctions include

activej. Consider first the case when active neuronj is from J ′ which produces the following

contribution to the energy:

−
1

2
be(j)w(dC, j) −

1

2
be(j)w(j, dC) + h(j) = −be(j)w(dC, j) + h(j) = −5 (13)

according to (2), (6), and (8). Similarly, active neuronj = jC1 from J for someC1 ∈ C assumes

active unitdC1 and makesaC1 passive due to (7) and (10), which contributes to the energy by

−be(j)w(dC, j) − w(dC1, jC1) + h(j) + h(dC1) = −5 . (14)

In addition, unitaC for any C ∈ C balances the contribution of active neurondC to the energy

when jC is passive, that is,

−w(aC , dC) + h(dC) + h(aC) = 0 (15)

according to (7) and (10).

For the converse, we will show that for any optimal stripification Σ ∈ ST there is one state

y ∈ Y ∗ of HT such thatΣ ∈ [Σy]∼. An optimal stripificationΣ′ equivalent toΣ is used to
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determine this statey so thatΣ′ = Σy. For each tristripσ ∈ Σ that encodes trianglesTσ = TC

of some sequential cycleC ∈ C, define the corresponding tristripσ′ = (v1, . . . , vm) ∈ Σ′ so that

Tσ′ = Tσ and σ′ starts and terminates with representative edgeeC = {v1, v2} = {vm−1, vm}.

Then within the statey, let neuronℓe or re for e ∈ I be active iff there exists a tristrip

σ = (v1, . . . , vm) ∈ Σ′ such that its edge{vp, vp+1} = e for some2 ≤ p ≤ m − 2 follows the

left or right turn, respectively. In addition, let unitdC for C ∈ C be active iff there is an active

neuroni associated withe(i) ∈ B′
C whereas unitaC be active iffdC is active andjC is passive.

Clearly,y is a stable state ofHT . It must still be proven thaty can be reached during sequential

computation byHT starting at the zero initial state, that is,y ∈ Y ∗.

Define a directed graphG = (C,A) whose vertices are sequential cyclesC ∈ C and(C1, C2) ∈

A is an edge ofG iff eC1 ∈ B′
C2

. Let C′ be the set of all the verticesC ∈ C with yjC
= 1 that

belong to directed cycles inG. For a contradiction, suppose that all the unitsi associated with

e(i) ∈
⋃

C∈C′ B′
C \ EC′ whereEC′ = {eC |C ∈ C′}, are passive, that isyi = 0. Notice that for

eachC ∈ C′ also the unitsi associated withe(i) ∈ BC ∩LeC
are passive due to activejC . Thus,

such a stable state cannot be reached during any sequential computation byHT starting at the

zero initial state, which meansy 6∈ Y ∗. This is because neuronjC1 for any C1 ∈ C′ can only be

activated by corresponding unitdC1 whose activation depends solely on an active neuronjC2 for

anotherC2 ∈ C′ within a directed cycle ofG (i.e. (C2, C1) ∈ A) since the remaining neurons

associated with the edges fromB′
C1

\ EC′ which represent the inputs for disjunction computed

by dC1, are passive. SinceΣy is the optimal stripification, the underlying tristrips follow internal

edges of sequential cyclesC ∈ C′ as much as possible being interrupted only by edges from
⋃

C∈C′ BC \ EC′ .

In addition, any tristripσ ∈ Σy crossing some sequential cycleC1 ∈ C′, that is,∅ 6= Tσ∩TC1 6=

Tσ, has one its end within this cycleC1 becauseσ entersC1 only through its boundary edge

eC2 ∈ B′
C1

with yjC2
= 1, which is the only representative edge of a sequential cycleC2 ∈ C′

necessarily containingσ, i.e. Tσ ⊆ TC2 . We will prove that any sequential cycleC ∈ C′ contains

at least two tristripsσ1, σ2 ∈ Σy, that isTσ1 ⊆ TC andTσ2 ⊆ TC . Let C1, C2 ∈ C′ be sequential

cycles such that(C1, C), (C, C2) ∈ A form two consecutive edges within a directed cycle in

G (possiblyC1 = C2). The tristripσ ∈ Σy containing representative edgeeC1 ∈ B′
C interrupts

sequential cycleC (i.e. ∅ 6= Tσ ∩ TC 6= Tσ) whose remaining triangles inTC \ Tσ could still

be linked together in one tristripσ1 ∈ Σy so thatTσ1 = TC \ Tσ. However, such tristripσ1
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enters sequential cycleC2 (i.e. ∅ 6= Tσ1 ∩TC2 6= Tσ1) via representative edgeeC ∈ B′
C2

implying

eC 6∈ IC1 , and thus terminates inC2 which cutsσ1 in two parts. Hence, there must be at least

two tristripsσ1, σ2 ∈ Σy such thatTσ1 , Tσ2 ⊆ TC .

Thus, a stripificationΣ′
y

with fewer tristrips can be constructed fromΣy by introducing only

one tristripσ∗ ∈ Σ′
y

such thatTσ∗ = TC (e.g.yjC
= 0) instead of the two tristripsσ1, σ2 ∈ Σy,

and by shortening any tristripσ ∈ Σy that crosses and thus ends within sequential cycleC to

σ′ ∈ Σ′
y

so thatTσ′ ∩ TC = ∅, which does not increase the number of tristrips. This contradicts

the assumption thatΣy is the optimal stripification, and hencey ∈ Y ∗. Obviously, the class

of equivalent optimal stripifications[Σy]∼ with the minimum number of tristrips corresponds

uniquely to the statey ∈ Y ∗ having the minimum energyminy∈Y ∗ E(y) according to (11).

Note that the reduction in Theorem 1 together with the fact that the optimal stripification

problem is NP-complete [1] provides another NP-completeness proof for the minimum energy

problem in Hopfield networks (cf. [6], [12]). In addition, the restriction to the zero initial network

state in Theorem 1 can sometimes be inconvenient, e.g. in stochastic computation. Without this

constraint, however,HT may reach infeasible states. In particular, initially active unit jC can

activatedC in spite ofyi = 0 for all e(i) ∈ B′
C , which admits sequential cycleC. Nevertheless,

this can be secured by introducing the asymmetric weightw(dC, jC) = 7 whereasw(jC , dC) = 0,

cf. (9). This revision, which is implemented in program HTGEN and used for experiments in

Section V, does not break the convergence ofHT to statesy ∈ Y ∗.

V. EXPERIMENTS

A. Program HTGEN

An ANSI C program HTGEN has been created to automate the reduction from Theorem 1

including the simulation of Hopfield networkHT using simulated annealing (4). The input for

HTGEN is an object file (in the Wavefront .obj format [14]) describing triangulated surface model

T by a list of geometric vertices with their coordinates followed by a list of triangular faces each

composed of three vertex reference numbers. The program generates correspondingHT which

then computes stripificationΣy of T . This is extracted from final stable statey = y
(τ∗) ∈ Y ∗ of

HT at macroscopic timeτ ∗ into an output .objf format file containing a list of tristrips together

with vertex data (the .objf format [15] is a variant of the Wavefront .obj format which includes

July 4, 2006 DRAFT



12 IEEE TRANSACTIONS ON NEURAL NETWORKS

a data type for tristrips). The user may control the Boltzmann machine by specifying the initial

temperatureT (0) in (4) and the stopping criterionε given as the maximum percentage of unstable

units at the end of stochastic computation (the input valuesof ε are given in percents, e.g.ε = 0.1

stands for0.1%).

The experiments with HTGEN program were performed on a notebook HP Compaq nx6110

1.6GHz with 512MB RAM, running Linux operating system. The running time, which is stated

in seconds below, represents a real time exploited for overall computation including the system

overhead but not including the time needed for the construction of Hopfield networkHT (which

did not exceed one second in most cases).

