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Abstract

We propose a new additive decomposition of
probability tables - tensor rank-one decom-
position. The basic idea is to decompose
a probability table into a series of tables,
such that the table that is the sum of the
series is equal to the original table. Each
table in the series has the same domain as
the original table but can be expressed as a
product of one-dimensional tables. Entries
in tables are allowed to be any real number,
i.e. they can be also negative numbers. The
possibility of having negative numbers, in
contrary to a multiplicative decomposition,
opens new possibilities for a compact repre-
sentation of probability tables. We show that
tensor rank-one decomposition can be used
to reduce the space and time requirements in
probabilistic inference. We provide a closed
form solution for minimal tensor rank-one de-
composition for some special tables and pro-
pose a numerical algorithm that can be used
in cases when the closed form solution is not
known.

1 Introduction

A fundamental property of probabilistic graphical
models that allows their application in domains with
hundreds to thousands variables is the multiplicative
factorization of the joint probability distribution. The
multiplicative factorization is exploited in inference
methods, e.g., in the junction tree propagation (Jensen
et al., 1990). However, in some real applications
the models may become intractable using the junc-
tion tree propagation and other exact inference meth-
ods because after the moralization and triangulariza-
tion steps the graphical structure becomes too dense,
the cliques consist of too many variables, and, con-

sequently, the probability tables corresponding to the
cliques are too large to be efficiently manipulated. In
such case one usually turns to an approximative infer-
ence method.

Following the ideas presented in (Dı́ez and Galán,
2003; Vomlel, 2002) we propose a new decomposition
of probability tables that allows to use exact infer-
ence in some models where – without the suggested
decomposition – the exact inference using the stan-
dard methods would be impossible. The basic idea is
to decompose a probability table into a series of ta-
bles, such that the table that is the sum of the series
is equal to the original table. Each table in the se-
ries has the same domain as the original table but can
be expressed as a product of one-dimensional tables.
Entries in tables are allowed to be any real number,
i.e. they can be also negative numbers. The possibil-
ity of having negative numbers, in contrary to a mul-
tiplicative decomposition, opens new possibilities for
compact representation of probability tables. To have
the decomposition as compact as possible our goal is
to find a shortest series.

It is convenient to formally specify the task using the
tensor terminology1. Assume variables Xi, i ∈ N ⊂ N
each variable Xi taking values (a value of Xi will be
denoted xi) from a finite set Xi. Let for any A ⊆ N
the symbol xA denotes a vector of the values (xi)i∈A,
where for all i ∈ A: xi is a value from Xi.

Definition 1 Tensor
Let A ⊂ N . Tensor ψ over A is a mapping

×i∈AXi 7→ R .

The cardinality |A| of the set A is called tensor dimen-
sion.

1An alternative would be to specify the task using op-
erations with real-valued potentials (Jensen, 2001, Section
1.3.5), but we would need to introduce certain terms for
potentials that are standard in the tensor terminology.
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Note that every probability table can be looked upon
as a tensor. Tensor ψ over A is an (unconditional)
probability table if for every xA it holds that 0 ≤
ψ(xA) ≤ 1 and

∑
xA ψ(xA) = 1. Tensor ψ is a condi-

tional probability table (CPT) if for every xA it holds
that 0 ≤ ψ(xA) ≤ 1 and if there exists B ⊂ A such
that for every xB it holds

∑
xA\B

ψ(xB , xA\B) = 1.

Next, we will recall the basic tensor notion. If |A| = 1
then tensor is a vector. If |A| = 2 then tensor is a
matrix. The outer product ψ ⊗ ϕ of two tensors ψ :
×i∈AXi 7→ R and ϕ : ×i∈BXi 7→ R, A ∩ B = ∅ is a
tensor ξ : ×i∈A∪BXi 7→ R defined for all xA∪B as

ξ(xA∪B) = ψ(xA) · ϕ(xB) .

Now, let ψ and ϕ are defined on the same domain
×i∈AXi. The sum ψ + ϕ of two tensors is tensor ξ :
×i∈AXi 7→ R such that

ξ(xA) = ψ(xA) + ϕ(xA) .

