
Akademie věd České republiky
Ústav teorie informace a automatizace

Academy of Sciences of the Czech Republic
Institute of Information Theory and Automation

RESEARCH REPORT

Ludv́ık Tesǎr, Miroslav Novák

Support Environment for System Identification and
Controller Design - Jobcontrol

User’s Guide with Examples

No. 2138 September 2005

ÚTIA AV ČR, P.O.Box 18, 182 08 Prague, Czech Republic
Tel: (+420)266052422, Fax: (+420)286890378, Url: http://www.utia.cas.cz,

E-mail: utia@utia.cas.cz

This report constitutes an unrefereed manuscript which is intended to be submitted for publication.
Any opinions and conclusions expressed in this report are those of the author(s) and do not necessarily
represent the views of the institute.

1

Contents

1 Introduction 3

2 Jobcontrol Description 4
2.1 Usage of interactive script jobmain.m . 4
2.2 Using the jobcontrol batch processing . 5
2.3 How to run mixtools/designer repeatedly from the given point? 5
2.4 Using saved m-files . 6
2.5 Where to find results? . 6

2.5.1 Mixture Model Validation Results . 6
2.5.2 Controller Verification Results . 6

2.6 How to start use jobcontrol? . 7

3 Reference - Description of the structure Job 8

4 Examples 13
4.1 Aims of the study . 13
4.2 Description of the study . 13
4.3 Data . 14
4.4 Processing . 14
4.5 Description . 14

4.5.1 Experiment definition . 14
4.5.2 Data description . 14
4.5.3 Channels description . 15
4.5.4 Prior information . 16
4.5.5 Mixture initialization . 16
4.5.6 Mixture estimation . 16
4.5.7 Mixture validation . 16
4.5.8 User ideal . 17
4.5.9 Design . 17
4.5.10 Verification . 17
4.5.11 Original Data Plots . 18

4.6 Results . 18
4.6.1 Results of Mixture Identification and Parameter Estimation (and Model Vali-

dation) . 18
4.6.2 Results of Single Component Identification and Parameter Estimation (and

Model Validation) . 21
4.6.3 User Ideal Mixture . 22
4.6.4 Controller Mixture . 22

4.7 Experimental Controller Verification Results . 24
4.8 Conclusion . 25

5 Summary and Conclusions 26

6 Acknowledgements 27

2

Chapter 1

Introduction

Jobcontrol is a user friendly interface for Mixtools and Designer toolboxes. The Mixtools toolbox is a
powerful set of utilities for system identification employing Gaussian mixture model. It is implemented
as a set of M-scripts and MEX-binary executables for the Matlab computing environment. It suits to
the goal of finding a suitable structure for the given data. The Designer toolbox then serves for finding
the optimal controller parameters, constructing ideal controller and testing the controller found.

As the expert tools, Mixtools and Designer fulfill the end-user needs, but they are not suited
for direct usage by the end user. In other words, they are not very user-friendly. That is why we
are developing environment, which integrates all the tasks, connected with system identification and
controller design, and helps to collect all the user’s knowledge about data and the real-world system,
where the data come from. After finishing all the calculations Jobcontrol creates a LATEX-based report
that integrates all the results together with the original user’s settings. The Jobcontrol package, thus,
integrates an endless expertise, which is otherwise available only through study of the theoretical
books [1, 3], Mixtools toolbox documentation [2] and the experience contained in many experiments.

The Jobcontrol package helps to solve the user’s problem in terms of the experiment (or a job).
Every experiment consists of description of the user’s data, and description of the way, how the mixture
is estimated and how the control is performed and what tests are to be done. Jobcontrol offers the
user environment for interactive input of the description of the experiment as well as a lucid way of
configuring the experiment, using one configuration file. The integral part of Jobcontrol package is
the protocol generator, which creates automatically a very convenient LATEX document, which shows
all the aspects of system identification, control and user’s data description.

To conclude, the Jobcontrol package performs the following tasks:

• takes the user’s data and estimates the parameters of the mixture model,

• verifies the mixture model,

• allows the user to denote controlled and controlling parameters,

• constructs the controller,

• verifies the controller.

3

Chapter 2

Jobcontrol Description

To make the things more systematic, Jobcontrol includes the following steps:

• Data pre-processing,

• Prior information utilization,

• Initialization of the mixture model (mixinit),

• Mixture model parameter estimation (mixest),

• Mixture model validation,

• User ideal calculation,

• Controller design,

• Controller verification.

Both the user’s setup and processing follow the steps mentioned above.
There are two ways to use Jobcontrol. The first one is the interactive (jobmain script), and the

second one is the non-interactive (or batch) usage.
The interactive way is the script jobmain.m. It collects all the necessary information from the user

by asking him for this information, and then it proceeds with the system identification and controller
design based on the user’s input. It concludes by creating a protocol in LATEX.

For non-interactive usage the user needs to understand, at least, the basic principles of Matlab, but
the non-interactive usage rewards the user by many more possibilities, especially in batch processing.
It allows the user to use parts of jobcontrol in his scripts. Jobcontrol even generates such a basic
script for him. Section 2.1 describes the first way to use jobcontrol by the jobmain script, section 2.2
describes the non-interactive way.

We strongly recommend to read the subsequent sections, at least, to be able to judge, where to
use the interactive or non-interactive jobcontrol.

2.1 Usage of interactive script jobmain.m

The script jobmain.m is aimed at easy and straightforward interactive usage and is ideal for the first-
time user, even if he/she wishes to use the batch processing later. The interactive interface is launched
by script jobmain. It guides the user by printing the instructions, so there is no need to describe all
the steps in this text.

The following points are important:

• user has to decide, whether he wants to start the new experiment or to continue (load) the old
one;

• user has to provide data, that are relevant to his experiment, at least, to give a clue for the
program, what the channels are and what values the channels can have;

4

• even if started from scratch, the initial mixture can be still loaded from somewhere else. The
concept of initial mixture is important, and the user needs to understand what he is doing;

• the problem setup is meant as: answer by pressing “Enter”, if you don’t know anything better.
Some items are absolutely only for experts and need not to be understood by average user;

• see section ?? to understand what steps are done during processing.