B. Used Models

We have conducted experiments with HTGEN program using 3D geometric models represented

via polygonal meshes from several repositories, mostly from [17]. The detailed characteristics

of models (number of vertices, number of triangles, number of sequential cycles) together

with those of corresponding Hopfield nets (number of neurons, number of connections) used

in experiments are summarized in Table I. In particular, we have used a suite of 13 datasets

that all represent a single asteroid differing only in the level of details corresponding to the size

of the mesh, cf. Fig. 5. The smallest dataset of this suite consists of 216 triangles while the

largest of 299600 triangles. As for another models from [17], we have made experiments with a

space shuttle dataset consisting of 616 triangles, two airplane datasets—f-16 and cessna—and a

lung dataset; the sizes of these last three models vary from 4592 to 7446 triangles. Furthermore,

we have worked with a triceratops dataset depicted in Fig. 6 (5660 triangles), which is by

Viewpoint Animation Engineering and is available at [16], with a man figure dataset, Roman,

(20904 triangles) from [18], and with a Stanford bunny dataset (69451 triangles) and a dragon

dataset (871414 triangles), which are provided by [19]. In some cases, we had to convert a

dataset into the .obj format or to triangulate a polygonal mesh. For the triangulation, we have

used a part of the source code of a software package LODestar [20].

C. The Number of Trials

The resulting numbers of tristrips obtained using HTGEN andthe corresponding running times

were averaged over several trials of simulated annealing. In order to justify the presented results
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of our experiments below we have first explored the issue of how the achieved stripification

quality (i.e. the best number of tristrips) depends on the number of performed trials of simu-

lated annealing. For each of three selected models, asteroid2.5k (2418 triangles), asteroid10k

(9828 triangles), and Roman (20904 triangles), fifteen experiments have been conducted, each

for a fixed number of trials, and the results are summarized inTable II. For example, during

ten trials the best numbers of tristrips, 244, 929, and 2442,respectively, were obtained for the

underlying three models while 223, 939, and 2380 were computed within hundred trials, and

211, 915, and 2380 were achieved after thousand trials. It appears that after several trials the

stripification quality does not substantially increase with the increasing number of trials and one

can consider the results that are averaged over 10 to 30 trials to be reasonably reliable.

D. The Choice of Initial TemperatureT (0) and Stopping Criterionε

In the following experiment we have investigated the dependence of the resulting number of

tristrips and the corresponding running time on both the initial temperatureT (0) and the stopping

criterion ε. The asteroid40k model (39624 triangles) is used to illustrate these dependencies

and the results are averaged over 10 trials. In particular, rows and columns in Tables III–VI

correspond to different values ofT (0) and ε, respectively. Here we present only a selected

window of the whole picture while much more experiments haveactually been conducted for

wider domains and more detailed scales ofT (0) and ε (Table VI is cut since the time needed

for computing the underlying missing values exceeded reasonable limits). Furthermore, each cell

in these tables shows the average number of tristrips over 10trials, the minimum number of

tristrips achieved in the best trial, the average real running time in seconds, and the average

macroscopic time, respectively, for correspondingT (0) and ε. It appears that for a fixed initial

temperatureT (0) (corresponding to a row in the tables) the running time increases with decreasing

ε while the quality of resulting stripifications improves at the same time. Similarly for a fixedε

(corresponding to a column in the tables) one can achieve better stripification results by increasing

T (0) at the cost of additional running time.

In addition, “contour lines” connecting the cells in the tables that represent approximately the

same quality of stripification are marked in the tables. In particular, each contour line separates

the cells of the table into two groups. All the cells with the average number of tristrips lesser

than the number associated with the contour line belong to one group, while the other group
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14 IEEE TRANSACTIONS ON NEURAL NETWORKS

consists of the cells whose average number of tristrips is greater than or equal to this number.

We can observe from the shape of these contour lines that a required number of tristrips need

not be achieved at all forε greater than some upper threshold while this number is obtained

already for some smallT (0) if ε is below some lower threshold. The transition between thesetwo

extremes seems to be continuous while smaller initial temperaturesT (0) are sufficient for smaller

ε. The shortest running time is usually achieved within this transition region closer to the lower

threshold ofε where the contour line stagnates at some level ofT (0) (see the cells with numbers

in boldface; for each contour line only one minimum with the greatestε is marked although the

minimum time measured with precision in seconds is actuallyachieved in more cases). Hence,ε

can be chosen to be not much above the lower threshold where the contour line corresponding to

the minimum number of tristrips saturates and the quality ofstripifications scales withT (0) (see

the column corresponding toε = 1 in Table IV). Based on these observations suitable values

for ε and T (0) can be chosen empirically so that HTGEN achieves semioptimal stripifications

within reasonable running time.

E. The Average Time Complexity

We have also measured empirically how the computational time used by HTGEN depends on

the model size, i.e. the number of triangles. For various fixed values of initial temperatureT (0)

and stopping criterionε the Boltzmann machine converged within almost constant number of

macroscopic time steps for the asteroid model whose sizes were scaled from 216 up to 198930

triangles (except for small sizes). This is illustrated in Tables VII, VIII, and IX where the results

are presented forT (0) = 5, ε = 0.1, T (0) = 9, ε = 0.3, andT (0) = 13, ε = 0.5, respectively.

Since by construction the execution of one macroscopic stepdepends linearly on the number

of triangles in the model, these experiments provide an evidence for the averagelinear time

complexity of HTGEN. When this empirical time complexity isconfronted with the fact that

the stripification problem is NP-complete in general [1], this suggests there must be a rigorous

efficient approximation algorithm for this problem.

F. Comparing with FTSG

Program HTGEN has been compared against a leading practicalsystem FTSG version 1.31 that

computes online stripifications [1]. Experiments have beenconducted using 6 models (shuttle, f-
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16, triceratops, lung, cessna, bunny) whose sizes vary from616 to 69451 triangles. The results by

HTGEN were averaged over 30 trials. Suitable parametersε andT (0) of HTGEN were chosen

for each model separately using the heuristics proposed in Section V-D so that the resulting

stripifications consist of as few tristrips as possible at the cost of reasonable amount of time.

Also FTSG was run with its best options (i.e. the best combination of four relevant options

-bfs, -dfs, -alt, and -sgi in addition to two implicitly usedoptions -opt and -sync) that led to

the least number of tristrips in the resulting stripification. The results of these experiments are

summarized in Table X which shows that one can achieve much better results by HTGEN than

by using FTSG with its most successful options (typically -dfs, -alt) although the running time

of HTGEN grows rapidly when the global optimum is being approached. Moreover, for the f-16

and triceratops models the stripification results obtainedby HTGEN and FTSG are graphically

depicted in Figures 7, 8, and 9, 10, respectively, where the superiority of HTGEN over FTSG in

the average length of tristrips is clearly visible. As concerns the time complexity, system HTGEN

cannot compete with real-time program FTSG providing the stripifications within a few tens of

milliseconds. Nevertheless, HTGEN can be useful if one is interested in the stripification with

a small number of tristrips which may be computed at the preprocessing stage.

G. Huge Models

In the last experiment whose results are presented in Table XI, program HTGEN has been

tested on huge models (asteroid300k, dragon) with hundredsof thousands of triangles, for which

only 3 trials were performed forε = 0.3 andT (0) = 10. It appears that the stripifications better

than those obtained using FTSG with its optimal options (e.g. 133072 tristrips within 7 seconds

for the dragon model) were still achieved in doable time frame.

VI. CONCLUSION

In the present paper we have proposed a new heuristic method for generating sequential

triangle strips for a given triangulated surface model which represents an important hard (NP-

complete) problem in computer graphics and visualization.In particular, we have reduced this

stripification problem to the minimum energy problem in Hopfield networks and formally proven

that there is a one-to-one correspondence between the optimal stripification representatives and

the minimum energy states reachable by the Hopfield net from the initial zero state. This result
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is not only important from the theoretical point of view providing an interesting relation between

two combinatorial problems of different types but the method is also practically applicable since

the construction of the Hopfield net uses only a linear numberof units and connections.

