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Abstract— FastICA is one of the most popular algo-
rithms for Independent Component Analysis, demixing
a set of statistically independent sources that have been
mixed linearly. A key question is how accurate the
method is for finite data samples. We propose an im-
proved version of the FastICA algorithm which is asymp-
totically efficient, i.e., its accuracy given by the residual
error variance attains the Cramér-Rao lower bound. The
error is thus as small as possible. This result is rigorously
proven under the assumption that the probability distri-
bution of the independent signal components belongs to
the class of generalized Gaussian distributions with pa-
rameter o, denoted GG(a) for a > 2. We name the algo-
rithm EFICA. Computational complexity of a Matlab?™
implementation of the algorithm is shown to be only
slightly (about three times) higher than that of the stan-
dard symmetric FastICA. Simulations corroborate these
claims and show superior performance of the algorithm
compared with JADE and Non-Parametric ICA on sep-
arating sources with distribution GG(a) with arbitrary
a, as well as on sources with bi-modal distribution, and
a good performance in separating linearly mixed speech
signals.

Keywords— Independent component analysis, blind
source separation, blind deconvolution, Cramér-Rao
lower bound, algorithm FastICA

I. INTRODUCTION

Recently, blind techniques such as blind source sep-
aration have become popular in the signal processing
and machine learning community. One of the central
tools for this problem is Independent Component Anal-
ysis (ICA) [2], [3]- In this technique, a set of original
source signals are retrieved from their mixtures based
on the assumption of their mutual statistical indepen-
dence. The simplest case for ICA is the instantaneous
linear noiseless mixing model. In this case, the mixing
process can be expressed as

X = AS, (1)
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where X is an d x N data matrix. The rows of X are the
observed mixed signals, thus d is the number of mixed
signals and NV is their length or the number of samples
in each signal. Similarly, the unknown d x N matrix
S includes samples of the original source signals. A is
an unknown regular d x d mixing matrix. The mixing
matrix is assumed to be square, for simplicity. In the
noiseless scenario, this is not a restriction, because if
more mixtures than sources are available, they would
not improve the signal recovering.

The additive noise is not considered in this paper. Ad-
ditional experiments that exceed the scope of the paper
show, however, that the hereproposed algorithm EFICA
outperforms classical FastICA and other algorithms in
the noisy scenario, also [28].

A basic assumption in ICA is that the elements of
S, denoted s;;, are mutually independent i.i.d. random
variables with probability density functions (pdf) p;(s;;)
¢t =1,...,d. The row variables s;; for all j =1,..., NV,
having the same density, are thus an i.i.d. sample of
one of the independent sources denoted by s;. The key
assumptions for the identifiability [1] of the model (1),
or solving both A and S up to some simple ambiguities,
are that all but at most one of the densities p;(-) are non-
Gaussian, and the unknown matrix A has full rank. In
the following, let W denote the demixing matrix, W =
AL

The basic ICA problem and its extensions and appli-
cations have been studied widely and many algorithms
have been developed. One of the main differences is how
the unknown density functions p;(-) of the original sig-
nals are estimated or replaced by suitable nonlinearities
in the ICA contrast functions. Non-Gaussianity is the
key property. For instance, JADE [5] is based on the
estimation of kurtosis via cumulants, NPICA [11] uses
a nonparametric model of the density functions, and
RADICAL [12] uses an approximation of the entropy
of the densities based on order statistics. The FastICA
algorithm uses either kurtosis [6] or other measures of



non-Gaussianity in entropy approximations in the form
of suitable nonlinear functions G(-) [7].

In spite of the success of ICA in solving even large-
scale real world problems, some theoretical questions
remain partly open. One of the most central ques-
tions is the theoretical accuracy of the developed algo-
rithms. Mostly the methods are compared through em-
pirical studies, which may demonstrate the efficacy in
various situations. However, the general validity cannot
be proven like this. A natural question is, whether it is
possible to reach a Cramér Rao lower bound for separa-
tion performance, which is widely accepted as measure
of efficiency of estimators.

Many of the algorithms can be shown to converge in
theory to the correct solution giving the original sources,
under the assumption that the sample size NV is infinite.
This is unrealistic. For finite data sets, like in the model
(1), what typically happens is that the sources are not
completely unmixed but some traces of the other sources
remain in them. This means that the obtained demix-
ing matrix W is not exactly the inverse o/f\ A, and the
matrix of estimated sources Y = WX = WAS is only
approximately equal to S. A natural measure of error is
the deviation of matrix WA from the unit matrix, i.e.,
the variances of its elements.