The jobmain.m script has a two-step concept: in the first one the setup of the problem is done,
which strongly needs user interaction. After that, the processing starts and no more user interaction
is required or even desirable. Then, after the setup is completed, important is the question “Enter
the letter that decides what will happen next”. The user must answer “c”, which is labeled as “c -
start the evaluation” in order to get any results at all. Otherwise he is stuck in setting up the problem
again and again.

The processing step consists of several (seven) steps. After each step, the complete status of the
experiment is saved, so that it can be started again from the same step.

Drawback of the script jobmain is that it asks user for every detail of the problem, and it is going
through every step of the setup. If the user makes any mistake, it is possible to change it, but only
after repeating the setup once more and after going through the setup once more. It may lead to the
aggressive behavior for some user, therefore authors strongly recommend to switch to non-interactive
processing as soon as possible. While for the first-time user, asking for every detail might be user-
friendly, for only slightly more experienced user it is very boring process and, in our opinion, excessive
usage of jobmain may challenge user’s mental health.

2.2 Using the jobcontrol batch processing

To utilize the batch interface means to create own m-file, where particular job parameters are set by
hand with the help of prepared assisting functions. The template of the batch file can be obtained by
running jobmain once. It is automatically saved under the name of the experiment with the suffix .m
(e.g. exp1.m).

The main feature of jobcontrol package is the Job structure. All information concerning task
processed is in this structure in a straightforward way. This structure serves as a centralizing point
of the jobcontrol package. All the parts of jobcontrol as well as the script jobmain described in 2.1,
work entirely with this structure and use it to store all the necessary information. It is constructed by
the constructor jobconst, where it gets filled with the default values. The lengthy process of setting
up the experiment is performed by the function jobsetup, which has the structure Job as both input
and output, and it is effectively updating it. The function jobproceed does all the processing both
in interactive and non-interactive way.

The template setup m-file created by jobmain can be used as a starting point for your own setup.
This m-file has the form of a function, returning Job structure prepared for processing. For example,
if a name of your setup m-file is exp1.m, then the better way to use it would be by invoking the
following commands:

prodini;
Job = exp1; % function exp1 is called and has no parameters
Job = jobproceed(Job);

The Jobcontrol settings are stored in the structure Job. For reference about the contents of the
Job structure, you can type help jobcontrol at Matlab command prompt or – even better – use
description in section 3.

2.3 How to run mixtools/designer repeatedly from the given point?

The whole concept of jobcontrol package is aimed at the ease of the batch processing. A status of
all the calculations is saved after every step into the mat file of the form: exp1_n.mat, where exp1 is
experiment name and number n is step after which it was saved. It can be loaded by:

5

Job = jobload(’exp1_n’); % loads experiment exp1 from exp1_n.mat file

Or, alternatively, you can use the equivalent way: Job = jobload1("exp1",n). You can directly
type it into jobproceed:

Job = jobproceed(Job);

Before processing, you can run through the interactive setup and change something here and there:

Job = jobsetup(Job);
Job = jobproceed(Job);

Also, an attractive way to change a part of setup is to use m-file generated by jobmain and put
Job = jobload("exp1_n"); into appropriate part of the m-file. (You should delete the parts, which
correspond to steps already processed).

2.4 Using saved m-files

The structure of saved m-files is the following one. The whole file is cut into the sections, that
correspond to the sections of the interactive setup.

This is an example of one section of saved m-files:

begin_init;
SingleOnly = 0; % boolean flag whether to skip mixinit and calculate

just MixSingle
opt = ’p’; % iterative estimation method (p | q | b | f | Q | P)
niter = 10; % maximum number of iterations
frg = 0.999999; % forgetting factor
end_init;

You can see that this section starts with begin_init and ends by end_init. It is similar in all other
sections.

2.5 Where to find results?

There are two important moments in Mixtools processing, where the results are shown and especially
carefully prepared for the user. It is step 5, validation step, where the results of the mixture model
estimation and validation are created. It is also step 8, where the controller verification is done,
therefore, much interesting information is given to the user.

2.5.1 Mixture Model Validation Results

The results of mixture-model validation are created after step 5 and are saved into the file with
.tex suffix and with the some prefix,which the user has given to the experiment (so, by default it is
exp1.tex). The results can be also found in Job.Val sub-structure of the Job structure. The results
of validation are also printed as a text to the console for user’s convenience. During validation various
graphs are made.

During the setup the user can greatly influence the information, which is plotted. The variable
plots from the validation section or the variable Job.Valid.plots control the types of graphs made.
The variable pchns from the same section or Job.Valid.pchns control what channels are validated.
It also controls, the graphs for what variables are created. All the details can be seen below.

2.5.2 Controller Verification Results

The results of controller design using Designer method are resulting in tuning knob values, predicted
ranges of signals, which are written into the file with .tex suffix. The resulting tex file is very com-
prehensive and even includes some graphs in form of eps files. For expert usage, Job.DataDesc.Chns

6

has the same information. The graph generated are a sample of predicted closed loop behavior and
predicted histogram of signals in the loop.

In Job.DataDesc.Chns variable the results of controller verification are in the same form as the
results of controller design, except the word “predicted” is replaced by the word “verified”.

2.6 How to start use jobcontrol?

If you have access to the local ÚTIA network, you can start to experiment with our Jobcontrol package
straight away. The following steps are necessary.

• You will need Matlab and svn client software.

• Perform “svn checkout” of the Mixtools directory svn://marabu.utia.cas.cz:1800/svn/mixtools,
user/password is guest/guest. You have read-only access to files in the repository.

• In Windows copy dlls from dll subdirectory to Mixtools directory.