Definition 2 Tensor rank (H̊astad, 1990)
Tensor of dimension |A| has rank one if it is an outer
product of |A| vectors. Rank of tensor ψ is the minimal
number of tensors of rank one that sum to ψ. Rank of
tensor ψ will be denoted as rank(ψ).

Note that standard matrix rank is a special case of
tensor rank (for |A| = 2).

Now, we are ready to formalize the task of decompo-
sition of a probability table into a shortest series of
tables that are product of one-dimensional tables.

Definition 3 Tensor rank-one decomposition
Assume a tensor ψ over A. A series of tensors {%b}r

b=1

such that

• for b = 1, . . . , r: rank(%b) = 1, i.e.,

%b = ⊗i∈A ϕb,i ,

where ϕb,i, i ∈ A are vectors and

• ψ =
∑r

b=1 %b

is called tensor rank-one decomposition of ψ.

Note that from the definition of tensor rank it follows
that for r ≥ rank(ψ) such a series always exists. The
decomposition is minimal if there is no shorter series
satisfying two conditions of Definition 3.

Example 1 Let ψ : {0, 1} × {0, 1} × {0, 1} 7→ R be(
(1, 2)T (2, 4)T

(2, 4)T (4, 9)T

)
.

This tensor has rank two since

ψ = (1, 2)⊗ (1, 2)⊗ (1, 2) + (0, 1)⊗ (0, 1)⊗ (0, 1)

and there are no three vectors whose outer product is
equal to ψ. �

The rest of the paper is organized as follows. In Sec-
tion 2 we show using a simple example how tensor
rank-one decomposition can be used to reduce the
space and time requirements for the probability in-
ference using the junction tree method. We compare
sizes of the junction tree for the standard approach,
the parent divorcing method, and the junction tree
after tensor rank-one decomposition2. In Section 3
the main theoretical results are presented: the lower
bound on the tensor rank for a class of tensors and min-
imal tensor rank-one decompositions for some special
tensors – max, add, xor, and their noisy counterparts.
In Section 4 we propose a numerical method that can
be used to find a tensor rank-one decomposition. We
also present results of experiments with the numerical
method.

2 Tensor rank-one decomposition in
probabilistic inference

We will use an example of a simple Bayesian net-
work to show computational savings of the proposed
decomposition. Assume a Bayesian network having
structure given in Figure 1. Variables X1, . . . , Xm

are binary taking values 0 and 1. For simplicity, as-
sume that m = 2d, d ∈ N, 2 ≤ d. Further assume
a variable Y

df
= Xm+1, which is functionally depen-

dent on X1, . . . , Xm and the value y of Y is given by
y =

∑m
i=1 xi. This means that Y takes m+ 1 values.

Using the standard junction tree construction (Jensen
et al., 1990) we would need to marry all parents
of Y . We need not perform triangulation since the
graph is triangulated. The resulting junction tree
consists of one clique containing all variables, i.e.,
C1 = {X1, . . . , Xm, Y }.

Since the CPT P (Y | X1, . . . , Xm) has a special form
we can use the parent divorcing method (Olesen et al.,
1989) and introduce a number of auxiliary variables,
one auxiliary variable for a pair of parent variables.
This is used hierarchically, i.e. we get a tree of auxil-
iary variables with node Y being the root of the tree.
The resulting junction tree consists of m− 1 cliques.

2Several other methods were proposed to exploit a spe-
cial structure of CPTs. For a review of these methods
see, for example, Vomlel (2002). In this paper, due to the
lack of space, we do comparisons with the parent divorcing
method only.
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X1 X2 Xm

Figure 1: Bayesian network structure.

In Section 3 we will show that if the CPT corresponds
to addition of m binary variables we can decompose
this CPT to a series of m+1 tensors that are products
of vectors

P (Y | X1, . . . , Xm) =
m+1∑
b=1

⊗m+1
i=1 ϕb,i .

As suggested by Dı́ez and Galán (2003) we can visu-
alize an additive decomposition using one additional
variable, which we will denote B. In case of addi-
tion of m binary variables variable B will have m+ 1
states. Instead of moralization we add variable B into
the model and connect it with nodes corresponding to
variables Y,X1, . . . , Xm. We get the structure given in
Figure 2. It is not difficult to show (see Vomlel (2002))
that this model can be used to compute marginal prob-
ability distributions as in the original model. The re-
sulting junction tree of this model is given in Figure 3.