Thus we have implemented the reduction in the program HTGEN including the simulated

annealing which computes the semioptimal stripifications.We have conducted plenty of prac-

tical experiments which confirmed that HTGEN can generate smaller numbers of tristrips than

those obtained by a leading stripification program FTSG although the running time of HTGEN

grows rapidly near the global optimum. Particularly, HTGENcannot compete with the real-time

program FTSG providing the stripifications within a few milliseconds. Nevertheless, HTGEN

can be used to generate almost optimal stripifications when one is satisfied by offline solutions

at the preprocessing stage. In addition, HTGEN exhibits empirical linear time complexity for

fixed parameters of simulated annealing, and the stripifications were computed using HTGEN

even for huge models of hundreds of thousands of triangles inreasonable time. This suggests

that a rigorous approximation algorithm with a high performance guarantee might exist for the

stripification problem whose design represents an important open problem. Another challenge

for further research is to generalize the method for sequential strips with zero-area triangles

which are also supported in practical graphics systems.
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[12] J. Šı́ma and P. Orponen, “General-purpose computation with neural networks: A survey of complexity theoretic results.”

Neural Computation, vol. 15, no. 12, 2003, pp. 2727–2778.

[13] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm for Boltzmann machines,”Cognitive Science,

vol. 9, no. 1, 1985, pp. 147–169.

[14] (1997). The Graphics File Formats Page [Online]. Available: http://www.dcs.ed.ac.uk/home/mxr/gfx/3d/OBJ.spec

[15] (1998). File Format Section of the Stripe homepage [Online]. Available: http://www.cs.sunysb.edu/˜stripe/

[16] (2003). The OBJ Format Library on the homepage of X. Hu, the website of Dept. of Computer & Information Sciences

of University of Alabama at Birmingham, USA. [Online]. Available: http://www.cis.uab.edu/info/grads/hux/Data/obj.html

[17] (2004). Local OBJ Model Repository on the homepage of A.Gooch, the website of Northwestern University, Evanston,

IL, USA. [Online]. Available: http://www.cs.northwestern.edu/˜ago820/cs351/Models/OBJmodels/

[18] (2006). The 3D Cafe website. [Online]. Available: http://www.3dcafe.com/

[19] (2006). The Level of Detail for 3D Graphics website. [Online]. Available: http://lodbook.com/models/

[20] R. Sainitzer and H. Buchegger. (1996). LODestar, Levelof Detail Generator for VRML. [Online]. Available:

http://www.cg.tuwien.ac.at/research/vr/lodestar/Download/

July 4, 2006 DRAFT



18 IEEE TRANSACTIONS ON NEURAL NETWORKS

1

4

6

7

5

2

3

Fig. 1. Tristrip (1,2,3,4,5,6,3,7,1)

1

35
4

26

Fig. 2. Sequential Cycle (1,2,3,4,5,6,1,2)

DRAFT July 4, 2006
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Fig. 5. The Asteroid1k Model (950 Triangles)

Fig. 6. The Triceratops Model (5660 Triangles)
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Fig. 7. Program: HTGEN, Model: F-16, Number of Tristrips: 312

Fig. 8. Program: FTSG, Model: F-16, Number of Tristrips: 478
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Fig. 9. Program: HTGEN, Model: Triceratops, Number of Tristrips: 557

Fig. 10. Program: FTSG, Model: Triceratops, Number of Tristrips: 960
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TABLE I

CHARACTERISTICS OFMODELS USED IN EXPERIMENTS

Triangulated Mesh T Hopfield Network HT

Model Number of
Vertices

Number of
Triangles

Number of
Seq. Cycles

Number of
Neurons

Number of
Connections

asteroid250 110 216 20 688 3544
asteroid500 223 442 12 1350 5445
asteroid1k 477 950 18 2886 11757

asteroid2.5k 1211 2418 30 7314 30039
asteroid5k 2422 4840 43 14606 60237
asteroid10k 4916 9828 62 29608 122476
asteroid20k 9902 19800 89 59578 246971
asteroid40k 19814 39624 126 119124 494550
asteroid60k 29798 59592 155 179086 743981
asteroid80k 39782 79560 179 239038 993437
asteroid100k 49649 99294 200 298282 1239987
asteroid200k 99467 198930 284 597358 2484945
asteroid300k 149802 299600 349 899498 3742939

shuttle 476 616 0 1528 4490
f-16 2344 4592 9 13794 48643

cessna 6763 7446 10 16882 46083
lung 3121 6076 4 18064 63116

triceratops 2832 5660 2 16984 59532
Roman 10473 20904 0 62548 218426
bunny 34834 69451 1 208132 727951
dragon 437645 871414 334 2610640 9144021

TABLE II

BEST NUMBER OF TRISTRIPS VS. NUMBER OF TRIALS

Best Number of Tristrips

Number of Trials asteroid2.5k asteroid10k Roman

10 244 929 2442
20 227 929 2425
30 228 897 2410
40 221 941 2405
50 228 938 2403
60 224 905 2408
70 219 908 2392
80 223 918 2412
90 220 945 2401
100 223 939 2380
200 214 935 2364
400 219 893 2395
600 208 905 2372
800 217 895 2364
1000 211 915 2380
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TABLE III

THE DEPENDENCE ON THEPARAMETERS OFSIMULATED ANNEALING

ε = 6,7, . . . ,20, T
(0)

= 2,4, . . . ,40

ASTEROID40K (39624 TRIANGLES), 10 TRIALS

(EACH CELL CONTAINS AVERAGE NUMBER OF TRISTRIPS, BEST NUMBER OF TRISTRIPS,
AVERAGE COMPUTATION TIME , AND AVERAGE MACROSCOPICTIME , RESPECTIVELY)

↓T
(0)

~ε 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

2 11947 11959 11970 11978 11951 11976 11952 11945 11951 11674 11659 11640 11632 11669 11672
11881 11889 11897 11869 11827 11914 11858 11854 11848 11611 11566 11567 11587 11605 11583
3.3 3.0 3.0 3.2 3.3 3.2 3.1 3.0 3.2 3.9 3.8 3.8 3.7 3.7 3.9
4.1 4.2 4.1 4.0 4.2 4.2 4.1 4.2 4.0 5.0 5.0 5.0 5.0 5.0 5.0

4 11702 11699 11693 11030 11021 10995 11038 11057 10988 11032 10488 10487 10480 10455 10492
11575 11600 11568 10995 10933 10900 10928 10923 10913 10925 10421 10383 10397 10337 10430
3.4 3.6 3.3 3.8 3.9 4.0 4.0 4.0 3.7 3.9 4.3 4.4 4.6 4.2 4.4
4.4 4.5 4.3 5.0 5.2 5.3 5.3 5.2 5.3 5.0 6.2 6.0 6.1 6.1 6.1

6 11229 11262 11233 11212 11247 10552 10564 10570 10593 10578 || 9957 9984 9958 9485 9505 10000
11142 11185 11128 11113 11108 10449 10460 10475 10528 10446 || 9892 9879 9869 9384 9460
3.7 4.0 4.2 3.7 4.1 4.4 4.6 4.7 4.5 4.5 || 5.0 5.2 5.3 5.8 5.5
5.4 5.2 5.3 5.1 5.5 6.1 6.2 6.2 6.1 6.1 || 7.0 7.1 7.0 8.1 8.0

8 10921 10901 10942 10940 10905 10894 10301 10347 10289 10024 || 9735 9755 9236 9245 || 8864 9000
10824 10837 10822 10880 10752 10848 10235 10268 10166 9670 || 9682 9671 9171 8835 || 8767
4.5 4.8 4.5 4.5 4.9 4.8 5.2 5.3 5.1 5.6 || 6.0 5.7 6.4 6.4 || 7.1
6.6 6.4 6.4 6.2 6.4 6.3 7.1 7.1 7.2 7.6 || 8.1 8.2 9.1 9.1 || 10.1