The present authors published recently an asymptotic
performance analysis of the FastICA algorithm in [8], de-
riving the exact expression for this error variance. Fur-
thermore, it is compared with the Cramér-Rao lower
bound (CRB) for ICA [4], [9], [17], [19], [20], [21], [26],
[27] and showed that the accuracy of FastICA is very
close, but not equal to, the CRB. The condition for this
is that the nonlinearity G(-) in the FastICA contrast
function is the integral of the score function 9 (s) of the
original signals, or the negative log density, i.e.,

G(s) = /w(s)ds = —/I%ds = —logpi(s). (2)

The purpose of this paper is to use this analysis to
generalize the FastICA algorithm to an improved version
so that it becomes asymptotically Fisher efficient, i.e.,
that the residual error variance becomes equal to the
CRB. When the asymptotic performance achieves the
CRB we have reached the absolute accuracy that cannot
be improved. We call this new variant EFICA (Efficient
FastICA).

As far as the authors know, there have been few ef-
forts in developing concrete ICA algorithms based on the
concept of asymptotic efficiency. A notable approach in
this direction is the method of Estimating functions [23],
[24], matrix valued functions F(X, W) such that their
root VV(X) is an estimator for the true demixing matrix
W. Amari and Cardoso [24] derived an optimal class of
estimating functions whose roots W are Fisher-efficient.
The theory is general and can be applied to stochastic
approximation-type learning algorithms.

Another related paper is [21], which studies asymp-
totic performance of so-called quasi-maximum likelihood
estimate (quasi-MLE). In this method, the true proba-
bility density function of sources is replaced by an ad-hoc

model density. If the model density coincides with the
true density, an asymptotically efficient estimate would
be obtained.

The contents of this paper are as follows. In the next
Section 2, the results of our previous work are briefly
summarized. In Section 3, the improved algorithm is
derived and its properties are described. In order to
demonstrate the efficiency in practice, Section 4 presents
computer simulations. The simulations confirm the ex-
cellent performance of the EFICA algorithm and also
show that the computational complexity (measured on
a Matlab”™™ implementation) is only about three times
that of standard FastICA, which is one of the fastest
ICA algorithms. Finally, in Section 5 conclusions are
given.

II. RECENT RESULTS
A. The original FastICA algorithm

The algorithm FastICA was introduced in [6], [7] in
two versions: a one-unit approach and a symmetric one.
The first preprocessing step, which is common for both
versions and for many other ICA algorithms, consists of
removing the sample mean and decorrelating the data
X, i.e.,

Z = C'?X-X) (3)

where C is the sample covariance matrix, C = (X -
X)(X—-X)T/N and X is the sample mean of the mixture
data. Now matrix Z contains the whitened mixtures.
The one-unit FastICA algorithm is based on minimiza-
tion/maximization of the criterion c¢(w) = E[G(wZ)].
There w is the unitary vector of coefficients to be found
that separates one of the independent components from
the mixture Z (one row of the separating matrix W (Z)).
Function G(-) is a suitable nonlinearity, called contrast
function [1], applied elementwise to the row vector w’ Z;
see [2]. The symbol E stands for the sample mean over
the elements of the row vector. It is not known in ad-
vance which component is being estimated: this mainly
depends on the initialization.

To retrieve all the original components, different rows
of W(Z) are estimated under the orthogonality condi-
tion, i.e. WWT = I where I is the identity matrix. In
the one-unit deflation method, the independent compo-
nents are found one by one, and the weight vector w is
always constrained to be orthogonal to the previously
found ones. In the symmetric FastICA, the condition is
ensured via a symmetric orthogonalization after parallel
one-unit iterations:

W« g(WZ)ZT — diaglg/(WZ)1y]W  (4)
W« (WHw+T)—1/2w+, (5)

There g(-) and ¢'(-) denote the first and the second
derivatives of G(-), respectively, applied elementwise,
and 1y stands for an N x 1 vector of 1’s.

The FastICA algorithm is computationally light, ro-
bust, and converges very fast. It is available in public-
domain software [13]. Recently, it was proposed to com-
plete the symmetric FastICA by a test of saddle points



that eliminates convergence to side minima of the cost
function, which may occur for some nonlinearities G(-)
[8]-

An essential question is the residual error of the algo-
r/izhm, due to a finite sample of the mixture signals. Let
W be the estimate of the demixing matrix W = A~!
obtained with the FastICA algorithm. The separation
quality is analyzed by means of the so called gain ma-
trix, G = WA. Theoretically, G is the unit matrix, but
for finite sample sizes there is residual error. The ele-
ments of G characterize the relative remaining presence
of the j—th original signal component in the estimated
k—th component, 5,k = 1,...,d. In the following, their
asymptotic variance is compared to the theoretically op-
timal one.