Y

X1 X2 Xm

B

Figure 2: Bayesian network after the decomposition

B,X2B,X1 B,Xm

B, Y

Figure 3: Junction tree for the model after the rank-
one decomposition

After little algebra we get that the total clique size in
the standard case is (m+1) ·2m, after parent divorcing
it is 1

3m
3 + 5

2m
2 + 2m logm− 11

6 m− 1, and after the
tensor rank-one decomposition it is only 3m2+4m+1.

In Figure 4 we compare dependence of the total size
of junction trees on the number of parent nodes3 m of
node Y .
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Figure 4: Comparison of the total size of junction tree.

It should be noted that the tensor rank-one decompo-
sition can be applied to any probabilistic model. The
savings depends on the graphical structure of the prob-
abilistic model. In fact, by avoiding the moralization of
the parents, we give the triangulation algorithm more
freedom for the construction of a triangulated graph so
that the resulting tables corresponding to the cliques
of the triangulated graph can be smaller.

Another possible application of tensor rank-one de-
composition could be the compression of probability
tables when they become too large to be handled ef-
ficiently. In this case we would approximate tensor
ψ with another tensor ψ′ having sufficiently low rank
r′. This could lead to an approximative propaga-
tion scheme similar to the penilless propagation (Cano
et al., 2000). In the penilless propagation the tables
are represented by probability trees, while in our case
they would be represented by a series of rank-one ten-
sors, each represented by a set of vectors.

3 Minimal tensor rank-one
decomposition

In this section we will present the main theoretical
results. It was proven by H̊astad (1990) that the com-
putation of tensor rank is an NP-hard problem, there-
fore determining the minimal rank-one decomposition
is also an NP-hard problem. However, we will provide
closed-form solution for minimal rank-one decomposi-
tion of some special tensors that play an important

3It may seem unrealistic to have a node with more than
ten parents in an real world application, but it can eas-
ily happen, especially, when we need to introduce logical
constraints into the model.



role, since they correspond to CPTs that are often
used, when creating a Bayesian network model.

The class of tensors of our special interest are ten-
sors ψf that represent a functional dependence of one

variable Y
df
= Xm+1 on variables X1, . . . , Xm. Let

X = X1 × . . .Xm and x = (x1, . . . , xm) ∈ X . Fur-
ther, let

I(expr) =
{

1 if expr is true
0 otherwise.

Then for a function f : X 7→ Y the tensor is defined
for all (x, y) ∈ X × Y as ψf (x, y) = I(y = f(x)).

Let r = rank(ψf ) and ξb
df
= ϕm+1,b for all b. Then a

minimal tensor rank-one decomposition of ψf is

ψf =
r∑

b=1

ξb ⊗ (⊗m
i=1ϕi,b) . (1)

First, we will provide a lower bound on the rank of ten-
sors from this class. This bound will be latter used to
prove minimality of certain rank-one decompositions.

Lemma 1 Let ψf : X ×Y 7→ {0, 1} be a tensor repre-
senting a functional dependence f . Then rank(ψf ) ≥
|Y|.

Proof For a minimal tensor rank-one decomposition
of ψf it holds for all (x, y) ∈ X × Y that

ψf (x, y) =
r∑

b=1

ξb(y) ·
m∏

i=1

ϕi,b(xi) , (2)

where r = rank(ψf ). Consider the matrices4

W = {ψf (x, y)}y∈Y
x∈X , U = {ξb(y)}y∈Y

b∈{1,...,r} ,

V =

{
m∏

i=1

ϕi,b(xi)

}b∈{1,...,r}

x∈X

.

Equation (2) can be rewritten as

W = UV .

Each column of W contains exactly one nonzero en-
try, since f is a function. Moreover, each row of W
contains at least one nonzero entry, since each y ∈ Y
is in the range of f . Hence, no row is a linear com-
bination of other rows. Therefore there are |Y| in-
dependent rows in W and rank(W) = |Y|. Clearly,
rank(W) ≤ rank(U) ≤ r. Altogether, |Y| ≤ r. 2

4The upper index labels the rows and the lower index
labels the columns.