10 11326 11352 10775 10750 10742 10749 10209 10206 10005 || 9675 9420 9266 || 8874 8535 8169
11240 11226 10582 10639 10631 10678 10111 10065 9684 || 9580 9084 9189 || 8795 8448 8084
4.8 4.8 5.3 5.3 5.2 5.3 6.1 5.8 5.7 || 6.5 7.0 7.3 || 7.3 8.2 8.9
6.6 6.4 7.2 7.2 7.3 7.4 8.3 8.3 8.4 || 9.3 9.7 10.2 || 11.0 12.0 13.1

12 11156 11145 11150 10643 10691 10177 10266 || 9822 9764 9374 9045 || 8722 8425 8104 || 7623 8000
11059 11069 11020 10535 10614 10088 10206 || 9711 9689 9309 8952 || 8527 8298 7913 || 7556
5.5 5.7 5.2 6.1 6.0 6.4 6.4 || 7.1 7.1 7.8 8.4 || 9.3 9.4 10.6 || 11.5
7.6 7.6 7.4 8.2 8.5 9.3 9.2 || 10.1 10.2 11.2 12.3 || 13.1 14.0 15.1 || 17.2

14 11072 11096 10784 10677 10460 10341 || 9960 9606 9412 9121 || 8738 8438 || 7978 7569 7076
10987 11049 10458 10593 10268 10255 || 9843 9465 9159 8929 || 8558 8320 || 7827 7455 6877
5.9 5.9 6.2 6.3 7.1 7.3 || 7.8 8.5 8.6 9.6 || 10.6 11.0 || 12.0 13.7 15.1
8.4 8.5 8.9 9.3 10.1 10.4 || 11.4 12.3 12.8 13.8 || 15.2 16.3 || 18.0 20.0 22.8

16 11085 11107 10777 10581 10418 10196 || 9836 9601 9236 || 8876 8423 8063 || 7659 7145 || 6520 7000
10989 11042 10663 10443 10342 10101 || 9761 9472 9095 || 8765 8319 7943 || 7581 7030 || 6413
6.6 6.6 7.2 7.7 7.8 8.7 || 8.9 9.8 10.5 || 11.5 13.1 13.9 || 15.5 17.8 || 20.9
9.5 9.4 10.3 10.9 11.3 12.5 || 13.1 14.4 15.6 || 17.1 19.2 21.1 || 23.3 26.4 || 31.0

18 11160 10887 10708 10537 10232 || 9984 9676 9394 9043 || 8666 8233 || 7780 7243 || 6688 6093
10981 10802 10586 10319 10109 || 9923 9598 9253 8873 || 8555 8105 || 7633 7118 || 6576 6012
7.2 8.0 8.6 8.9 9.1 || 10.5 11.0 12.3 13.2 || 14.1 16.6 || 17.6 20.7 || 23.7 27.5
10.4 11.4 12.5 12.9 13.8 || 15.2 16.3 18.0 19.7 || 21.6 24.5 || 27.0 31.2 || 35.5 41.7

20 11068 10940 10640 10446 10188 || 9943 9615 9281 || 8837 8472 || 7969 7508 || 6984 6298 || 5706 6000
10919 10727 10514 10373 10001 || 9821 9561 9141 || 8626 8358 || 7845 7425 || 6858 6125 || 5649
8.7 8.8 9.8 10.6 11.1 || 12.6 13.8 15.1 || 17.1 18.3 || 20.8 23.7 || 26.8 31.9 || 37.6
12.4 13.1 14.4 15.5 16.8 || 18.4 20.2 22.5 || 25.3 27.8 || 31.7 35.8 || 41.2 48.3 || 57.3

22 11017 10866 10681 10440 10131 || 9855 9438 9106 || 8670 8242 || 7806 7248 || 6612 || 5977 5329
10921 10800 10462 10299 9950 || 9678 9337 9038 || 8575 8051 || 7698 7128 || 6398 || 5871 5167
9.5 10.4 11.1 12.2 13.6 || 15.0 16.7 18.9 || 20.7 23.6 || 27.0 31.3 || 36.5 || 42.0 50.1
14.3 15.4 16.3 18.4 20.3 || 22.4 25.2 28.4 || 31.8 36.0 || 41.5 47.5 || 55.1 || 64.9 77.9

24 11040 10837 10541 10360 10036 || 9773 9398 9010 || 8607 8123 || 7598 7025 || 6382 || 5690 || 4961 5000
10959 10730 10454 10241 9934 || 9610 9276 8923 || 8538 7978 || 7504 6889 || 6220 || 5513 || 4811
11.5 12.3 13.8 15.2 17.0 || 18.6 20.3 23.7 || 27.1 30.3 || 35.3 40.9 || 48.3 || 56.7 || 71.2
16.5 18.2 20.7 22.6 25.1 || 28.2 31.4 35.9 || 40.6 47.0 || 54.0 62.5 || 74.2 || 87.8 || 108.3

26 11034 10843 10590 10286 10050 || 9728 9328 || 8927 8527 || 7934 7434 || 6812 6186 || 5437 || 4675
10866 10743 10452 10202 9973 || 9539 9166 || 8792 8435 || 7861 7316 || 6654 6056 || 5358 || 4579
13.3 14.5 16.6 18.9 20.2 || 23.3 26.7 || 30.5 34.7 || 40.2 47.1 || 54.6 65.1 || 77.4 || 96.3
19.8 21.6 24.3 27.6 30.7 || 35.3 40.6 || 46.0 52.9 || 61.4 71.4 || 83.8 100.2 || 120.4 || 148.3

28 11031 10806 10592 10342 10017 || 9663 9307 || 8848 8402 || 7858 7285 || 6601 || 5914 5201 || 4370
10954 10734 10514 10238 9899 || 9526 9205 || 8803 8259 || 7718 7164 || 6506 || 5824 5080 || 4262
15.1 17.2 19.7 22.2 26.0 || 29.6 33.7 || 38.7 45.3 || 53.2 61.9 || 74.1 || 87.6 106.1 || 134.7
23.1 26.4 29.5 33.8 38.7 || 44.5 51.7 || 59.3 69.1 || 81.3 95.5 || 113.2 || 134.5 164.2 || 205.9

30 10996 10803 10573 10262 || 9967 9651 9203 || 8803 8338 || 7758 7138 || 6489 || 5721 || 4985 4107
10938 10630 10451 10150 || 9894 9516 9123 || 8652 8174 || 7683 6982 || 6348 || 5576 || 4882 4060
18.5 20.8 24.5 27.7 || 31.9 36.9 43.2 || 50.0 58.5 || 70.3 82.4 || 97.9 || 120.3 || 146.9 184.8
27.8 31.4 36.3 41.8 || 49.0 56.0 66.4 || 77.1 90.1 || 107.2 127.2 || 151.6 || 184.9 || 227.0 287.2

32 11032 10779 10562 10258 || 9936 9576 9176 || 8750 8219 || 7708 7087 || 6366 || 5603 || 4752 || 3831 4000
10936 10628 10481 10147 || 9868 9502 9097 || 8581 8157 || 7630 6922 || 6295 || 5521 || 4670 || 3705
22.5 25.6 29.4 34.7 || 40.5 47.9 55.6 || 65.0 78.8 || 93.1 110.6 || 134.1 || 164.3 || 202.3 || 253.5
33.4 38.9 44.8 52.9 || 61.7 72.7 84.3 || 99.9 121.3 || 143.0 170.8 || 206.9 || 252.5 || 311.5 || 393.6