B. Analysis of FastICA and the Cramér-Rao bound

Let GV and GSYM | respectively, be the gain matrix
obtained by the one-unit and the symmetric variant of
FastICA using a nonlinear function g(-). The main result
shown in [8] was the following: Assume that the origi-
nal signals s in the mixture have zero mean and unit
variance, that g is sufficiently smooth, and the following
expectations exist:

pr = Elspg(sk)] (6)
pr = Elg(se)] (7)
B = Elg(s)] ®)

Then the normalized gain matrix elements N*/2G1Y and
N'Y2GFYM have asymptotically Gaussian distributions
N(0,VEY) and N (0,V;5Y M), with variances

Yk
VkleU = 3 9)

Tis

+ v+ T2
VSYM — V& 4 10
ke (T + 72)? (10)
where

W = Br—r (11)
e = |pk = prl- (12)

The variances in (9,10) are minimized if the function
g(s) equals the score function

Yu(s) =~ S-logp(s) = - (13)

of the corresponding source distribution py(s). The min-
imum variance can be shown to be close, but not to co-
incide with the Cramér-Rao lower bound (CRB) derived
in [4]. It was shown that the CRB is

Kk

1
CRB(Gre) = P

(14)

where 1y & E [VE(sk)]-

III. EFFICIENT FAsTICA: EFICA

The proposed efficient version of FastICA is based on
the following observations: (i) the symmetric FastICA
algorithm can be run with different nonlinearity for dif-
ferent sources. (ii) In the symmetrization step of each
iteration, it is possible to introduce an auxiliary con-
stants, that can be tuned to minimize mean square es-
timation error in one (say k—th) row of the estimated
de-mixing matrix. These estimations can be performed
in parallel for all rows - to obtain an estimate of the
whole de-mixing matrix, that achieves the correspond-
ing CRB, if the nonlinearities correspond to score func-
tions of the sources. (ili) The algorithm remains to be
asymptotically efficient (attaining the CRB) if the the-
oretically optimum auxiliary constants in the algorithm
are replaced by their consistent estimates.

The proposed algorithm EFICA models all indepen-
dent signals as they have a generalized Gaussian distri-
bution with appropriate parameters a’s. The algorithm
is summarized in Figure 1. Note that the output is not
constrained, unlike symmetric FastICA, in the sense that
the separated components need not have exactly zero
sample correlations.

In order to explain the proposed algorithm in more
details, the notion of ”generalized symmetric FastICA”
is introduced, and its efficiency is studied in the next
subsection. The algorithm EFICA will be presented in
detail in subsection B.

A. Generalizing the symmetric FastICA to attain the
Cramér-Rao bound

Consider now a version of the symmetric version of
FastICA where two changes have been made.

First, as it is not possible to attain the CRB if
only one nonlinearity ¢(-) is used, different nonlin-
ear functions gx(-), ¥ = 1,2,...,d will be used for
estimation of each row of W*. Denote g(WZ) =
[91(WT'Z), g2(WIZ),...,94(WwFZ)]T where again each
function g, is applied elementwise. The function ¢'(WZ)
is defined likewise. Eventually, the functions g (-) should
be the score functions of the sources sg.

Second, the first step (4) of the iteration will be fol-
lowed by multiplying each row of W+ with a suitable
positive number ¢; i = 1,...,d before the symmetric or-
thogonalization (5). This will change the length (norm)
of each row, which will affect the orientations of the rows
after orthonormalization.

One iteration of the new Generalized symmetric Fas-
tICA algorithm, with the new definition of g(-), can then
be written in three steps:

W« g(WZ)Z" — diaglg(WZ)1ny]W (15)
Wt « diagfci,...,cql - WT (16)
W « (WHrwiHh)-1/2w+ (17)

This algorithm can be analyzed in the same way
as the plain symmetric FastICA in [8] using a simple
substitution W;& ~— ckW;:z. The result is that the
non-diagonal normalized gain matrix elements for this
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Fig. 1. Flow of the proposed algorithm EFICA.

method, N'/2G{;, have asymptotically Gaussian dis-
tribution NV(0, V,$¥), where

e+ (v +17)
(ckmh +cem)?

ngs = (18)

Note that the different choice of nonlinearity for each
row of W also changes the definitions (6)-(8) for u, ok,
and [ in the sense that g in those definitions must be
replaced by gi. The definitions for vy, and 73 in (11),(12)
remain the same but now they, also, depend on their own
nonlinearity g (-).

The key thing here is that, since ¢1,...,cq are arbi-
trary positive numbers, the criterion (18) characterizing
the asymptotic error variance of the algorithm can be
optimized in terms of these free parameters.