• Run Matlab (version 6.5.1 is tested to work with current dll-files).

• Add path to the Mixtools directory into Matlab-path.

• In Matlab go to mixtools/jobcontrol/examples/simple subdirectory.

• Running this script: run siso1t.

• If some graphs were shown and the script ended normally, then your system is prepared to do
your own experiments.

The user will be certainly interested to experiment with his own data. Instructions for experi-
menting with user’s data follow.

• Make your data ready to use in Matlab (save them as mat file).

• Run jobmain to prepare your experiment (myexp), you will be asked for the experiment name
(let’s say that you answered (myexp), and for the file name of mat file with your own data.

• Several files were created as a side-effect:

– m-file with editable experiment setup (myexp.m).

– Saved status after every step of experiment: myexp n.mat.

– Protocol (myexp.tex). If your LATEX is correctly installed, a postscript file myexp.ps is ready
as well .

• THe experiment can be repeated from any intermediate step (using myexp n.mat files).

• Parameters of the experiment can be adjusted (using myexp.m) and run again.

7

Chapter 3

Reference - Description of the
structure Job

The pivot point of the Jobcontrol environment is the structure, which holds the information about the
status of the current experiment undertaken. Normallly user does not need to access this structure
directly, however, if some special task needs to be performed, then it might be useful to have descriotion
of this structure for reference. The name of this structure is Job and its description follows.

Job.Main ... main information

jobname ... name of the experiment (a very short string without spaces) - will be used to make
some filenames

authorname ... author’s name for documentation purposes

email ... author’s e-mail address

references ... references of the experiment to literature

project ... name of the project

consttime ... time of creating the setup in Matlab format, use datestr(Job.Main.consttime).

debug ... debug level to be used

desc ... a short description given by user (string)

seed ... random seed of the experiment (empty=leave the seed from calling process, -1=randomize
by timer)

steps ... which steps are to be done

finished ... which steps were already finished

Job.DataDesc ... description of data:

datafile ... data file filename

varname ... variable name

transpose ... if 1 then transposition should be done

rescale data ... rescale new data (normaly this is necesary every time the new data is given,
but it does no harm to do it every time)

reset chns ... reset channels description (normally this is needed only once, in the beginning,
and if new data have vary different channels than the old one)

pr chns ... channels to be printed in protocol

pr merge ... whether printed channels are to be merged

used data ... this indicates how much of data user wants to use (-1 means all, number means
maximal index)

8

reset val min max ... this is internal variable that ensures that validation min and max is
reset only once

new pre ... internal scaling parameter to be used with actual data described here (it is reset
in order to avoid doing it repeatedly)

ndat ... internal variable holding number of data vectors

Chns ... channel description structure vector (every vector item corrsponds to one channel).
description of the structure follows:

chn name ... short name of the channel
chn oitem ... visibility by operator
chn raction ... available for control (input has 1 here)
chn prty ... presentation priority
chn type ... 1=continuous, 0=discrete
chn prange ... range used for scaling [min,max]
chn drange ... desired range used for control [min,max]
chn irange ... desired range used for control - increments
chn preinfo ... preprocessing information
chn gain ... static gain [uchannel, min, max]
chn stime ... sampling time (unit=seconds), needed for frequency-based priors
chn ampl ... frequency response [input channel, frequency, ampl low, ampl high, phase in degrees]
chn cut ... cut-off frequency [input channel, frequency]
chn tc ... time constant [input channel, low, high]

Job.Prior ... prior information

doflattening ... forces flattening

Mix ... prior mixture generated by genmixe

MixSingle ... prior single-component mixture generated by genmixe

Job.IniMix ... initial mixture:

ncom ... number of components

ord ... order

diaCth ... diagonal of Cth

diacove ... diagonal of cov(Eth)

mult dfm ... multiplicator of degrees of freedom

mult dfcs ... multiplicator of degrees of freedom of components

dfm ... degrees of freedom

dfcs ... degrees of freedom of components

Mix0 ... mixture generated by genmixe

Mix0Single ... single-component mixture generated by genmixe

Job.Init ... initialization of the mixture:

SingleOnly ... boolean flag whether to skip mixinit and calculate just MixSingle

opt ... options for mixinit - method,etc.

niter ... number of iterations

frg ... forgetting

Mix ... result: identified mixture

MixSingle ... result: identified single-component mixture

9

time ... time needed for mixinit

Job.Estim ... mixture estimation parameters:

opt ... options - method,etc.

niter ... number of iterations

frg ... forgetting

Mix ... result: estimated mixture

frgSingle ... single-component forgetting

MixSingle ... result: estimated single-component mixture

time ... time needed for mixest

Job.Batch ... mixture initialization/estimation made by batch processing:

do batch ... 1 if batch processing should be done, 0 otherwise

batchlen ... length of batch

Job.Valid ... validation of the mixture:

nsteps ... number of steps for prediction

pchns ... predicted channels

cchns ... channels in condition

tstart ... starting time for validation

tend ... ending time for validation

epss ... print epss

pauses ... number of seconds to pause

plots ... which plots to make (this is vector with four 0/1)

segments ... number of segments for segmentation-type validation

alt ... perform validation with alternative forgetting

Job.Val ... results of mixture validation tests:

mixll ... mixture log-likelihood

testSE ... ratio of average square of ep and sds of data

sumCep ... whiteness test result (sum of 10 delayed correlations of ep)

ChnStat ... vector structure of channel statistics (min, max, mean, median, std)

DiffStat ... vector structure of time differences statistics (min, max, mean, median, std)

YpStat ... vector structure of prediction statistics (min, max, mean, median, std)

EpStat ... vector structure of error prediction statistics (min, max, mean, median, std)

testNois ... noise standard deviations

dfcs ... dfcs

Job.UserIdeal ... User ideal description

method ... method to create user ideal (d - Designer toolbox, t - Target)

userSetpointEths ... setpoint Eths

userSetpointCoves ... setpoint Coves

Job.Design ... controller design parameters

typloss ... type of evaluating the constraints violation, possible values:

10

’prob’ ... evaluating maximum overshoot
’max’ ... evaluating probability of constrains violation

constrtol ... when constraints are evaluated as probability (typloss = ’prob’) this value
contains maximum allowed probability of constraints violation

simlength ... simulation length of the evaluation algorithm, it should be long enough to contain
all the reference changes

adaptive ... type of adaptivity, possible values:

0 controller is non-adaptive. The calculation is fast in this situation and so it is useful for
first experiments with new system.