34 11036 10793 10565 10270 || 9922 9562 9172 || 8768 8219 || 7653 || 6966 6254 || 5404 || 4576 || 3629
10933 10685 10503 10203 || 9813 9432 9065 || 8612 8033 || 7587 || 6847 6199 || 5319 || 4450 || 3517
26.8 30.7 35.9 43.1 || 50.7 59.8 71.5 || 84.9 103.4 || 123.1 || 148.3 207.2 || 225.2 || 276.2 || 352.1
40.4 46.4 54.8 65.2 || 76.9 91.4 109.3 || 130.4 158.4 || 190.6 || 229.8 278.4 || 344.6 || 425.8 || 545.7

36 10991 10786 10485 10240 || 9944 9533 9160 || 8731 8218 || 7589 || 6968 6191 || 5360 || 4412 || 3472
10838 10717 10336 10178 || 9801 9415 9084 || 8638 8080 || 7393 || 6898 6059 || 5272 || 4305 || 3386
32.4 37.9 45.0 53.0 || 64.7 75.8 91.1 || 109.9 134.0 || 163.8 || 201.8 244.9 || 302.2 || 375.9 || 486.4
48.9 58.3 68.6 81.2 || 98.5 117.0 141.1 || 170.7 207.8 || 252.9 || 312.3 377.9 || 468.2 || 583.6 || 750.8

38 11019 10756 10527 10249 || 9923 9537 9156 || 8698 8176 || 7545 || 6876 6110 || 5242 || 4248 || 3303
10944 10643 10447 10162 || 9787 9414 9031 || 8631 8006 || 7403 || 6702 6036 || 5176 || 4102 || 3211
39.4 46.4 55.1 67.2 || 80.6 97.8 118.2 || 146.3 178.8 || 216.8 || 270.7 330.8 || 416.7 || 520.9 || 668.3
59.8 71.5 84.4 103.0 || 124.1 150.0 183.5 || 225.6 278.0 || 340.2 || 418.3 513.4 || 646.2 || 808.6 || 1036.7

40 10972 10736 10510 10194 || 9930 9535 9176 || 8670 8132 || 7551 || 6856 6033 || 5059 || 4084 || 3161
10903 10625 10447 10064 || 9820 9443 9035 || 8581 8053 || 7420 || 6716 5893 || 4833 || 3913 || 3057
47.1 56.8 69.1 83.3 || 101.5 126.0 154.2 || 189.6 236.2 || 292.5 || 366.6 452.2 || 564.3 || 716.1 || 934.4
72.4 87.5 106.2 128.5 || 156.0 195.6 238.9 || 294.4 366.1 || 453.5 || 566.3 700.7 || 874.8 || 1110.7 || 1450.5

10000 9000 8000 7000 6000 5000 4000
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TABLE IV

THE DEPENDENCE ON THEPARAMETERS OFSIMULATED ANNEALING

ε = 1,1.5, . . . ,6, T
(0)

= 1.5,3, . . . ,30

ASTEROID40K (39624 TRIANGLES), 10 TRIALS

(EACH CELL CONTAINS AVERAGE NUMBER OF TRISTRIPS, BEST NUMBER OF TRISTRIPS,
AVERAGE COMPUTATION TIME , AND AVERAGE MACROSCOPICTIME , RESPECTIVELY)

↓T
(0)

~ε 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1

1.5 12076 12070 12095 12110 12126 12082 12108 12094 12058 12055 12033
11980 12014 12029 12033 12077 12011 11991 11988 11958 11933 11955
3.8 3.8 3.6 3.7 3.4 3.8 3.9 3.8 4.4 4.5 4.4
5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.9 6.0 6.0

3 10774 10780 10809 10789 10750 10740 10518 10519 10534 10330 10254
10610 10674 10691 10674 10590 10480 10399 10406 10422 10190 10185
4.4 4.6 4.3 4.5 4.7 5.0 5.3 5.0 5.1 5.7 6.2

10000 6.0 6.0 6.0 6.0 6.2 6.2 7.0 7.0 7.0 8.0 9.0 10000
4.5 9964 9991 9972 9981 9639 9635 9390 9377 9154 || 8997 8598 9000

9849 9925 9895 9924 9591 9584 9289 9230 9058 || 8941 8513
5.0 5.3 5.0 5.2 5.5 5.9 6.6 6.5 7.3 || 7.7 9.4
7.0 7.1 7.0 7.0 8.0 8.2 9.0 9.2 10.0 || 11.1 13.9

6 9483 9515 9117 9126 || 8944 8831 8556 8328 8161 || 7814 7404 8000
9396 9388 9042 9063 || 8722 8760 8454 8171 8045 || 7703 7313
5.5 5.9 6.4 6.7 || 6.8 6.8 7.8 8.3 8.9 || 10.4 13.2
8.0 8.1 9.0 9.0 || 9.5 10.0 11.0 12.0 13.1 || 15.3 19.8

9000 7.5 8833 8824 8682 8517 8231 8006 || 7786 7605 7274 || 6855 6428 7000
8761 8693 8413 8398 8170 7922 || 7694 7381 7221 || 6812 6278
7.0 6.8 7.0 8.0 8.1 9.0 || 9.7 10.3 11.5 || 14.2 18.4
10.1 10.1 10.5 11.1 12.0 13.0 || 14.0 15.0 17.1 || 20.9 27.1

9 8373 8332 8060 || 7874 7682 7440 7173 || 6893 6510 6096 || 5593 6000
8251 8178 7990 || 7721 7547 7276 7072 || 6826 6412 5996 || 5510
8.4 8.5 8.8 || 9.6 9.9 10.8 11.6 || 13.0 15.0 18.6 || 25.0
11.9 12.0 13.0 || 13.9 14.8 16.0 17.5 || 19.4 22.7 27.9 || 38.0

10.5 8041 || 7772 7546 7364 7124 || 6867 6592 6229 || 5838 5377 || 4849 5000
7931 || 7627 7409 7310 7035 || 6758 6523 6111 || 5712 5308 || 4788
9.3 || 10.4 10.8 11.7 12.1 || 13.8 15.0 16.5 || 19.4 24.9 || 35.0
14.0 || 15.2 16.1 17.0 18.4 || 19.8 22.1 25.2 || 30.0 38.0 || 53.4

8000 12 7631 7408 7084 || 6859 6582 6272 || 5932 5605 5236 || 4784 4255
7513 7290 6892 || 6698 6433 6202 || 5822 5512 5098 || 4657 4171
11.4 12.3 13.2 || 14.7 15.5 17.9 || 19.1 22.4 26.3 || 33.8 48.2
17.1 18.3 19.9 || 21.3 23.1 26.1 || 29.1 33.6 40.3 || 51.3 74.7

13.5 7240 || 6939 6694 6372 6102 || 5794 5399 5030 || 4678 4234 || 3726 4000
7170 || 6766 6585 6274 6004 || 5679 5314 4917 || 4561 4176 || 3647
14.3 || 15.3 16.0 17.9 19.7 || 21.6 24.8 29.1 || 35.1 46.0 || 69.5
21.0 || 22.9 24.6 26.7 29.8 || 32.7 37.9 44.6 || 53.8 71.0 || 106.5

7000 15 6806 6551 6228 || 5954 5616 5247 || 4934 4551 4144 || 3714 3179
6571 6387 6125 || 5856 5464 5164 || 4813 4494 4064 || 3605 3093
17.9 18.7 21.0 || 22.9 24.7 28.8 || 33.0 39.3 48.4 || 64.8 99.5
26.6 28.5 31.5 || 34.2 38.0 42.9 || 49.9 58.9 74.1 || 100.1 155.1

16.5 6435 6134 || 5822 5517 5166 || 4801 4424 4084 || 3652 3226 || 2778 3000
6288 5987 || 5697 5452 5049 || 4599 4376 4007 || 3514 3105 || 2690
22.1 24.5 || 25.9 28.5 32.2 || 36.8 42.6 51.2 || 65.5 91.8 || 142.9
33.4 36.1 || 39.9 43.5 49.3 || 56.8 65.5 79.3 || 100.6 141.2 || 222.3