The properties of (18) are as follows:

o The variance is invariant with respect to multiplying
all parameters ¢ by the same factor. Therefore, for a
fixed k let ¢ be chosen, without any loss of generality,
as ¢ = 1. Let us change the notation so that instead
of ¢y, we use ¢y to denote the other parameters in the
case that ¢, = 1.

o Minimization of (18) with respect to ¢k, £ # k, can
be performed analytically in a straightforward way, and
it gives

VK

(e +77)

OPT

Ck,f = arg min VkCZ’S = (19)

ceycrp=1

o Combining (18) and (19), the optimum value of the
criterion is

Ve (ve + 77)
v + TR (Ve +77)

VOPT _

ce cp=1

However, note that the optimum choice (19) can be done
for a fixed k only, thus, the method implemented via
(15)-(17) attains the minimized V,§5 (20) for the se-
lected %k only, not for all k, ¢ simultaneously. Moreover,
optimization of V,5° separately for each k alleviates the
orthogonal constraint, and thus, delimits performance of
the algorithm [18].
e In the special case that g, = v, i.e., the k-th nonlin-
earity equals the score function of the k—th signal for
each k = 1,...,d, it is easy to show that By = px = K&,
ur =1, and 7, = 9, = ki — 1. Then (20) simplifies to
vgrT = 2

= N CRB(Gyy). (21)

Ripky — 1

This means that in this special case the estimator attains
the CRB for N — oo.

In practice the true score functions are rarely known
in advance, and the generalized symmetric FastICA has
only a theoretical meaning. It can be proved, however,
that the asymptotic efficiency of the algorithm is main-
tained if the score functions and the optimum coefficients
chy " are replaced by their consistent estimates.

For the consistent estimation, it is necessary to have
a consistent initial estimate of the mixing or de-mixing
matrix. The ordinary symmetric FastICA is one possible
choice. Second, one needs a consistent estimate of the
score functions computed from the sample distribution
functions of the components. This is a widely studied
task, and numerous approaches have been developed ei-
ther parametric [21] or nonparametric [12], [11], [22].
Note, however, that not every score function can serve a
suitable nonlinearity for use in FastICA iteration. Suit-
able nonlinearity must be continuous and differentiable.

B. Proposed algorithm

In this subsection, an algorithm, called for brevity
“EFICA” is proposed, which combines the idea of the
generalized symmetric FastICA with an adaptive choice
of the function g, which is base on modelling of the dis-
tribution of the independent component by generalized
Gaussian distribution [15].

The algorithm consists of three steps:

1. Running the original symmetric FastICA until con-
vergence using a standard nonlinearity such as g(s) =
tanh(s).

2. Adaptive choice of different nonlinearities gj to esti-
mate the score functions of the found sources, based on
the outcome of Step 1.

3. A refinement or fine-tuning for each of the found
source components by one-unit FastICA, using the non-
linearities found in Step 2, and another fine-tuning using
the optimal ¢; parameters as in (16),(17).

For easy reference, the outline of the algorithm is sum-
marized in Figure 1. The three steps are now introduced
in detail.

B.1 Step 1: Running the symmetric FastICA until con-
vergence

The purpose of Step 1 is to quickly and reliably get
preliminary estimates of the original signals. In this step,
therefore, the optional nonlinearity in the original sym-
metric FastICA g¢(s) = tanh(s) is used due to its uni-
versality, but other possibilities seems to give promising

results as well, e.g. g(s) = 13%7. Also the test for saddle



points as introduced in [8] is performed to get reliable
source estimates.

B.2 Step 2: Adaptive choice of the nonlinearities

Assume that Uy is the k—th estimated independent
signal obtained in Step 1.

In many real situations, the distributions of the sig-
nals are unimodal and symmetric. in this paper, we fo-
cus on a parametric choice of g; that works well for the
class of generalized Gaussian distributions with param-
eter a, denoted GG(«a). This class covers a wide vari-
ety of typical distributions including standard Gaussian
and Laplacean distributions for a = 2 and o = 1, respec-
tively, a uniform distribution in the limit as a — oo, and
heavy-tailed distributions for a — 0+ (see Appendix B
for the definition).

The score function of the GG(a) distribution is pro-
portional to®

g(x) = sign(a) - Jz|*~". (22)
A problem with the score function of the GG(«) distri-
bution is that it is not continuous for @ < 1 and thus it
is not a valid nonlinearity for FastICA. For these a’s the
statistical efficiency cannot be achieved by the algorithm
using this score function.

Let us look separately at the subgaussian (« > 2) and
supergaussian (o < 2) cases.

Subgaussian case

We propose to use the function gi(x) = sign(z) - |z|*~1
for subgaussian signals, i.e. for o > 2. In this case the
parameter a can be well estimated by fitting the theo-
retical fourth-order moment of the GG(«) distribution

mer=r () () (@)

with the sample fourth-order moment of the k-th signal

(23)

e = 15G;1/N. (24)
There {-}'* denotes the elementwise fourth order power.
In (23), I' is the Gamma function. The sample fourth
moment indicates well the subgaussianity (4 < 3) or
supergaussianity (74 > 3) of the signal and can be used
to drive the choice of the nonlinearity g.