1 controller is adaptive with exponential forgetting.
2 controller is adaptive with alternative forgetting. Alternative forgetting is more stable

than the exponential one.

horizon ... LQG horizon is specified by tuple. The first element is the horizon length at the
start of simulation and the second one is the horizon in following steps. If it is negative,
the previously calculated Riccatti matrix is used, so small number can be used such as one.
This improves the simulation speed.

initialData ... initial data for ARX model It has same structure as DATA matrix, but it is
short. The length must be at least as long as the ord variable to initialize ARX model.
Empty matrix defaults to all zero initial conditions.

penal ... initial and final penalization (tuning knob) vector. Possible values are.

-1 automatically guess using the FPD design. This choice is equivalent to empty matrix.
-2 automatically guess using the Riccatti matrix
positive value all elements of penalization vector will be initialized to this value
initial penalization vector specified directly

penalY ... fixed penalization of outputs vector. If empty matrix is specified, all outputs
channels has same wight equal to one. This is a default behavior. If a vector of length
equal to number of output channels is assigned, the outputs will have different relative
variances equal to inverse of respective elements of penalY. The rate holds for the scaled
signals.

designtype ... procedure to create a controller

’t’ ”target”, non-adaptive, non-tuned controller, for mixtures
’d’ ”designer”, adaptive, tuned controller, single component models

aMix ... controller mixture, result of ”target” procedure

CtlT ... controller object, result of ”designer” procedure

Job.Verify ... controller verification parameters

verifyopt ... verification is determined by this cell-vector which can have following structure:

{’none’} no verification is performed
{’simulink’,Simulink model name} verification using Simulink model. Simulink scheme

must have a particular structure see XXX.
{’mixture’,mixture} verification using Mixtools mixture. If mixture is empty matrix the

estimated Job.Mix is used instead, taking into account Job.Mix is already scaled.
{’matlabfunction’,function} verification using Matlab function. Simulated result is ob-

tained from global matrix DATA, which is filled by used controller.
Example verification function:
function verifyfun(Job,maxtd)
global TIME
[uchns,ychns] = getuychns(Job.DataDesc.Chns);

11

Ctl = Job.Verify.CtlUnscaled;
d = [];
for TIME=maxtd+1:Job.Verify.smlsimlength

[Ctl,d] = ctlunscaledstep(Ctl,d);
u = d(uchns); % vector d contains valid elements only for uchns
[y,u] = vlastni_simulace(u);
d(ychns)=y; % system output is written to d
d(uchns)=u; % measured realization of proposed inputs

% can be fed back to the controller
end

Ordering of y and u can be obtained by function [uchns,ychns] = getuychns(Job.DataDesc.Chns)

smlsimlength ... length of simulation for verification purposes

smlperiode ... sampling period when using Simulink for verification

CtlScaled ... scaled optimal controller for purpose of verifyopt=’matlabfunction’

CtlUnscaled ... un-scaled optimal controller for purpose of verifyopt=’matlabfunction’

Job.Mix ... actual processed mixture

Job.MixSingle ... actual processed single-component mixture

12

Chapter 4

Examples

Examples showing abilities of jobcontrol, are in the directory mixtools/jobcontrol/examples.
All experiments are run by the script run xxxx, where xxxx is the name of particular experiment.
To document the Jobcontrol package usage, we are giving an example of the LATEX report, that is

created as the result of one experiment run. There are many illustrative experiments together with the
Jobcontrol package, we have selected one of them only, the other are present and described in another
publication, we are. In these reports, that are automatically created as the result of Jobcontrol run,
user can find all the important information concerning the experiment performed.

In the beginning, the experiment setting is given, the result is included in form of tables and figures
showing the output of different steps of processing.

The experiment described here is called siso1t. It is the simple single component SISO system
example identified and controlled using the mixture approach.

The siso1t experiment protofcol follows.

Experiment: siso1t - Simple SISO system experiment with Mixtools
Target

Author : Miroslav Novak
Contact : mira@utia.cas.cz

Address : AS, UTIA, AV CR, POBox 18, 182 08 Prague, Czech Republic
Basic references :
Source texts : siso1t

Project : Designer

4.1 Aims of the study

Experiment ”siso1t” is a simple testing system for the Mixtools toolbox using Target function for
creating a controller.

4.2 Description of the study

System used for generating identification data and for verification is:

yt = 1.81yt−1 − 0.8187yt−2 + 0.00468ut + 0.00438ut−1 +
√

0.001et, et ∼ N(0, 1)

13

4.3 Data

For generating identification data the inputs are

ut ∼ N(0, 1)

4.4 Processing

Whole experiment files are kept under svn in mixtools/jobcontrol/examples/simple. Data used
for identification are generated by the script dv_genrawdata_siso1. To run the experiment:
1) generate the identification data by the dv_genrawdata_siso1 script, unless it was done before.
2) call ”prodini” to initialize mixtools
3) call jobproceed(siso1t), where siso1t.m is a function generating the Job description.
4) to generate a nice latex report do latex siso1t