18 6096 || 5815 5455 5123 || 4803 4426 4029 || 3658 3274 || 2854 2363
6011 || 5723 5403 5000 || 4715 4337 3925 || 3549 3215 || 2774 2281
27.8 || 30.1 33.0 36.8 || 41.8 48.4 56.6 || 68.5 89.5 || 124.7 206.3
41.7 || 45.6 50.4 56.5 || 63.7 73.3 86.8 || 106.2 136.7 || 192.6 320.6

6000 19.5 5754 5404 5084 || 4775 4365 4028 || 3637 3268 || 2835 2449 2050
5656 5328 4958 || 4684 4255 3921 || 3518 3195 || 2759 2364 1956
35.0 38.1 42.5 || 47.8 53.9 62.4 || 75.0 91.7 || 123.2 177.8 301.1
53.3 58.6 64.9 || 73.6 82.9 95.6 || 115.3 141.5 || 188.6 275.3 467.9

21 5477 5095 || 4786 4431 4008 || 3642 3279 || 2893 2530 2129 || 1790 2000
5267 4985 || 4692 4331 3813 || 3483 3236 || 2796 2480 2072 || 1753
43.7 48.0 || 54.6 61.5 70.5 || 82.4 100.6 || 125.2 167.6 251.5 || 442.2
66.9 74.3 || 83.0 93.6 108.2 || 127.0 154.7 || 193.7 259.4 387.8 || 686.0

22.5 5194 || 4846 4483 4085 || 3697 3329 || 2951 2616 2215 || 1875 1502
5018 || 4728 4355 3932 || 3596 3178 || 2888 2512 2163 || 1772 1404
55.4 || 62.9 67.9 78.8 || 91.2 109.0 || 132.0 170.4 232.8 || 354.9 657.5
84.5 || 95.9 105.6 121.8 || 140.2 167.2 || 204.5 263.2 359.6 || 549.7 1018.5

24 5008 || 4565 4201 || 3781 3382 3049 || 2687 2308 || 1965 1668 1304
4920 || 4492 4111 || 3596 3295 2951 || 2627 2223 || 1882 1609 1237
70.0 || 79.2 88.0 || 100.4 117.8 140.9 || 175.3 229.9 || 319.7 506.7 963.1
108.0 || 121.8 136.5 || 155.6 183.5 219.4 || 272.0 355.7 || 497.2 783.4 1495.9

5000 25.5 4699 4270 || 3962 3533 3119 || 2758 2419 2078 || 1752 1427 1112
4526 4193 || 3904 3484 3022 || 2681 2359 1990 || 1682 1340 1073
89.9 99.4 || 112.8 130.7 153.4 || 184.4 233.0 313.4 || 442.0 710.1 1397.4
137.8 153.2 || 175.4 202.0 236.6 || 286.1 362.9 484.2 || 686.6 1102.3 2175.0

27 4480 4087 || 3695 3321 || 2914 2477 2138 || 1854 1560 1248 || 978 1000
4382 4020 || 3538 3118 || 2845 2392 2049 || 1729 1425 1210 || 931
113.1 129.3 || 147.0 170.0 || 199.2 247.1 313.0 || 428.0 621.8 1017.7 ||2086.0
175.1 198.9 || 227.3 262.8 || 308.1 382.4 485.8 || 663.9 963.5 1580.4 ||3243.8

28.5 4252 || 3853 3462 3084 || 2658 2297 || 1994 1634 1376 1083 || 807
4071 || 3738 3345 3035 || 2523 2207 || 1882 1545 1296 976 || 710
145.5 || 163.9 186.8 218.8 || 265.3 323.5 || 414.0 574.6 859.8 1465.3 || 3120.6
224.4 || 252.5 288.3 341.3 || 410.8 502.2 || 645.9 893.8 1337.5 2273.7 || 4825.9

30 4118 || 3676 3272 || 2835 2488 2099 || 1756 1478 1227 || 966 702
3986 || 3555 3144 || 2683 2375 1971 || 1657 1376 1112 || 893 590
183.0 || 209.0 241.5 || 287.0 343.4 429.1 || 564.4 784.9 1212.6 || 2108.2 4593.4
282.9 || 323.2 372.1 || 444.0 535.1 666.4 || 876.2 1219.6 1882.5 || 3264.3 7143.1

4000 3000 2000 1000
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26 IEEE TRANSACTIONS ON NEURAL NETWORKS

TABLE V

THE DEPENDENCE ON THEPARAMETERS OFSIMULATED ANNEALING

ε = 0.2,0.3, . . . ,1, T
(0)

= 1,2, . . . ,20

ASTEROID40K (39624 TRIANGLES), 10 TRIALS

(EACH CELL CONTAINS AVERAGE NUMBER OF TRISTRIPS, BEST NUMBER OF TRISTRIPS,
AVERAGE COMPUTATION TIME , AND AVERAGE MACROSCOPICTIME , RESPECTIVELY)

↓T
(0)

~ε 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

1 12568 12550 12567 12578 12571 12566 12527 12561 12529
12476 12486 12477 12496 12486 12439 12381 12458 12476
4.0 3.9 3.9 4.0 3.7 4.2 4.0 3.9 4.1
4.9 5.0 5.0 5.0 4.9 5.6 5.2 5.5 5.3

2 11460 11436 11463 11439 11450 11424 11398 11354 11366
11396 11354 11356 11333 11400 11354 11273 11243 11197
5.0 4.8 4.7 5.1 4.9 5.8 5.7 6.1 6.8
7.0 7.0 7.0 7.0 7.0 8.0 8.0 8.6 9.3

3 10232 10249 10161 10179 10132 10090 || 9984 9886 9852 10000
10168 10175 10033 10103 10031 9996 || 9924 9766 9733
6.4 6.3 6.7 6.9 7.5 7.9 || 8.4 9.5 11.2
9.0 9.1 9.9 10.0 10.8 11.3 || 12.3 14.2 16.6

10000 4 9101 9095 || 8975 8947 8860 8752 8644 8562 8435 9000
9023 9014 || 8869 8810 8814 8630 8578 8449 8361
8.5 8.7 || 9.2 9.8 10.3 11.4 13.0 14.7 17.8
12.0 12.7 || 13.6 14.3 15.2 16.8 19.2 22.0 27.5

9000 5 8157 8111 8005 || 7907 7780 7678 7525 7328 7166 8000
8018 8016 7933 || 7862 7659 7543 7433 7248 7014
10.4 11.4 12.0 || 13.0 13.7 15.2 17.8 21.3 27.6
15.7 16.7 17.7 || 19.0 21.0 23.2 27.0 32.8 42.6

8000 6 7392 7239 7127 7070 || 6912 6774 6654 6427 6132 7000
7285 7142 7014 7018 || 6834 6668 6570 6373 6029
13.0 14.9 15.1 16.5 || 18.8 19.9 24.3 30.1 41.5
19.6 21.6 22.9 24.6 || 28.1 30.7 37.4 46.1 63.6

7000 7 6720 6598 6489 6288 6230 6056 || 5847 5639 5373 6000
6583 6507 6391 6144 6158 5904 || 5760 5584 5304
16.3 17.7 19.8 21.2 23.6 26.7 || 32.7 41.1 58.1
24.5 26.6 29.1 32.3 35.5 41.0 || 49.9 62.9 89.5

8 6088 6026 || 5872 5759 5583 5426 5236 || 4997 4696 5000
5992 5905 || 5822 5687 5515 5322 5110 || 4891 4563
20.6 21.7 || 24.3 25.8 30.2 35.5 42.0 || 55.1 82.3
31.0 33.4 || 36.2 40.0 45.6 54.0 64.9 || 85.1 127.8