3.1 Maximum and minimum

Additive decomposition of max was originally pro-
posed by Dı́ez and Galán (2003). This result is in-
cluded in this section for completeness and we add a
result about its optimality. The proofs are construc-
tive, i.e., they provide a minimal tensor rank-one de-
composition for max and min.

Let us assume that Xi = [ai, bi] is an interval of
integers for each i = 1, . . . ,m. Clearly, the range
Y = [ymin, ymax] of max on X1 × . . . × Xm is
[maxm

i=1 ai,maxm
i=1 bi] and the range Y = [ymin, ymax]

of min is [minm
i=1 ai,minm

i=1 bi].

Theorem 1 If f(x) = max{x1, . . . , xm}, xi ∈ [ai, bi]
for i = 1, . . . ,m, ymin = maxm

i=1 ai, ymax = maxm
i=1 bi,

and Y = [ymin, ymax] then rank(ψf ) = |Y|.

Proof Let for i ∈ {1, . . . ,m}, xi ∈ Xi, and b ∈ Y

ϕi,b(xi) =
{

1 xi ≤ b
0 otherwise

and for y ∈ Y, b ∈ Y

ξb(y) =

 +1 b = y
−1 b = y − 1

0 otherwise.

Let ω(x, y) = I(max(x1, . . . , xm) ≤ y). Clearly,

ω(x, y) =
m∏

i=1

ϕi,y(xi)

and

ψf (x, y) = ω(x, y)− ω(x, y − 1),

where the last term is considered to be zero, if y =
ymin. Altogether,

ψf (x, y) =
m∏

i=1

ϕi,y(xi)−
m∏

i=1

ϕi,y−1(xi) .

Since the product ξb(y) ·
∏m

i=1 ϕi,b(xi) is nonzero only
for b = y and b = y − 1, we have

ψf (x, y) = ξy(y) ·
m∏

i=1

ϕi,y(xi)

+ξy−1(y) ·
m∏

i=1

ϕi,y−1(xi)

=
∑
b∈Y

ξb(y) ·
m∏

i=1

ϕi,b(xi) .



Taking b′ = b + ymin − 1 we get the required decom-
position

ψf =
|Y|∑

b′=1

ξb′ ⊗ (⊗m
i=1ϕi,b′) .

By Lemma 1, this is a minimal tensor rank-one de-
composition of ψf . 2

Theorem 2 If f(x) = min{x1, . . . , xm}, xi ∈ [ai, bi]
for i = 1, . . . ,m, ymin = minm

i=1 ai, ymax = minm
i=1 bi,

and Y = [ymin, ymax] then rank(ψf ) = |Y|.

Proof Let for i ∈ {1, . . . ,m}, xi ∈ Xi, and b ∈ Y

ϕi,b(xi) =
{

1 xi ≥ b
0 otherwise

and for y ∈ Y, b ∈ Y

ξb(y) =

 +1 b = y
−1 b = y + 1

0 otherwise.

and follow an analogous argument as in the proof of
Theorem 1 to obtain tensor rank-one decomposition
of ψf . Again, by Lemma 1, this is a minimal tensor
rank-one decomposition. 2

Remark If for i ∈ {1, . . . ,m} Xi = {0, 1}, then the
functions max{x1, . . . , xm} and min{x1, . . . , xm} cor-
respond to logical disjunction x1∨ . . .∨xm and logical
conjunction x1 ∧ . . . ∧ xm, respectively. In Example 2
we illustrate how this can be generalized to Boolean
expressions consisting of negations and disjunctions.

Example 2 In order to achieve minimal tensor rank-
one decomposition of

ψ(x1, x2, y) = I(y = x1 ∨ ¬x2)

with variable B having two states 0 and 1, it is suffi-
cient to use functions:

ϕ1,b(x1) = I(x1 ≤ b)
ϕ2,b(x2) = I(¬x2 ≤ b)

ξb(y) =

 +1 y = b
−1 y = 1, b = 0

0 y = 0, b = 1

�

3.2 Addition

In this section, we assume an integer ri for each
i = 1, . . . ,m and assume that Xi is the interval of
integers [0, ri]. This assumption is made for simplicity

and without loose of generality. If Xi are intervals of
integers, which do not start at zero, it is possible to
transform the variables by subtracting the left bound-
aries of the intervals to obtain variables satisfying our
assumption. Moreover, let f : Nm → N be a function,
such that f(x) = f0(

∑m
i=1 xi) where f0 : N → N. Let

A be the interval of integers [0,
∑m

i=1 ri]. Clearly, A is
the range of

∑m
i=1 xi.