4.5 Description

4.5.1 Experiment definition

jobname = ’siso1t’; % name of experiment ... no spaces!
% choose short ’jobname’ that serves as name root for temporary and saved files
authorname = ’Miroslav Novak’; % author of experiment
email = ’mira@utia.cas.cz’; % E-mail of author of experiment
address = ’AS, UTIA, AV CR, POBox 18, 182 08 Prague, Czech Republic’; %

author’s address
references = ’’; % references to literature
project = ’ProDaCTool’; % project name
desc = ’Simple SISO system experiment with Mixtools Target’; % description

of experiment printed in protocol
debug = 0; % debug level determining information during evaluations
seed = []; % random seed ([] -> leave the seed, -1 -> randomize by timer)

steps = [1, 1, 1, 1, 1, 1, 1, 1]; % % Steps to be performed (1/0)
= (yes/no)

4.5.2 Data description

datafile = ’dv_genrawdata_siso1’; % filename with full path specifying
the mat file with data

varname = ’rawdata’; % variable name of data in ’datafile’
transpose = 0; % transpose data matrix to have channels to rows (1=yes

0=no)
rescale_data = 1; % rescale new data (normaly this is necesary every time

the new data is given, but it does no harm to do it every time) (1=yes 0=no)
reset_chns = 0; % reset selected channels (normally this is needed only

once, in the beginning, and if new data does not have anything to do with
the old data) (1=yes 0=no)

chns = [1, 2]; % modelled channels
pr_chns = [1, 2]; % vector of numbers of channels from which original

data plots are printed to protocol (-1 means all channels)
pr_merge = 1; % whether original data plots in protocol are merged or not

(0=separated, 1=merged, 2=tiled).

14

used_data = -1; % % At the moment, there are 10000 data samples

4.5.3 Channels description

Description of the channel 1

chn_name = ’y’; % name of the channel
chn_oitem = 1; % visibility by operator
chn_raction = 0; % available for control
chn_prty = 0.5; % presentation priority
chn_type = 1; % (1/0) = (continuous/discrete) channel
chn_prange = [-0.0121804, 1.11326]; % expected physical range [min,max]
chn_drange = [-1;
1]; % desired range [min,max]
chn_irange = []; % desired range of increments [min,max]
chn_preinfo = ’olymedian’, ’c’, 1; % pre-processing information (see help

preinit)
% Prior informations follow. You won’t get very good documentation for this,
% the best is what you see here or you can find the file guidex.pdf in svn.
% In all cases prior information stacks under each other forming matrices.
chn_gain = []; % [uchn, mingain, maxgain] static gain first column is

index of input channel and then minimum and maximum
chn_stime = []; % sampling time is the scalar variable (unit=seconds)
% It provides the time-scale for different prior informations.
% All prior informations that follow need to have sampling time (chn_stime)

set,
% because they operate on Hertz (you must give the time-scale)
chn_ampl = []; % frequency response [uchn, frequency_in_hertz, amplitude_low,

amplitude_high, phase_in_degrees]
chn_cut = []; % cut-off frequency [uchn, frequency_in_hertz]
chn_tc = []; % time constant [uchn, tclow, tchigh]

type = ’’;

Description of the channel 2

chn_name = ’u’; % name of the channel
chn_oitem = 1; % visibility by operator
chn_raction = 1; % available for control
chn_prty = 0.5; % presentation priority
chn_type = 1; % (1/0) = (continuous/discrete) channel
chn_prange = [0.207821, 0.784081]; % expected physical range [min,max]
chn_drange = [-1000;
1000]; % desired range [min,max]
chn_irange = []; % desired range of increments [min,max]
chn_preinfo = ’olymedian’, ’c’, 2; % pre-processing information (see help

preinit)
% Prior informations follow. You won’t get very good documentation for this,
% the best is what you see here or you can find the file guidex.pdf in svn.
% In all cases prior information stacks under each other forming matrices.
chn_gain = []; % [uchn, mingain, maxgain] static gain first column is

index of input channel and then minimum and maximum
chn_stime = []; % sampling time is the scalar variable (unit=seconds)

15

% It provides the time-scale for different prior informations.
% All prior informations that follow need to have sampling time (chn_stime)

set,
% because they operate on Hertz (you must give the time-scale)
chn_ampl = []; % frequency response [uchn, frequency_in_hertz, amplitude_low,

amplitude_high, phase_in_degrees]
chn_cut = []; % cut-off frequency [uchn, frequency_in_hertz]
chn_tc = []; % time constant [uchn, tclow, tchigh]

type = ’’;

4.5.4 Prior information

ncom = 1; % the number of components
ord = 2; % order of the richest regressor
diacove = 0.0001; % diagonal of noise covariancecove
diaCth = 10000; % diagonal of par. covariance
dfm = 1000; % degrees of freedom of factors
dfcs = 1000; % degrees of freedom of components

doflattening = 0; % indicates whether the initial mixture should be flattened

4.5.5 Mixture initialization

SingleOnly = 0; % boolean flag whether to skip mixinit and calculate
just MixSingle

opt = ’p’; % iterative estimation method (p | q | b | f | Q | P)
niter = 10; % maximum number of iterations
frg = 0.999999; % forgetting factor

4.5.6 Mixture estimation

opt = ’p’; % iterative estimation method (p | q | b | f | Q |
P)

niter = 40; % maximum number of iterations
frg = 0.999999; % forgetting factor
frgEstType = 0; % estimation type of forgetting factor (0-none, 1-zero

alt, 2-prev estimate)
frgEstGrid = [1, 0.99, 0.983362, 0.972317, 0.953941, 0.923366, 0.872495,

0.787855, 0.647029, 0.412721, 0.022876]; %
% estimation grid of forgetting factor

4.5.7 Mixture validation

nsteps = 1; % the prediction is made nsteps ahead
pchns = [1, 2]; % channels to be predicted
cchns = []; % channels in condition
tstart = 1; % starting time determining the part of data used in validation
tend = 10000; % ending time determining the part of data used in validation
epss = 1; % (1/0) = (produce/do not produce) encapsulated postscript plots
pauses = 0; % pause in seconds after each plot set
plots = [0, 0, 0, 0]; % [show cluster plot , show time plot, mixture plot,

histogram], where (1/0)=(y/n)

16

segments = 0; % number of segments for segmentation test (0 means perform
no segm. test). These tests take a very long time.

stoperr = 1; % stop on unsuccessful validation. (1/0)=(y/n)
alt = 1; % perform validation using alternative forgetting estimation

test (takes very long time, 0=do not run, 1=run this test).