In Appendix A an asymptotic inversion of (23) at
point & = 400 is performed, giving an estimation

Ay = [viV/Mag — 1.8 — v (g, — 1.8)] 1

with 11 ~ 0.2906 and v, ~ 0.1851. This is valid for
Mar > limg oo ma(a) = 9/5 = 1.8. If my < 1.8 or
a > 15, maximum power 14 in function g is used to
maintain the stability of the algorithm.

(25)

Supergaussian case
If the sources have the distribution GG(a) with o < 2,
the score function (22) appears not to be so useful as the

1Tt can be easily shown that a nonzero scalar multiplicative fac-
tor is irrelevant for usage in the FastICA.

nonlinearity in FastICA. Instead, we suggest to study an
ad-hoc choice

gn(@) = zexp{—n|z[} (26)
where 7 is a free parameter. The intention is to find an
optimum choice of 7, which would minimize the asymp-
totic variance in (20). It can be shown (see Appendix C)
that for @ < 1/2 and 7 going to infinity, the variances
VIV and VFT converge to zero. This is in accord with
the fact that the CRB in (21) is equal to zero for these
a’s, because K, = +00 (see Appendix B) [15].

The above result suggests, that if & < 1/2, the param-
eter n in (26) should be as large as possible. In practice,
however, this approach often fails because of poor con-
vergence of the algorithm to the desired solution for large
n.

An accurate estimation of parameter o appears to be
difficult, if @ < 2. Fortunately, it is not so important, as
it is also shown in Appendix C, and hence we suggest to
apply one universal choice of the nonlinearity, that is

g1(x) = @ exp(—ny o) (27)
where n; = 3.348. With this choice, the parameter «
need not be estimated et all. For easy reference, let us
call the nonlinearity in (27) “expl”.

In Figure 4 it is shown that quality of separation
achievable by this nonlinearity is close to the correspond-
ing CRB for all a’s in the interval [1,2). The difference
in terms of SIR is at most 1 dB, if « is not too close
to 2. For a € (0,1], the performance is no more close
to the CRB, which is infinite for @ € (0,1/2], but at
least it outperforms the performance of the classical”
nonlinearity “gauss” with g(z) = xexp(—z2/2), which
was thought to be best for separation of long-tailed sig-
nals. The improvement achieved by “expl” is about
4 dB when a = 0.5 and about 8 dB when a = 0.2. (We
note, however, that “gauss” slightly outperforms “expl”
for a > 1.4.)

30

20f

101

SIR [dB]

Fig. 2. Theoretically achievable signal-to-interference ratio (SIR)
—10log1q V,SP T for the optimum generalized symmetric Fas-
tICA with nonlinearity “expl” and “gauss” for separation of
two sources with the same GG(«) distribution, and the CRB,
as a function of a.



Summary of the Nonlinearity for EFICA
In summary, the nonlinearity of our choice is

x exp(—m|z|) for M4y >3
gr(z) = { sign(z) - |z[min{@ 114} for 1.8 < Mgy <3
sign(z) - |z|** for g <1.8
(28)

where 4, is the estimated fourth-order moment of the
k-th source signal, given in eq. (24), and @y, is given in
(25).

Note that in the vicinity of M4 = 3, corresponding
to a Gaussian signal, there is a sudden change in non-
linearity, but it does not have any adverse consequences.
A signal with nearly Gaussian distribution itself is badly
estimable and can be estimated thanks to the other (non-
gaussian) signals only. Thus, the effect of selection of the
nonlinearity is negligible.

B.3 Step 3: The refinement

The refinement of the initial estimate proceeds in two
steps.

The first step, denoted R1, is a more sophisticated im-
plementation of the relation (15). Theoretically, it would
suffice to perform (15) once, starting from the initial es-
timate of W. However, better results are obtained if
it is performed separately for each %k as series of one
unit FastICA iterations, until a convergence is achieved.
In the last iteration, however, the normalization step is
skipped.

This method works well, if the preliminary estimates
of the original signals U from the first step (symmetric
FastICA) of the proposed method lie in the right domain
of attraction. It might happen, however, that some of
the components is difficult to separate from some other
component, and the one-unit iterations converge to a
wrong component. This patological case can be excluded
by checking the condition whether the angle between the
component separated by the initial solution and the one
unit solution is not too big. If it happens, then the one
unit solution should be replaced by the initial estimate.

The step R1 can be summarized as follows.
Step R1: Let WSYM+ = [@SY M+ {SYMHT
WSYM — [WiY Moo , respectively, be the re-
sult of (4) and (5) from the last iteration of symmetric
FastICA. Assume that Step 2 has been performed, i.e.,
for each k = 1,...,d, M4y has been computed according
to (24) with Uy = (WY M)TZ, and the optimal nonlin-
earity g has been chosen via (28).