Theorem 3 Let f0, f and A be as above. Then
rank(ψf ) ≤ |A|. Moreover, if f0 is the identity func-
tion, then rank(ψf ) = |A|.

Proof Let α1, . . . , α|A| be any pairwise distinct real
numbers. Let ϕb(xi) = αxi

b for i = 1, . . . ,m, where xi

is an exponent and α0 = 1 for every α. To prove the
first assertion of the theorem it is sufficient to show
that

I(y = f0(
m∑

i=1

xi)) =
|A|∑
b=1

ξb(y) · α
∑m

i=1 xi

b (3)

for all combinations of the values of x and y. Sub-
stituting t =

∑m
i=1 xi, we obtain that formula (1) is

satisfied for all combinations of the values of x and y,
if and only if for all t, y ∈ A we have

I(y = f0(t)) =
|A|∑
b=1

ξb(y) · αt
b . (4)

For a fixed y, we can consider the equations (4) for all
t ∈ A as a system of |A| linear equations with variables
ξb(y), b ∈ A, whose matrix is

α0
1 α0

2 . . . α0
|A|

α1
1 α1

2 . . . α1
|A|

. . .

α
|A|
1 α

|A|
2 . . . α

|A|
|A|

 . (5)

This matrix is non-singular, since the corresponding
Vandermonde determinant is non-zero. The solutions
of (4) for each y separately determine the function
ξb(y), for which (4) and, hence, (3) is satisfied.

If f0 is the identity, then the range of f is the whole
A. It follows from Lemma 1 that rank(ψf ) ≥ |A| and
therefore the above decomposition is minimal. 2

Example 3 Let Xi = {0, 1} for i = 1, 2, f(x1, x2) =
x1 + x2 and Y = {0, 1, 2}. We have

ψf (x1, x2, y) = I(y = x1 + x2)

=
(

(1, 0, 0)T (0, 1, 0)T

(0, 1, 0)T (0, 0, 1)T

)
As in the proof of Theorem 3, we assume ϕi,b(xi) = αxi

b

for i = 1, 2 and distinct αb, b = 0, 1, 2. For simplicity



of notation, let us assume α0 = α, α1 = β and α2 = γ.
Let us substitute these ϕi,b(xi) into (1) and rewrite it
using tensor product as follows.

ψf (x1, x2, y) = (α0, α1)⊗ (α0, α1)⊗ (u0, u1, u2)

+ (β0, β1)⊗ (β0, β1)⊗ (v0, v1, v2)

+ (γ0, γ1)⊗ (γ0, γ1)⊗ (w0, w1, w2)

For each y = 0, 1, 2 we require(
I(y = 0) I(y = 1)
I(y = 1) I(y = 2)

)
= uy ·

(
α0 α1

α1 α2

)
+vy ·

(
β0 β1

β1 β2

)
+ wy ·

(
γ0 γ1

γ1 γ2

)
,

which defines a system of three linear equations with
three variables uy, vy, wy I(y = 0)

I(y = 1)
I(y = 2)

 =

 α0 β0 γ0

α1 β1 γ1

α2 β2 γ2

 ·

 uy

vy

wy

 .

If α, β, and γ are pairwise distinct real numbers then
the corresponding Vandermonde determinant is non-
zero and a solution exists. The solution for α = 1, β =
2, γ = 3 is

ψf (x1, x2, y) = (1, 1)⊗ (1, 1)⊗ (3,−5
2
,
1
2
)

+ (1, 2)⊗ (1, 2)⊗ (−3, 4,−1)

+ (1, 3)⊗ (1, 3)⊗ (1,−3
2
,
1
2
) .

�

3.3 Generalized addition

In this section, we present a tensor rank-one de-
composition of ψf , where f is defined as f(x) =
f0(

∑m
i=1 fi(xi)). Let A be the set of all possible values

of
∑m

i=1 fi(xi). The rank of ψf depends on the nature
of functions fi, more exactly, on the range of the val-
ues of

∑m
i=1 fi(xi). The decomposition is useful, if this

range is substantially smaller than |X1| · . . . · |Xm|.