4.5.8 User ideal

method = ’t’; % method determining the user target (t | d | z)
% t ... User defined (initialized by target.m) - this is default option
% d ... Designer is used
% z ... User defined (initialized by zeros)
userSetpointEths = [0, 0]; % user target component Eths
userSetpointCoves = [1, 1e+06]; % user target component Coves
userSetpointCorrect = 1; % do the user target component Correction ? (0=no,1=yes)
incremental = 0; % use incremental penalization controller ? (0=no,1=yes)

4.5.9 Design

designtype = ’i’; % design type (a | i | s)
% a ... academic design
% i ... industrial design
% s ... simultaneous design
horizon = [50, -1]; % horizon for evaluation of KLD
ufc = []; % ufcgen(aMix, aMixu) is used if ufc=[]

4.5.10 Verification

method = ’t’; % verification method (t | d)
% t ... verification of controller designed by step 7
% d ... verification of controller designed by UserIdeal with Designer in step

6
type = ’mixture’; % simulation type (none,simulink,mixture)
MixVer = varload(’siso1t_mixver’,’MixVer’); % verification mixture, enter empty

matrix to use the identification result
smlsimlength = 1000; % simulation length for verification

17

4.5.11 Original Data Plots

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

da
ta

 c
ha

nn
el

s

Original data

y
u

4.6 Results

4.6.1 Results of Mixture Identification and Parameter Estimation (and Model
Validation)

Comprehensive tests of the model validity:

Value of mixll: 1.959e+03 (the bigger the better)
Test of validity of the model: 1 (1=O.K.,0=bad)
Relative SE of pred.err: [0.000563259, 0.0100006]

(standard error of ep relative to std of data)
Test of whiteness: [0.0569913, 0.0524522]

(sum of correlations with delayed predictions)
Test of the condition number:[4703.63, 38.3829, 5547.12, 130.598, 6284.44, 1220.7, 4285.1, 16.1256, 4986.18, 13.2402, 6708.76, 1165.46, 7186.85, 269.67, 6245.42, 11.5827]

(proportion of biggest and smallest eigenvalue of data matrix)

18

Elementary statistics for the channel y:
MIN MAX MEAN MEDIAN STD

data -1.17939 2.21166 0.550652 0.559995 0.562724
differences -0.198751 0.228216 1.91239e-05 -0.000612289 0.0557418
predictions -1.22481 2.24095 0.550465 0.559804 0.561802
errors of prediction -0.123575 0.116885 0.000186817 0.00047614 0.0316938

Elementary statistics for the channel u:
MIN MAX MEAN MEDIAN STD

data 9.01343e-05 0.999918 0.496014 0.495356 0.288124
differences -0.98473 0.988182 -7.35039e-05 0.00352103 0.406616
predictions 0.48947 0.503043 0.496339 0.496339 0.00269178
errors of prediction -0.499192 0.508115 -0.000324842 -0.000919476 0.288127

Noise noise-variance estimates for individual factors:
1 2 dfcs

component 1 0.00332 0.0908 0.184
component 2 0.00295 0.0481 0.139
component 3 0.00288 0.0105 0.0809
component 4 0.0031 0.133 0.136
component 5 0.00304 0.113 0.169
component 6 0.0029 0.0113 0.0769
component 7 0.0027 0.0296 0.0816
component 8 0.00273 0.161 0.132

Mixture Factors

This mixture has 8 components with 2 factors each. Mixture consists of ARX factors. Interpretation
of tables below: Each column correspond to one delay. Each row corresponds to the channel, and the
first row employs the offset.

1. component, dfcs=1992.764705, factors:
Factor 1, modelled channnel: 1, called ’y’, cove=0.00332444, dfm=1396.443574
delays → 0 1 2

offset 0.0254656
1 y 1.81056 -0.818404
2 u 0.0386102 0.00306867 0.00264698

Factor 2, modelled channnel: 2, called ’u’, cove=0.0908168, dfm=643.449676
delays → 0 1 2

offset -0.84018
1 y -0.0248394
2 u 0.0214779 -0.0253872

2. component, dfcs=1507.208982, factors:
Factor 3, modelled channnel: 1, called ’y’, cove=0.00295473, dfm=1042.004114
delays → 0 1 2

offset
1 y 1.81278 -0.825892
2 u 0.00549226

Factor 4, modelled channnel: 2, called ’u’, cove=0.0480899, dfm=538.067667
delays → 0 1

offset 1.17689
1 y

2 u

19

3. component, dfcs=877.848773, factors:
Factor 5, modelled channnel: 1, called ’y’, cove=0.002882, dfm=759.558895
delays → 0 1 2

offset
1 y 1.82671 -0.835076
2 u 0.00357796 0.00239426

Factor 6, modelled channnel: 2, called ’u’, cove=0.0105385, dfm=588.537443
delays → 0 1

offset -1.55992
1 y

2 u 0.00852314

4. component, dfcs=1477.492899, factors:
Factor 7, modelled channnel: 1, called ’y’, cove=0.003096, dfm=730.192481
delays → 0 1 2

offset -0.0094869
1 y 1.73629 -0.733612
2 u -0.00625134

Factor 8, modelled channnel: 2, called ’u’, cove=0.132959, dfm=296.212771
delays → 0 1

offset 0.575572
1 y

2 u 0.0626245

5. component, dfcs=1835.268888, factors:
Factor 9, modelled channnel: 1, called ’y’, cove=0.0030384, dfm=1034.829765
delays → 0 1 2

offset -0.00504452
1 y 1.81475 -0.822106
2 u

Factor 10, modelled channnel: 2, called ’u’, cove=0.11339, dfm=387.774721
delays → 0 1

offset -0.238939
1 y

2 u

6. component, dfcs=834.370300, factors:
Factor 11, modelled channnel: 1, called ’y’, cove=0.00289895, dfm=732.072393
delays → 0 1 2

offset -0.0857733
1 y 1.82453 -0.832945
2 u 0.056043 0.00511369

Factor 12, modelled channnel: 2, called ’u’, cove=0.0112816, dfm=548.187967
delays → 0 1

offset 1.58209
1 y

2 u

7. component, dfcs=884.666363, factors:
Factor 13, modelled channnel: 1, called ’y’, cove=0.00270471, dfm=352.131763