For each k =1,...,d, initialize

and
ﬁ.gYM]T

Wy =wp M (29)
and under a condition that [W] WY M| > 0.95 iterate
the one-unit FastICA

W = Zgp(WiZ) — Wi g (Wi Z)1y  (30)
Wiy o= Wi/Iw]] (31)

until convergence is achieved. If Wl w3 M| < 0.95, i.e.
the new estimate Wy, differs too much from W7¥' M keep

the old (not normalized) result W, = wy¥ M+

back gi(z) = tanh(x).

Now, let W+ = [@i,...,@$]T be the result after
convergence of the one-unit algorithms. The second re-
finement step can be summarized as follows.

Step R2: For each k =1,...,d, compute

and put

i = ﬁkgk(ﬁk)/Na Th = ik — Prl

Pe = 1Ngk(uk)/N Y& = B — M, (32)
B = 1% g2 (W) /N
For each k,0 =1,...,d, compute
TeVk
cpe =< TRAetT) for £k
1 for (=k
Next, for each k = 1,...,d, compute
Wi = diaglcrs, ... cha] - W (33)
W = (WiHWHT) 2w (34)
{;V,?EF — (Wauz) k- (35)
REF _

The resulting k—th component estimate is Uy
ZTWEEF | and the resulting refined demixing matrix

WREF is

\WwREF _ AREF
WHEF — [gREF

WREFT
Wil
This completes the EFICA algorithm.

IV. SIMULATIONS

In this section, we provide an experimental compar-
ison of the proposed algorithm with other well-known
methods for ICA. For this purpose, we choose the origi-
nal version of the symmetric FastICA [6] with nonlinear-
ity “tanh”, JADE [5], and the nonparametric algorithm
NPICA [11], generally believed to give very good results
in a variety of separation tasks.

In order to measure the asymptotic errors of the algo-
rithms, we use the achieved signal-to-interference ratio
of the k-th signal

2
Gk:k:

d 2 7
Eé:lf;ﬁk Gké

SIR;, = (36)

where G is the acquired gain matrix of the corresponding
algorithm. In case of the proposed algorithm, it can be
estimated as

N

d OPT
0=14#k V

SIR, = (37)

using (32) and (20).

There occur some random convergence failures in the
original FastICA and NPICA, which in our method are
fixed by the test of saddle points. To eliminate their
effect in the comparisons, both mean and median SIRs
from each experiment are shown.

IThe matlab code for the algorithm EFICA is made available on
the Internet at the first author’s web page [14].
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Fig. 3. Mean and median SIR of the signal components in Example 1.

A. Ezxperiments with GG(a) distributions

Three simulation experiments with artificial data were

carried out to demonstrate the efficiency of the proposed
algorithm and its superiority above other methods when
all the original signals have generalized Gaussian distri-
butions.
Example 1. One Gaussian signal, 10 Laplacean, and 10
signals with Generalized Gaussian distribution with the
same parameter a € [0.1,10] and the length N = 2000
were generated in 100 independent trials for each a.
In each trial, the 21 signals were mixed with a ran-
domly generated matrix, and separated by the proposed
method and the algorithms listed above. Averaged re-
sults over the 100 trials were computed for each a.

In Figure 3(a), the three diagrams show the depen-
dence of averaged SIRs on « of the Gaussian signal, of
the first Laplacean, and of the first signal with Gener-
alized Gaussian distribution. For the proposed EFICA
method, both the theoretical SIRs computed via (37)
and the empirical ones are presented. Note that the
length N = 2000 is quite small for separating 21 signals,
which also causes overestimation of the attained SIR via
(37) since it estimates the asymptotic variance only.

The results can be compared with those in Figure 3(b)
where median SIRs from the same experiment are pre-
sented. The theoretical SIRs and the CRB are not in-
cluded there, since they are derived only for mean SIR.

As can be seen from the Figure, the empirical and
theoretical SIR (corresponding to the CRB bound) of
the EFICA are in good agreement. The empirical SIR is
considerably higher than for the comparison methods.

Note that in the vicinity of o = 2 there are 11 signals
with nearly Gaussian distributions. The CRB on the
variance is high (it goes to infinity for @ — 2). In this
case it may happen that the empirical SIR exceeds the
corresponding CRB, as we can see in the upper diagram
in Figure 3(a). It happens probably because the estima-
tor is not unbiased here. The MSE of biased estimators

can be lower than the CRB.

Example 2. 13 signals of Generalized Gaussian distri-
bution, each with a different value of the parameter «,
respectively, equal to 0.1, 0.3, 0.5, 0.8, 1, 1.5, 1.9, 2,
2.1, 2.5, 4, 8, and 10, were mixed with a random mixing
matrix and demixed. The experiment was repeated 100
times with fixed length of data N = 5000. The results
are plotted in Figure 4. Here, each value of « in the plot
correspond to the result for a different original signal.
The same conclusions hold as in Example 1.