Theorem 4 If f(x) = f0(
∑m

i=1 fi(xi)), where fi are
integer valued functions, then rank(ψf ) ≤ |A|.

Proof Without loose of generality, we may assume
that fi(xi) ≥ 0 for i = 1, . . . ,m and that zero is in
the range of fi. If not, this may be achieved by using
fi(xi) −minz fi(zi) instead of fi and modifying f0 so
that f does not change.

Let α1, . . . , α|A| be positive pairwise distinct real or
complex numbers. Let ϕ(xi, b) = α

fi(xi)
b for i =

1, . . . ,m, where α0 = 1 for every α. To prove the
assertion of the theorem it is sufficient to show that

I(y = f0(
m∑

i=1

fi(xi))) =
|A|∑
b=1

ξb(y) · α
∑m

i=1 fi(xi)
b .

for all combinations of the values x and y. Substituting
t =

∑m
i=1 fi(xi), we obtain that formula (1) is satisfied

for all combinations of the values of x and y, if and only
if for all t ∈ A and y ∈ Y, we have

I(y = f0(t)) =
|B|∑
b=1

ξb(y) · αt
b . (6)

For a fixed y, we can consider the equations (6) for all
t ∈ A as a system of |A| linear equations with variables
ξb(y), b = 1, . . . , |A|, whose matrix is (5) exactly as in
the proof of Theorem 3. 2

3.4 Exclusive-or (parity) function

Let ⊕ denote the addition modulo two, which is also
known as the exclusive-or operation5. By the parity or
exclusive-or function, we will understand the function
x1 � . . .� xm.

Theorem 5 Let Xi = Y = {0, 1} for i = 1, . . . ,m and
f(x) = x1 � . . .� xm. Then rank(ψf ) = 2.

Proof The exclusive-or function may easily be ex-
pressed as a product, if the values {0, 1} are replaced
by {1,−1} using substitution 0 7→ 1, 1 7→ −1. An odd
number of ones in the 0/1 representation is equiva-
lent to a negative product of the corresponding values
in the 1/ − 1 representation. Expressing the required
transformations in the form of a linear transformation,
we obtain

x1 � . . .� xm =
1
2
· (1− (1− 2x1) · . . . · (1− 2xm)).

Since ψf (x, y) = I(y ⊕ x1 ⊕ . . .⊕ xm = 0) = y ⊕ x1 ⊕
. . .⊕ xm ⊕ 1, we have

ψf (x, y)

=
1
2
· (1 + (1− 2y) · (1− 2x1) · . . . · (1− 2xm)).

Hence, ψf may be expressed as a sum of two functions,
the first of which is the constant 1

2 and the second is
( 1
2 − y) · (1 − 2x1) · . . . · (1 − 2xm). It is now easy to

express ψf in the form of (1), if we use tensors defined
5Parity is often used in coders and decoders. We con-

jecture tensor rank-one decomposition may substantially
speed up exact inference in probabilistic graphical models
used to model decoders for noisy channels.



as follows. Let for i ∈ {1, . . . ,m}, xi ∈ {0, 1}, and
b ∈ {1, 2}

ϕi,b(xi) =
{

1 b = 1
1− 2xi b = 2

and

ξb(y) =

{
1
2 b = 1
1
2 − y b = 2 .

It follows from Lemma 1 that this defines a minimal
tensor rank-one decomposition of exclusive-or. 2

3.5 Noisy functional dependence

For every i = 1, . . . ,m we define a dummy variable
X ′

i taking values x′i from set X ′
i = Xi. The noisy

functional dependence of Y on X = (X1, . . . , Xm) is
defined by

ψ(x, y) =
∑
x′

ψf (x′, y) ·
m∏

i=1

κi(xi, x
′
i) , (7)

where ψf is tensor that represent a functional depen-
dence y = f(x′) and for i = 1, . . . ,m tensors κi repre-
sent the noise for variable Xi. Note that models like
noisy-or, noisy-and, etc., fit the above definition. Ac-
tually, the definition covers the whole class of models
known as models of independence of causal influence
(ICI) (Heckerman, 1993).