20

delays → 0 1 2
offset 0.0264342

1 y 1.81473 -0.825945
2 u 0.0115676 -0.00416591

Factor 14, modelled channnel: 2, called ’u’, cove=0.0296442, dfm=203.645471
delays → 0 1 2

offset -1.22122
1 y 0.0136029
2 u 0.0120795

8. component, dfcs=1435.531948, factors:
Factor 15, modelled channnel: 1, called ’y’, cove=0.00273428, dfm=575.673990
delays → 0 1 2

offset 0.0186852
1 y 1.88061 -0.898927
2 u -0.0254451 0.00211818 0.00469921

Factor 16, modelled channnel: 2, called ’u’, cove=0.160593, dfm=250.840317
delays → 0 1 2

offset 0.440853
1 y 0.0127503
2 u -0.035918

4.6.2 Results of Single Component Identification and Parameter Estimation (and
Model Validation)

Comprehensive tests of the model validity:

Value of mixll: 3.682e+02 (the bigger the better)
Test of validity of the model: 0 (1=O.K.,0=bad)
Relative SE of pred.err: [0.000563556, 0.0100005]

(standard error of ep relative to std of data)
Test of whiteness: [0.0549918, 0.0507126]

(sum of correlations with delayed predictions)
Test of the condition number:[5099.93, 1.00048]

(proportion of biggest and smallest eigenvalue of data matrix)

Elementary statistics for the channel y:
MIN MAX MEAN MEDIAN STD

data -1.17939 2.21166 0.550652 0.559995 0.562724
differences -0.198751 0.228216 1.91239e-05 -0.000612289 0.0557418
predictions -1.22471 2.24139 0.550642 0.559758 0.561829
errors of prediction -0.125308 0.117345 1.0206e-05 0.000114461 0.0317111

Elementary statistics for the channel u:
MIN MAX MEAN MEDIAN STD

data 9.01343e-05 0.999918 0.496014 0.495356 0.288124
differences -0.98473 0.988182 -7.35039e-05 0.00352103 0.406616
predictions 0.496017 0.496017 0.496017 0.496017 6.36745e-14
errors of prediction -0.495927 0.503901 -2.78884e-06 -0.000660595 0.288124

Noise noise-variance estimates for individual factors:
1 2 dfcs

component 1 0.00341 1.07 1

21

Mixture Factors

This mixture has 1 components with 2 factors each. Mixture consists of ARX factors. Interpretation
of tables below: Each column correspond to one delay. Each row corresponds to the channel, and the
first row employs the offset.

1. component, dfcs=10845.145960, factors:
Factor 1, modelled channnel: 1, called ’y’, cove=0.00341127, dfm=10845.145999
delays → 0 1 2

offset
1 y 1.81299 -0.821943
2 u

Factor 2, modelled channnel: 2, called ’u’, cove=1.07418, dfm=10845.145978
delays → 0 1

offset 0.000229105
1 y

2 u

4.6.3 User Ideal Mixture

This mixture has 1 components with 2 factors each. Mixture consists of ARX factors. Interpretation
of tables below: Each column correspond to one delay. Each row corresponds to the channel, and the
first row employs the offset.

1. component, dfcs=1.000000, factors:
Factor 1, modelled channnel: 1, called ’y’, cove=0.0107729, dfm=1.000000
delays → 0 1

offset -0.978354
1 y

2 u
Factor 2, modelled channnel: 2, called ’u’, cove=1.29389e+07, dfm=1.000000
delays → 0 1

offset -1.72128
1 y

2 u

4.6.4 Controller Mixture

This mixture has 8 components with 2 factors each. Mixture consists of ARX factors. Interpretation
of tables below: Each column correspond to one delay. Each row corresponds to the channel, and the
first row employs the offset.

1. component, dfcs=1992.764705, factors:
Factor 1, modelled channnel: 1, called ’y’, cove=0.00332444, dfm=1396.443574
delays → 0 1 2

offset 0.0254656
1 y 1.81056 -0.818404
2 u 0.0386102 0.00306867 0.00264698

Factor 2, modelled channnel: 2, called ’u’, cove=0.752432, dfm=1.000000
delays → 0 1 2

offset -1.97837
1 y -19.2124 13.7674
2 u -0.0824461 -0.00115139

22

2. component, dfcs=1507.208982, factors:
Factor 3, modelled channnel: 1, called ’y’, cove=0.00295473, dfm=1042.004114
delays → 0 1 2

offset
1 y 1.81278 -0.825892
2 u 0.00549226

Factor 4, modelled channnel: 2, called ’u’, cove=0.752432, dfm=1.000000
delays → 0 1 2

offset -1.97837
1 y -19.2124 13.7674
2 u -0.0824461 -0.00115139

3. component, dfcs=877.848773, factors:
Factor 5, modelled channnel: 1, called ’y’, cove=0.002882, dfm=759.558895
delays → 0 1 2

offset
1 y 1.82671 -0.835076
2 u 0.00357796 0.00239426

Factor 6, modelled channnel: 2, called ’u’, cove=0.752432, dfm=1.000000
delays → 0 1 2