6000 9 5594 5511 5385 5230 5039 || 4870 4691 4435 4158
5521 5448 5317 5172 4968 || 4810 4567 4373 4071
25.8 26.7 29.8 33.5 38.2 || 46.4 55.5 73.9 107.9
38.2 41.1 45.6 50.9 58.9 || 71.2 85.7 114.8 167.5

10 5122 || 4976 4856 4724 4553 4383 4185 || 3972 3661 4000
5083 || 4888 4720 4619 4436 4276 4117 || 3890 3564
31.4 || 33.1 38.1 42.6 50.0 57.0 73.6 || 96.8 149.5
47.5 || 51.1 57.6 65.8 76.7 88.6 114.2 || 150.7 234.1

5000 11 4661 4572 4431 4269 4118 || 3942 3787 3514 3225
4580 4497 4382 4203 4046 || 3856 3683 3423 3161
38.4 41.9 47.8 53.4 63.6 || 76.4 95.4 131.1 203.9
59.1 64.8 74.1 82.3 98.7 || 117.5 147.8 204.2 320.7

12 4253 4113 4023 || 3897 3720 3548 3356 3131 || 2809 3000
4151 4021 3915 || 3821 3662 3410 3270 3029 || 2749
48.1 54.7 59.5 || 69.2 81.5 95.3 124.9 172.4 || 278.6
74.4 84.6 92.7 || 106.8 125.3 148.8 194.4 269.4 || 434.8

4000 13 3859 3758 3608 3480 3361 3191 || 2993 2772 2523
3737 3641 3464 3373 3281 3116 || 2895 2647 2442
62.2 66.7 77.2 90.1 105.4 125.6 || 165.3 231.9 379.0
95.9 104.0 119.7 139.1 164.0 195.7 || 256.4 361.1 594.4

14 3529 3414 3289 3161 3010 || 2856 2659 2465 2211
3470 3289 3228 3040 2906 || 2778 2577 2346 2119
77.4 85.4 99.5 116.5 136.2 || 167.2 219.7 308.7 496.6
120.3 132.9 153.8 179.5 210.6 || 259.7 340.1 480.3 777.3

15 3175 3104 || 2965 2842 2717 2562 2403 2213 || 1967 2000
3099 3055 || 2916 2759 2636 2482 2343 2102 || 1890
100.4 111.9 || 126.3 147.3 178.2 222.4 290.6 407.7 || 681.7
155.2 172.9 || 196.6 229.3 277.1 345.8 452.0 635.2 || 1066.1

3000 16 2884 2822 2650 2537 2402 2287 2119 || 1954 1732
2806 2769 2554 2496 2340 2182 2032 || 1837 1651
126.5 142.3 164.4 191.3 231.1 291.8 375.0 || 558.0 938.0
196.4 222.3 254.4 296.9 361.2 453.8 585.8 || 867.1 1465.0

17 2631 2549 2412 2298 2153 2036 || 1912 1736 1524
2530 2435 2365 2184 2085 1932 || 1837 1666 1473
161.8 183.4 213.5 254.8 301.5 382.4 || 523.3 761.2 1284.8
252.1 283.5 331.3 397.2 469.8 595.4 || 812.9 1182.9 1996.9

18 2404 2277 2186 2070 || 1940 1832 1698 1494 1318
2336 2202 2051 2002 || 1841 1696 1619 1396 1205
210.6 239.8 274.8 326.9 || 401.3 510.7 704.3 1013.8 1737.6
326.6 370.8 427.8 508.8 || 627.2 793.4 1100.6 1582.7 2719.1

19 2140 2061 || 1949 1866 1786 1662 1484 1323 1166
2050 1974 || 1872 1770 1716 1574 1418 1227 1023
262.5 309.2 || 362.3 427.1 537.3 689.8 944.3 1402.6 2485.5
408.3 480.8 || 561.5 664.0 834.5 1074.7 1470.0 2189.2 3888.9

2000 20 1938 1846 1764 1648 1565 1448 1337 1197 || 999 1000
1845 1795 1655 1569 1460 1358 1278 1115 || 929
343.7 394.4 470.4 575.2 694.5 918.5 1235.9 1930.7 || 3565.4
533.5 614.9 731.5 890.9 1083.3 1434.3 1932.5 2997.4 || 5563.1

1000
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TABLE VI

THE DEPENDENCE ON THEPARAMETERS OFSIMULATED ANNEALING

ε = 0.02, 0.04, . . . ,0.2, T
(0)

= 1,2, . . . ,20

ASTEROID40K (39624 TRIANGLES), 10 TRIALS

(EACH CELL CONTAINS AVERAGE NUMBER OF TRISTRIPS, BEST NUMBER OF TRISTRIPS,
AVERAGE COMPUTATION TIME , AND AVERAGE MACROSCOPICTIME , RESPECTIVELY)

↓T
(0)

~ε 0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02

1 12558 12582 12501 12549 12555 12544 12559 12555 12547 12569
12487 12531 12434 12486 12506 12475 12517 12386 12419 12497
3.6 4.1 3.8 4.0 3.9 3.7 4.2 4.5 4.2 4.4
5.2 5.4 5.1 5.2 5.2 5.2 5.8 6.0 6.2 5.9

2 11337 11329 11278 11358 11312 11328 11312 11305 11305 11267
11279 11265 11197 11264 11167 11223 11206 11234 11196 11186
6.6 6.7 6.9 6.9 7.3 7.4 8.2 8.6 9.5 11.1
9.3 9.4 9.9 9.9 10.9 11.1 11.7 12.8 14.0 16.5

10000 3 9842 9824 9809 9839 9770 9747 9721 9681 9685 9631 10000
9736 9732 9749 9684 9713 9614 9633 9605 9601 9528
11.2 12.0 12.2 12.9 13.6 15.0 15.8 18.1 22.5 29.1
16.7 17.5 18.0 19.3 20.4 22.2 23.6 27.1 34.0 44.4 9000

9000 4 8369 8372 8334 8308 8263 8247 8155 8097 8003 || 7920 8000
8255 8256 8245 8211 8183 8172 8079 7982 7869 || 7805
18.4 19.1 20.8 21.9 24.4 26.3 30.4 36.1 45.0 || 70.1
27.9 29.1 31.7 33.3 36.6 40.7 47.1 56.3 70.4 || 108.8

8000 5 7146 7128 7029 7006 || 6914 6879 6804 6678 6561 6402 7000
7052 7048 6951 6945 || 6826 6804 6686 6608 6466 6299
27.9 29.5 33.1 35.3 || 40.3 45.5 53.1 66.3 88.3 146.0
42.9 45.7 51.2 54.2 || 62.4 70.0 82.4 102.5 136.4 230.1

7000 6 6191 6110 6033 || 5971 5903 5772 5718 5590 5430 5243 6000
6104 6021 5960 || 5908 5853 5662 5632 5526 5260 5126
40.3 44.2 50.4 || 54.1 60.5 72.8 86.6 111.9 157.0 277.2
61.7 69.1 77.2 || 83.2 94.2 113.3 135.5 175.5 243.8 434.3

6000 7 5351 5275 5226 5150 5068 || 4968 4824 4738 4527 4279 5000
5267 5227 5191 5074 4999 || 4860 4758 4667 4468 4189
58.5 62.4 71.4 80.7 92.4 || 109.7 135.5 178.4 259.5 479.3
90.6 97.4 111.4 123.5 143.3 || 170.2 210.2 279.3 406.6 752.6

5000 8 4693 4623 4525 4445 4388 4258 4137 || 3987 3758 3496 4000
4575 4518 4456 4365 4300 4224 4059 || 3922 3641 3428
81.3 88.3 103.5 119.3 137.1 165.0 210.5 || 275.9 427.3 878.1
127.6 137.4 159.6 184.6 214.6 258.7 328.0 || 432.0 674.8 1384.1

