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Summary

We discuss aggregation of complex quanti-
ties, namely of intervals distribution func-
tions of copulas and fuzzy quantities. After
historical notes, some new aggregation meth-
ods for these quantities are proposed.
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1 INTRODUCTION

Aggregation of single real inputs appears almost in
any scientific field dealing with observed (measured)
real quantities. The theory of aggregation operators
is fast developing in last years (recall only edited
volumes [1] and [2]). When restricted to the [0,1]-
domain an aggregation operator A is a non-decreasing
U [0,1]™ — [0, 1] mapping such that A(0,...,0) =0,
neN

A(,...,1) =1 and A(z) = z for all z € [0,1], see,
e.g., [11, 12]. Complex quantities describe observed
objects with some kind of uncertainty (vagueness).
Typical examples of this kind are linguistic quanti-
ties (small, medium, large, etc.). Note that we will
not focus now on ordinal aspects of these quantities.
Therefore, some quantitative model of such complex
quantities is needed for our purposes. In the case of
linguistic quantities, such a model can be provided in
the framework of fuzzy sets [23], rough sets [19], al-
ternative set theory [22], etc., and then we can start
to discuss ”computing with words” [24, 25]. In clas-
sical probability theory a similar problem occurs in
calculus with distribution functions. Recall only the
convolution of distribution functions (i.e., summation
of independent random variables).
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There is an argument for the study of general scheme of
aggregation operators, exceeding the borders of an ac-
tual sort of applications. The ”computing with words”
can be understood in two ways. The first meaning cov-
ers the computation with uncertain input data, where
the sequence of computational steps is strictly given by
the algorithm, and particular operations are exactly
defined. The other meaning is even more liberal - it
admits that even particular operations can be specified
in several modifications due to the actual model. For
example, there exist several ways of a vague instruction
formulated as ”putting two data together”. It can be
interpreted as a sum of several random variables (de-
fined by convolution), sum of fuzzy quantities (by the
extension principle or another operation), conjunction
of vague statements (by fuzzy logical connectives) and
numerous other operators. The choice of the proper
one of them is sometimes given by the character of
the constructed model and also by our subjective in-
terpretation of vague instructions for its processing.
Their combination or switching among them repre-
sents the qualitatively higher level of management of
uncertainty. To be ready to preserve their consistency
and unified general character, it is useful to handle
more general structure of aggregating operators cover-
ing many of the possibilities mentioned above.

The aim of this contribution is to initiate a deeper in-
vestigation of aggregation of complex quantities. In
the next section, we will discuss the simplest general-
ization of single real inputs — interval inputs. Aggre-
gation of intervals naturally appears in interval math-
ematics [16], however, there is still a lot of work to be
done. In the third section, we will deal with aggre-
gation of distribution functions. The fourth section is
devoted to the aggregation of copulas [17], i.e., spe-
cial 2-dimensional distribution functions. In section
five we will discuss aggregation of fuzzy quantities.
To simplify the next considerations, we will aggregate
two complex quantities only, the generalization to arbi-
trary (but finite) number of input complex quantities
is mostly straightforward. Note also that whenever



involved complex fuzzy quantities are represented as
real functions (distribution functions, copulas, fuzzy
sets), pointwise aggregation is always possible (and
often meaningful). Recall, e.g., the convex combina-
tion of two copulas, or the intersection (union) of two
fuzzy sets modelled by a t-norm (t-conorm). In such
a case, output value in some domain element depends
on input values in that domain element only. However,
this is not our aim in this paper! We will discuss ag-
gregation of complex quantities which is not provided
pointwisely.

What is an aggregation operator A acting on some
kind of complex quantities? In general, we will require
the non-decreasingness of A (with respect to the gen-
uine (partial) order on involved quantities) and preser-
vation of boundaries only. Obviously, for degenerated
complex quantities (i.e., when they can be represented
by a single real value) we expect that A is reduced to
some (real) aggregation operator A.

2 AGGREGATION OF INTERVALS

Following the ideas of interval mathematics [16], for
any continuous aggregation operator A acting on some
real interval I, extension of A to (closed) subintervals
of I is given by

A([$17x2]7[y1;y2]) =
{z€I|z=A(®y),z € [z1,22],y € [y1,12]}-

Due to the monotonicity of aggregation operators,

A([z, z2], [y1, 92]) = [Al@1, 1), Az, 92)], (1)
see for example [18] for special t-norms on intervals.

Obviously, for a couple of aggregation operator A, B
acting on I, such that A < B, we can define

A([x1=$2]’[y1:y2]) = [A(xlayl):B(x2;y2)]' (2)

This approach is applied, e.g., to t-norms on intervals
as discussed in [3] (then these t-norms on intervals are
called representable).

Inspired by non-representable t-norms as intervals as
discussed in [3], we propose (compare also [4]) two next
aggregation approaches to intervals (again based on
A< B):

A([whxﬂa [y1, y2]) =

[A(z1,y1), max(B(z1,y2), By1,22))], (3)
A([xth]a [yla y2]) =
[min(A(xlva)aA(ylv‘r?))7B(x2ay2)]' (4)
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Obviously, several other modifications of (3) and (4)
can be introduced. As an interesting task for future
we put the study of properties of A based on some
prescribed properties of A and B. So, for example, if
A = B is a t-norm (on [0,1]), then A given by (3) is
an interval-valued t-norm.