offset -1.97837
1 y -19.2124 13.7674
2 u -0.0824461 -0.00115139

4. component, dfcs=1477.492899, factors:
Factor 7, modelled channnel: 1, called ’y’, cove=0.003096, dfm=730.192481
delays → 0 1 2

offset -0.0094869
1 y 1.73629 -0.733612
2 u -0.00625134

Factor 8, modelled channnel: 2, called ’u’, cove=0.752432, dfm=1.000000
delays → 0 1 2

offset -1.97837
1 y -19.2124 13.7674
2 u -0.0824461 -0.00115139

5. component, dfcs=1835.268888, factors:
Factor 9, modelled channnel: 1, called ’y’, cove=0.0030384, dfm=1034.829765
delays → 0 1 2

offset -0.00504452
1 y 1.81475 -0.822106
2 u

Factor 10, modelled channnel: 2, called ’u’, cove=0.752432, dfm=1.000000
delays → 0 1 2

offset -1.97837
1 y -19.2124 13.7674
2 u -0.0824461 -0.00115139

6. component, dfcs=834.370300, factors:
Factor 11, modelled channnel: 1, called ’y’, cove=0.00289895, dfm=732.072393
delays → 0 1 2

offset -0.0857733
1 y 1.82453 -0.832945
2 u 0.056043 0.00511369

23

Factor 12, modelled channnel: 2, called ’u’, cove=0.752432, dfm=1.000000
delays → 0 1 2

offset -1.97837
1 y -19.2124 13.7674
2 u -0.0824461 -0.00115139

7. component, dfcs=884.666363, factors:
Factor 13, modelled channnel: 1, called ’y’, cove=0.00270471, dfm=352.131763
delays → 0 1 2

offset 0.0264342
1 y 1.81473 -0.825945
2 u 0.0115676 -0.00416591

Factor 14, modelled channnel: 2, called ’u’, cove=0.752432, dfm=1.000000
delays → 0 1 2

offset -1.97837
1 y -19.2124 13.7674
2 u -0.0824461 -0.00115139

8. component, dfcs=1435.531948, factors:
Factor 15, modelled channnel: 1, called ’y’, cove=0.00273428, dfm=575.673990
delays → 0 1 2

offset 0.0186852
1 y 1.88061 -0.898927
2 u -0.0254451 0.00211818 0.00469921

Factor 16, modelled channnel: 2, called ’u’, cove=0.752432, dfm=1.000000
delays → 0 1 2

offset -1.97837
1 y -19.2124 13.7674
2 u -0.0824461 -0.00115139

4.7 Experimental Controller Verification Results

Elementary statistics for simulated channels:
channel mean variance range
1 ”y” 0.39619 0.250988 [-0.016648, 0.809028]
∆ 1 ”y” -0.000355525 0.0496036 [-0.15833, 0.169598]
2 ”u” 0.369309 0.754411 [-0.871588, 1.6102]
∆ 2 ”u” 0.000535235 0.317596 [-1.18996, 1.06915]

Note: Symbol ∆ means increments of the signal, ”range” means the minimum a maximum of simu-
lated signal values, ”constr.sat.” means constraints satisfaction ratio for given channel and constraint
described in the Section Channel Description.

Constraints satisfaction results:
channel desired range resulting range constr.sat.
1 ”y” [-1, 1] [-0.016648, 0.809028] 1
2 ”u” [-1000, 1000] [-0.871588, 1.6102] 1

Sample simulation signals :

24

0 100 200 300 400 500 600 700 800 900 1000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Sample simulation run of verification

y
u

Simulation signals histogram :

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50
Signal histograms of verification

y

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

60
u

4.8 Conclusion

The identification part of processing found a mixture of 8 components. The components are very
similar and close to the parameters of the model used for generating of the identification data. The
controller designed works well according to the cerification.

25

Chapter 5

Summary and Conclusions

With Jobcontrol user-friendly interface, Mixtools package becomes a powerful set of the utilities for
system identification, employing Gaussian mixture models. The same can be said about the Designer
toolbox, which serves the purpose of finding the optimal controller parameters, and consequently for
constructing ideal controller. The choice for Matlab environment enables to simplify the complicated
matrix calculations, related to the task of system identification, and visualize the results in a very
convenient way.

26

Chapter 6

Acknowledgements

This report was supported by MŠMT 1M0572 (DAR), project AV ČR 1075351, project GA ČR
102/03/0049, and project AV ČR 1ET100750401 (Baddyr).

27

Bibliography

[1] M. Kárný, J. Böhm, T.V. Guy, L. Jirsa, I. Nagy, P. Nedoma, and L. Tesař. Optimized Bayesian
Dynamic Advising: Theory and Algorithms. Springer, London, 2005.

[2] P. Nedoma, M. Kárný, T.V. Guy, I. Nagy, and L. Tesař. Learning and prediction with normal
mixtures. Technical Report 2045, UTIA AV CR, 2002.

[3] V. Peterka. Bayesian system identification. In P. Eykhoff, editor, Trends and Progress in System
Identification, pages 239–304. Pergamon Press, Oxford, 1981.

28

	Introduction
	Jobcontrol Description
	Usage of interactive script jobmain.m
	Using the jobcontrol batch processing
	How to run mixtools/designer repeatedly from the given point?
	Using saved m-files
	Where to find results?
	Mixture Model Validation Results
	Controller Verification Results

	How to start use jobcontrol?

	Reference - Description of the structure Job
	Examples
	Aims of the study
	Description of the study
	Data
	Processing
	Description
	Experiment definition
	Data description
	Channels description
	Prior information
	Mixture initialization
	Mixture estimation
	Mixture validation
	User ideal
	Design
	Verification
	Original Data Plots

	Results
	Results of Mixture Identification and Parameter Estimation (and Model Validation)
	Results of Single Component Identification and Parameter Estimation (and Model Validation)
	User Ideal Mixture
	Controller Mixture

	Experimental Controller Verification Results
	Conclusion

	Summary and Conclusions
	Acknowledgements