Example 3. To demonstrate the performance of the
method for different lengths of data three signals with
Gaussian, Laplacean, and uniform distribution were
mixed with a random mixing matrix and demixed. The
average and median SIRs from 100 independent trials
for each length of data are plotted in Figure 5. Again,
EFICA outperforms the other methods.

Example 4:. Separation of noisy BPSK signals.

In this example, we consider 10 BPSK signals dis-
torted by Gaussian noise, i.e., i.i.d. data distributed
as v 1 — e2b+en, where b is a Bernoulli random variable
equal to 1 or -1 with equal probabilities, and n is a stan-
dard Gaussian variable. Now the probability density of
each signal is (see examples of the densities for different

¢ in Fig. 6)
1 (s-v1-c2)? (s+vi=e2)?
=— | e 262 + e 2¢2 . (38

227 (38)

Data sequences of length N = 1000 were generated in
100 independent trials, mixed with a random mixing ma-
trix, and separated. In order to compute the CRB from
(14), x was numerically estimated via a Monte Carlo
method. SIR of the first estimated signal as a function
of ¢ is shown in Figure 7.

The results of the experiment need further comments.
First, for small ¢’s the theoretical SIR underestimates
the empirical SIR. The reason is that the former SIR is
computed from not ideally separated signal components

fe(s)
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Fig. 5. Mean and median SIRs obtained in separating three signal components with varying length.

while its true value approaches infinity. We have used
the estimated signal components to mimic the real situ-
ation, when the original signals are not available to pre-
dict the estimation accuracy. Performance of the sym-
metric FastICA and of JADE is limited by the orthogo-
nality constraint, which requires that the separated sig-
nals must have mutual correlation exactly zero [17]. The
NPICA would perform well in separating two or three
signals, as it is tailored to separating signals with mul-
timodal distributions. However, in our example with 10
components it fails, even in median, probably because
of some implementation or numerical problems.
Example 5: Speech signals separation

To show the performance of the algorithm on real
data, although with artificial mixtures, 10 speech sig-
nals of length N = 5000 were randomly selected from a
database of isolated words? containing about 200 sam-
ples. After centering and normalization, the data were
mixed with a random matrix, and consequently sepa-
rated. Mean and meii\ian SIR computed from estimated
gain matrices G = WA obtained in 1000 independent
trials are summarized in Table I. The proposed EFICA
method gives better results than FastICA and JADE.
It is outperformed by the algorithm NPICA (in median
SIR), though, but note that this is at the expense of
much higher computational cost, as shown in the follow-
ing section.

TABLE I
MEAN AND MEDIAN SIR OF SEPARATED SPEECH SIGNALS

Algorithm MEAN [dB] MEDIAN [dB]
EFICA 35.86 27.84
FastICA 27.36 25.03
NPICA 35.80 30.40
JADE 24.21 21.77

B. Complexity of the algorithm

In order to demonstrate the computational complex-
ity, a similar experiment to that in [11] was done. The

average CPU time® required by the compared methods
is shown in Fig. 8(a) for a varying length of data when
6 generalized Gaussian signals with a random parame-
ter a € [0.1,10] were separated. The results for a fixed
length of data NV = 1000 and a variable number of sig-
nals are in Fig. 8(b).

The complexity of the algorithm is only slightly higher
than that of the original symmetric FastICA. The test
of saddle points has complexity O(d?N); the adaptive
choice of nonlinearity (step R1) has complexity O(dN).
Note that the latter two steps have a fixed number of
operations, provided that the test of saddle points is
negative. Otherwise, only a few additional iterations
are needed since the algorithm is initialized almost in
the correct solution.

Similarly, only a few additional one-unit iterations in
the refinement step R1 are needed.

V. CONCLUSION

An improved version of the FastICA algorithm was
proposed, based on the concept of statistical efficiency.
This means that the asymptotic variance of the gain
matrix, defined as the product of the estimated unmix-
ing matrix and the original mixing matrix, attains the
Cramér-Rao lower bound (CRB) which is the theoreti-
cal minimum for the variance. The algorithm was named
EFICA.

Two changes have to be made in the standard sym-
metrical FastICA: first, the nonlinearities must be ap-
proximations of the score functions of the true sources.
This is achieved by running FastICA in two passes, using
the separation results from the first pass to estimate a
parametric model of the source densities. Second, a set
of extra parameters are added to the algorithm in the
form of multiplying the lengths of the weight vectors by
some numbers before orthogonalization. By optimizing
these numbers, this allows to adjust the asymptotic vari-
ance so that it becomes equal to the CRB.

The asymptotic efficiency of EFICA was rigorously
proven under the assumption that the source signals

3The experiment was performed in Matlab”™ on a Pentium IV

2http://noel.feld.cvut.cz/vyu/dzr/cislovky/OBRACENE_BYTY/ 2.4GHz PC with 512 MB of RAM.
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respectively.

follow a Generalized Gaussian density with parameter
a > 0. In simulations with source signals drawn from
this density, the agreement between the theoretical and
experimental results was proven. Also, in comparisons
to some other ICA algorithms, the EFICA algorithm is
superior in this case as predicted by the theory.