9 4160 4046 || 3964 3906 3804 3675 3553 3391 3192 || 2859 3000
4060 3995 || 3905 3827 3724 3616 3447 3316 3088 || 2745
109.7 123.1 || 138.5 158.8 192.6 230.6 297.1 431.9 672.0 || 1550.0
171.4 193.0 || 216.6 251.1 300.5 362.2 467.7 679.7 1056.3 || 2436.4

4000 10 3652 3563 3520 3413 3295 3138 3022 || 2878 2644 2346
3598 3370 3436 3333 3241 3018 2909 || 2831 2595 2238
150.0 169.8 192.4 222.2 273.3 326.1 440.6 || 619.6 1008.5 2232.6
233.5 266.4 300.0 347.0 428.1 509.5 692.7 || 972.8 1586.7 3497.2

11 3196 3154 3042 || 2986 2920 2753 2648 2463 2242 || 1920 2000
3054 3063 2965 || 2909 2839 2695 2576 2368 2126 || 1811
203.2 229.5 272.2 || 315.3 373.5 471.8 598.6 875.9 1614.2 || 3909.0
319.3 359.3 425.5 || 495.9 583.9 740.8 939.7 1377.5 2531.2 || 6146.2

3000 12 2848 2797 2711 2630 2511 2392 2270 2133 || 1906 1627
2768 2714 2628 2546 2444 2320 2189 2053 || 1817 1490
284.9 316.3 356.0 426.3 502.7 633.7 875.1 1206.2 || 2233.5 5894.7
446.5 494.6 558.6 669.2 793.4 997.4 1375.2 1892.2 || 3513.7 9280.3

13 2508 2476 2377 2306 2204 2095 2005 || 1818 1653
2458 2318 2305 2216 2111 1978 1884 || 1746 1533
363.1 428.4 475.0 574.3 701.5 900.2 1181.7 || 1785.3 3143.7
568.6 670.6 746.0 900.5 1100.2 1414.0 1858.5 || 2808.2 4951.9

14 2224 2129 2052 2014 || 1903 1813 1698 1571
2125 2057 1959 1900 || 1812 1760 1559 1407
508.9 568.7 658.7 770.5 || 992.0 1246.7 1654.5 2560.0
796.3 892.5 1031.5 1208.5 || 1560.0 1955.9 2599.5 4018.8

2000 15 1942 1880 1795 1759 1701 1610 1492
1842 1821 1740 1684 1633 1513 1397
678.6 779.0 930.0 1085.9 1329.6 1679.7 2480.6
1063.1 1220.9 1458.9 1703.3 2085.0 2642.2 3898.3

16 1701 1708 1594 1563 1460 1420
1659 1656 1552 1458 1361 1368
930.2 1045.6 1287.1 1542.6 1887.2 2432.7
1451.0 1635.2 2018.8 2415.6 2956.0 3816.0

17 1515 1469 1400 1347 1291
1445 1334 1321 1279 1231

1279.2 1467.9 1769.2 2174.9 2722.9
2003.5 2297.9 2780.7 3406.4 4272.5

18 1334 1270 1241 1162
1257 1165 1170 1026

1706.1 2025.1 2454.7 2892.3
2660.1 3169.4 3846.4 4542.7

19 1167 1130 1070
1115 1090 898

2435.7 2865.3 3481.5
3809.2 4479.7 5451.9

20 1006 || 971 1000
901 || 919

3424.2 || 3944.2
5339.0 || 6172.4

1000
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TABLE VII

EMPIRICAL AVERAGE TIME COMPLEXITY

100 TRIALS, ε = 0.1 , T (0)
= 5

Model Number of
Triangles

Best
Number of
Tristrips

Average
Number of
Tristrips

Average
Tristrip
Length

Average
Comp.

Time (s)

Average
Macro.
Time

asteroid250 216 31 39 6.97 0.06 79.98
asteroid500 442 67 82 6.60 0.06 45.14
asteroid1k 950 151 171 6.29 0.22 59.69

asteroid2.5k 2418 397 429 6.09 0.76 62.67
asteroid5k 4840 808 853 5.99 2.03 67.43
asteroid10k 9828 1633 1711 6.02 5.45 68.17
asteroid20k 19800 3342 3435 5.92 15.32 70.26
asteroid40k 39624 6720 6868 5.90 45.51 70.41
asteroid60k 59592 10090 10327 5.91 84.39 69.51
asteroid80k 79560 13525 13757 5.88 132.88 70.35
asteroid100k 99294 16995 17176 5.84 184.62 70.07
asteroid200k 198930 34109 34400 5.83 520.39 70.25

TABLE VIII

EMPIRICAL AVERAGE TIME COMPLEXITY

80 TRIALS, ε = 0.3 , T (0)
= 9

Model Number of
Triangles

Best
Number of
Tristrips

Average
Number of
Tristrips

Average
Tristrip
Length

Average
Comp.

Time (s)

Average
Macro.
Time

asteroid250 216 18 27 12.00 0.11 159.35
asteroid500 442 43 58 10.28 0.14 88.54
asteroid1k 950 86 114 11.05 0.40 106.62

asteroid2.5k 2418 255 280 9.48 1.38 113.84
asteroid5k 4840 518 556 9.34 3.51 116.59
asteroid10k 9828 1052 1114 9.34 9.20 114.76
asteroid20k 19800 2148 2237 9.22 24.82 114.45
asteroid40k 39624 4347 4451 9.12 73.09 113.53
asteroid60k 59592 6550 6690 9.10 136.74 112.86
asteroid80k 79560 8650 8898 9.20 212.34 113.06
asteroid100k 99294 10884 11110 9.12 296.31 112.94
asteroid200k 198930 21994 22257 9.04 818.58 111.65
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TABLE IX

EMPIRICAL AVERAGE TIME COMPLEXITY

50 TRIALS, ε = 0.5 , T (0)
= 13

Model Number of
Triangles

Best
Number of
Tristrips

Average
Number of
Tristrips

Average
Tristrip
Length

Average
Comp.

Time (s)

Average
Macro.
Time

asteroid250 216 12 21 18.00 0.28 392.76
asteroid500 442 26 43 17.00 0.28 180.60
asteroid1k 950 72 88 13.19 0.72 191.00

asteroid2.5k 2418 188 208 12.86 2.38 199.72
asteroid5k 4840 355 405 13.63 6.04 199.76
asteroid10k 9828 762 808 12.90 16.18 200.94
asteroid20k 19800 1535 1605 12.90 44.86 204.48
asteroid40k 39624 3047 3204 13.00 127.64 197.92
asteroid60k 59592 4653 4784 12.81 239.30 198.16
asteroid80k 79560 6217 6365 12.80 370.70 197.16
asteroid100k 99294 7802 7965 12.73 517.62 197.08
asteroid200k 198930 15595 15923 12.76 1424.80 194.98

TABLE X

COMPARING HTGEN AGAINST FTSG

HTGEN (30 Trials) FTSG

Model
Number

of
Triangles

ε T (0)
Best

Number of
Tristrips

Average
Comp.

Time (s)

Average
Macro.
Time

Options
Number

of
Tristrips

shuttle 616 0.12 17 95 2.70 1588.67 -dfs -alt 145
f-16 4592 0.6 26 312 197.57 7192.13 -dfs -alt 478

triceratops 5660 0.2 20 557 286.33 7915.13 -bfs 960
lung 6076 0.14 19 613 428.03 10940.00 857

cessna 7446 0.5 19 1249 241.17 6712.93 -dfs -alt 1459
bunny 69451 0.7 23 4404 4129.93 2748.20 -dfs -alt 6191

TABLE XI

HUGE MODELS

3 TRIALS, ε = 0.3 , T (0)
= 10

Model
Number

of
Triangles

Best
Number of
Tristrips

Average
Comp. Time

Average
Macro.
Time

Memory
Usage

asteroid300k 299600 29702 32min 56s 147.33 139 MB
dragon 871414 130106 4h 25min 50s 235.00 390 MB
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