Theorem 6 Let tensor ψ represent the noisy func-
tional dependence f defined by formula 7. Then
rank(ψ) ≤ rank(ψf ).

Proof Let r = rank(ψf ). Then

ψf (x′, y) =
r∑

b=1

ξb(y) ·
m∏

i=1

ϕb,i(x′i) .

Substituting this to formula 7 we get

ψ(x, y) =
∑
x′

r∑
b=1

ξb(y) ·
m∏

i=1

(ϕb,i(x′i) · κi(xi, x
′
i))

=
r∑

b=1

ξb(y)
m∏

i=1

∑
x′

i

(ϕb,i(x′i) · κi(xi, x
′
i))

=
r∑

b=1

ξb(y) ·
m∏

i=1

ϕ′b,i(xi) ,

where ϕ′b,i(xi) =
∑

x′
i
(ϕb,i(x′i) · κi(xi, x

′
i)). The last

equation proves that rank(ψ) ≤ rank(ψf ). 2

4 Numerical method for tensor
rank-one decomposition

Definition 4 Tensor rank-one approximation
Assume a tensor ψ and an integer s ≥ 1. A tensor
rank-one approximation of length s is a series {%b}s

b=1

of rank-one tensors %b that is a tensor rank-one de-
composition of a tensor ψ̂ with rank(ψ̂) = s.
If ψ̂ minimizes

∑
x(ψ(x) − ψ̂(x))2 we say that it is a

best tensor rank-one approximation of length s.

Note that if s = rank(ψ) then the minimal value of∑
x(ψ(x) − ψ̂(x))2 is zero and a best tensor rank-one

approximation of length s is also a minimal tensor
rank-one decomposition of ψ. Therefore, we can search
numerically for a minimal tensor rank-one decompo-
sition by solving the task from Definition 4 starting
with s = 1 and then incrementing s by one until∑

x(ψ(x)− ψ̂(x))2 is sufficiently close to zero.

We performed tests with several gradient methods.
The best performance was achieved with Polak-Ribière
conjugate gradient method that used the Newton
method in one dimension. We performed experiments
for tensors corresponding to the exclusive-or and max-
imum functions of three binary variables. For these
functions we know the tensor rank is two therefore we
could verify whether for s = 2 the algorithm found a
tensor rank-one decomposition of these tensors.

The initial values for the algorithm were random num-
bers from interval [−0.5,+0.5]. In most cases the al-
gorithm converged to vectors that were tensor rank-
one decomposition. However, sometimes we needed
to restart the algorithm from another starting values
since it got stuck in a local minima. Figures 5 and 6 il-
lustrate the convergence using three sample runs. The
displayed value is one value of ψ̂ as it changes with the
progress of the algorithm.

5 Related work

Higher-dimensional tensors are studied in multilin-
ear algebra (De Lathauwer and De Moor, 1996).
The problem of tensor rank-one decomposition is also
known as canonical decomposition (CANDECOMP) or
parallel factors (PARAFAC). A typical task is to find
tensor of rank one that is a best approximation of a
tensor ψ. This task is usually solved using an alter-
nating least square algorithm (ALS) that is a higher-
order generalization of the power method for matri-
ces (De Lathauwer et al., 2000).

An example of application of tensor rank-one decom-
position is image sequence compression (Wang and
Ahuja, 2004). In this paper the authors use a greedy
method for tensor rank-one decomposition. They start
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Figure 5: Development of one value of ψ′ in case of
decomposition of xor.
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Figure 6: Development of one value of ψ′ in case of
decomposition of max.

with the original tensor ψ. Than they find a tensor
ψ′ of rank one that is a best approximation of tensor
ψ and compute residuum ψ − ψ′. For this residuum
again a rank-one tensor that is a best approximation
of the residuum is found and the process is repeated
until a stopping condition is satisfied. They tested this
algorithm using two video sequences and report much
higher quality images with the same compression ratio
as Principle Component Analysis. We have tested the
greedy approach for tensor rank-one decomposition of
max and xor function. We observed that, in contrary
to the numerical method proposed in Section 4, the
greedy approach is not suitable for tensor rank-one
decomposition of these tensors.
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