It is possible that EFICA will not be optimal (nearly
efficient) if the source distributions and their score func-
tions cannot be well modelled by the class of general-
ized Gaussian distributions - a different than those in
Example 4. In that case, the results can be improved
by including another method of modelling of the score
functions.
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Fig. 8. CPU time needed to separate (a) 6 signals of a various
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1000.

APPENDIX A

Consider a € (2,+0). The following second order
asymptotic expansion of (23) was derived for a — 400
in Maple™

(39)

where A = @, B = 18\/?72«3), and ((-) is a Riemann
function obeying ((3) = 1.202. To invert the above re-
lation, first, substitute y = 1. Then, we can write

1 B, 2y
1 B(1 B, o)’ s
—Az+A(Az+Ay + o(y )) +o(y?) =
1 B, 9
:Zz—i—ﬁz +o(2%) (40)
Using the definition (39) of z gives
1 9 B 9
~ |- _J_Z 2 41
o (gymi@ -3 -5 (m@-2)) @
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See the comparison of inversion of (23) with the derived
relation in Fig. 9.

R
m, (@)
- - - approximation

parameter a

(@)

Fig. 9. Comparison of the inversion of (23) with the approxima-
tion (41).

APPENDIX B

Generalized Gaussian distribution family

The generalized Gaussian density function with pa-
rameter «, zero mean and variance one, is defined as
fal@) = ca exp {~(ale])*} (42)
where a > 0 is a positive parameter that controls the
distribution’s exponential rate of decay, and T'(-) is the
I'(3/a)

I'(1/a)"
The k—th absolute moment for the distribution is

* k+1
Buflol} = [ ol fulw)do = 5 %

Gamma function, ¢, = % and A\, =

(43)

The score function of the distribution is
Bfa(x)

) = — oz — |‘T
¢a( )_ fa(x)

Then, simple computations give

|a—1

sign(zx)
Eq [|2]°]

(44)

_ Eallz?] _TE-2)T(

>)
S ElF P T s

ko = Eq [wﬁ ()]

Note that ko, = +00 for a < %, Ko = 1 for @ = 2 (the
distribution is standard Gaussian), and k, — +oo for
o — +00.

AprPENDIX C

In this Appendix an asymptotic variance (20) of Fas-
tICA with nonlinearity (26) is studied under the assump-
tion that the probability distribution of the independent
sources is GG(a) with parameter @ < 2. Note that (20)
can be written in a form

VOPT — Vi (Ve +1) (46)
Ve + Vi +1

where V;1V is given by (9). Since ViU is independent of

the choice of g; (it is a function of g;), the nonlinear-

ity g, which minimizes V1V for fixed g, simultaneously

minimizes minimizes Vk(zp T,

Let V;}¥ (n,a) be the asymptotic variance computed
for parameter n and the parameter of the GG distribu-
tion a. We will show that for a € (0,1), an optimum 5
that minimizes (9) is  — co. In particular,

: 1U _

Tim V¥ (7,0) = 0 (47)
for a € (0, 3).
Proof To prove (47), it suffices to compute asymp-

totic expansions for quantities in (6)—(8) for n — oo,

o0

e = Baligy ()] = / 299(2) fa(2) de

—0o0

o0
20a/ z2e e~ Aa)® g
0

4c, 1
-Seo(i)

In derivation of (48), the following Taylor series expan-
sion was used,

(48)

)\am)2a ()\ax)3a

0" 21— (rg) 4 Cedl T Qe

+... (49)

together with the definition of the Gamma function
L(a) = [y~ 2 ‘e ®dx. Similarly, we get

20%2c, AT () 1
i = Balsy (o] = 2258 10 (o0
c 1
Bra = Ealgi)] = 5% +0 () 61)
Then, after some algebra, we get
/Bn a T /Jf2
VU (5, @) = ) 7,0
ke ) (Nn,a - pn,a)2
,',’204—1 1
= o zararn TOM ) (52)
8atc, A20T2(a)
which proves (47). [ |

For any fixed 3 < a < 2, V'V (n,a) can be shown to
have a global minimum at certain n = nopr(a), which
was computed numerically and is plotted in Figure 10.
We can see that the optimum 7 grows very fast when «
approaches 3.

The variance cannot be minimized simultaneously for
all a’s. However, the variance does not depend sig-
nificantly on the value of 7, as it can be seen from
Figure 11, which shows the ratio V'V (1, a)/V,\¥ (n1, @)
for n = 1,2,5 and 10. As a reference, we have cho-
sen the value n that is optimum for @ = 1, that is
n=m = 3.348.
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