3 AGGREGATION OF
DISTRIBUTION FUNCTIONS

Classical convolution of distribution functions
P+ By(t) = / Fi(t — 2)dF> (z)

extends the summation of real quantities based on the
product copula II (i.e., two involved random variables
are independent). A similar extension of summation
can be introduced for any copula C (expressing the
dependence structure of involved random variables),
see [17].

An axiomatic approach to aggregation of distribution
functions on [0, o] was proposed by Serstnev [20]. His
triangle functions can be understood as a kind of t-
norms. Moreover, any (left-continuous) t-norm T is
linked to a special triangle function 7r extending the
summation of reals,

71 (F1, Fy)(t) = sup{T(Fy(t — z), Fz(z)) | = € [0, ]}

(5)
We can rewrite (5) into
mr(F1, B)(t) =
sup{T (F1(y), F>(2)) | z,y € [0,00],y + z =t}. (6)

For arbitrary (left-) continuous aggregation operator
A (on [0,00]) we can define, based on T and inspired
by (6), its extension to an aggregation operator Az on
distribution functions (on [0, 0c]) given by

Ar(Fy, B)(t) =

sup{T (F1(y), F>(2)) | z,y € [0,00], A(y,z) =t}. (7)

Similarly, for a given continuous t-conorm S [10], we
can define

As(F, F)(t) =

inf{S(F1(y), F2(2)) | 2,y € [0, 00], Ay, z) = t}. (8)

For the strongest t-norm Ty, (7) can be transformed
(compare [8]) into

A(F1, Fy) = (AR B, 9)



where the pseudo-inverse g¢~ 1 : [c,d] — [a,b] of a
non-decreasing function g : [a,b] — [¢,d] is given by
[9]

9" (t) = sup{w € [a,b] | g(x) <t}

Note that we can even relax the requirements on 7'
to be a t-norm in the above considerations (similarly
with S). Indeed, T can be chosen to be a t-subnorm
[7, 15] which is also an aggregation operator, i.e., T is
so called boundary weak t-norm [21].

4 AGGREGATION OF COPULAS

Recall that a copula C' : [0,1]2 — [0,1] is a 2-
dimensional distribution function with uniformly (on
[0,1]) distributed marginals [17]. Up to pointwise ag-
gregation of copulas (note that in general the class
of copulas is closed under convex combinations, i.e.,
weighted arithmetic means), the only non-pointwise
aggregation for copulas was recently proposed in [6]:
for a given weight A € 10, 1[, we put

Wi(C1,C2) = CrRo, +(1-M)Ro, - (10)

where R¢ : [0,1]? — [0,1] is given by
Re(z,y) = sup{z € [0,1] | C(=,2) <y}
and Cpg :[0,1]2 — [0, 1]is given by
Cr(z,y) = inf{z € [0,1] | R(z,z) > y}

(compare t-norms and residuals of t-norms [10]). In-
spired by (10), we open the following problem: for
which aggregation operator A : [0,1]2 — [0,1] is the
operator A acting on functions H : [0,1]> — [0, 1] and
given by

A(Hi,Hz) = CA(Ry, Ry (11)

an aggregation operator on copulas? Most probably
also in this case weighted means will be the only ap-
propriate aggregation operators solving (11) for cop-
ulas. Note however that (11) gives a new method of
aggregation of general (binary) aggregation operators.

5 AGGREGATION OF FUZZY
QUANTITIES

Arithmetic of fuzzy quantities has been developed in
many papers and monographs, recall only [5, 13]. In
the case when conjunction (intersection of fuzzy sets)
is modelled by T, arithmetics of fuzzy quantities can
be transformed into interval arithmetics of the corre-
sponding a-cuts. Obviously, we can extend this ap-
proach to arbitrary (continuous) aggregation operator
acting on intervals, see Section 2.
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Based on Zadeh’s extension principle [23], we can ex-
tend aggregation operator Ar introduced in Section
3 for distribution functions (which are, indeed, spe-
cial fuzzy quantities) to all fuzzy quantities, using the
same formula as in (7). Similarly, (8) can be extended
to fuzzy quantities.

In the case of verbally generated fuzzy quantities as
proposed in [14], each fuzzy quantity is described by
its shape function and by its scale. Following the ideas
and notations from [14], we can define an aggregation
operator A on verbally generated fuzzy quantities by

A (1, 1), (02, f2)) = (Alp1,92), B(f1, f2)),

where A is an aggregation operator on shapes and B
is an aggregation operator on scales.

(12)

6 CONCLUSION

We have recalled some known and proposed some new
kinds of aggregation operators acting on some class
of complex quantities. The main aim of this contri-
bution is to initiate a deeper study of such complex
aggregation, whose importance will surely increase in
near future.
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