Estimation of Models with Uniform Innovations and its Application on Traffic Data

Lenka Pavelková

Department of Adaptive Systems
Institute of Information Theory and Automation, Prague
e-mail: pavelkov@utia.cas.cz

30th November 2008

PRESENTATION LAYOUT

- Motivation, aims of the work
- LU model description
- Approximate estimation of LU model
- Illustrative examples
- Conclusions

MOTIVATION

- models with normal innovations
 - simplicity
 - unsuitable for bounded quantities
- unknown-but-bounded errors
 - suitable for bounded quantities
 - missing statistical tools
- model "XYZ"
 - ⊕ simplicity
 - suitable for bounded quantities

MOTIVATION

- models with normal innovations
 - simplicity
 - unsuitable for bounded quantities
- unknown-but-bounded errors
 - suitable for bounded quantities
 - missing statistical tools
- model "XYZ"
 - ⊕ simplicity
 - suitable for bounded quantities

MOTIVATION

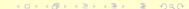
- models with normal innovations
 - simplicity
 - unsuitable for bounded quantities
- unknown-but-bounded errors
 - suitable for bounded quantities
 - missing statistical tools
- model "XYZ"
 - simplicity
 - suitable for bounded quantities

AIMS

probabilistic approach + bounded errors = LU model

Aims of the research

- to propose the probabilistic linear state-space model with bounded innovations
- to design algorithms for the estimation of the unknown quantities of this model
- to demonstrate the functionality of mentioned algorithms on the simulated and traffic data



LINEAR UNIFORM STATE-SPACE MODEL

$$x_t = {}^{c}A_t x_{t-1} + {}^{c}B_t u_t + {}^{c}F_t + {}^{x}e_t$$

 $y_t = {}^{c}C_t x_t + {}^{c}D_t u_t + {}^{c}G_t + {}^{y}e_t$

where

 x_t , u_t , y_t - state, input, output cA_t , cB_t , e.t.c. - model matrices

$${}^{c}A_{t}=A_{t}+{}^{e}A,\ {}^{c}B_{t}=B_{t}+{}^{e}B$$
, e.t.c.

 x_{e_t} , y_{e_t} - state and output innovations

The innovations have uniform distributions

$$f({}^{\mathsf{x}}e_t) = \mathcal{U}(0, {}^{\mathsf{x}}r), \quad f({}^{\mathsf{y}}e_t) = \mathcal{U}(0, {}^{\mathsf{y}}r)$$

LINEAR UNIFORM STATE-SPACE MODEL

$$x_t = {}^{c}A_t x_{t-1} + {}^{c}B_t u_t + {}^{c}F_t + {}^{x}e_t$$

$$y_t = {}^{c}C_t x_t + {}^{c}D_t u_t + {}^{c}G_t + {}^{y}e_t,$$

where

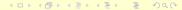
 x_t , u_t , y_t - state, input, output cA_t , cB_t , e.t.c. - model matrices

$${}^{c}A_{t}=A_{t}+{}^{e}A,\ {}^{c}B_{t}=B_{t}+{}^{e}B,\ \text{e.t.c.}$$

 x_{e_t} , y_{e_t} - state and output innovations

The innovations have uniform distributions

$$f({}^{x}e_{t}) = \mathcal{U}(0, {}^{x}r), \quad f({}^{y}e_{t}) = \mathcal{U}(0, {}^{y}r)$$



LINEAR UNIFORM STATE-SPACE MODEL

Collection of all estimated parameters:

$$\theta \equiv [\,^{e}A, \,^{e}B, \,^{e}F, \,^{e}C, \,^{e}D, \,^{e}G]',$$

$$\Theta \equiv [\,\theta', \,^{\times}r', \,^{y}r']'$$

Assumptions:

- natural conditions of control hold
- x_0 , x_r , y_r , Θ are mutually independent

$$f(d^{1:T}, x^{0:T}, \Theta) = \text{const } \chi(S)$$

 $S = S0 \cap S1 \cap S2$:

$$S0 = \{\underline{x}_0 \le x_0 \le \overline{x}_0, \ \underline{\Theta} \le \Theta \le \overline{\Theta}\}$$

$$S1 = \{ -x^r \le x_t - {}^cA_t x_{t-1} - {}^cB_t u_t - {}^cF_t \le x_t - {}^yr \le y_t - {}^cC_t x_t - {}^cD_t u_t - {}^cG_t \le y_t \}$$

$$S2 = \{\underline{x} \le x_t \le \overline{x}\}$$

$$f(d^{1:T}, x^{0:T}, \Theta) = \text{const } \chi(S)$$

$$S = S0 \cap S1 \cap S2$$
:

$$S0 = \left\{ \underline{x}_0 \le x_0 \le \overline{x}_0, \, \underline{\Theta} \le \Theta \le \overline{\Theta} \right\}$$

$$S1 = \{ -x^r \le x_t - {}^cA_tx_{t-1} - {}^cB_tu_t - {}^cF_t \le x_t - {}^yr \le y_t - {}^cC_tx_t - {}^cD_tu_t - {}^cG_t \le y_t \}$$

$$S2 = \{\underline{x} \le x_t \le \overline{x}\}$$

$$f(d^{1:T}, x^{0:T}, \Theta) = \text{const } \chi(S)$$

$$S = S0 \cap S1 \cap S2$$
:

$$S0 = \left\{ \underline{x}_0 \le x_0 \le \overline{x}_0, \, \underline{\Theta} \le \Theta \le \overline{\Theta} \right\}$$

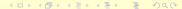
$$S2 = \{\underline{x} \le x_t \le \overline{x}\}$$

$$f(d^{1:T}, x^{0:T}, \Theta) = \text{const } \chi(S)$$

$$S = S0 \cap S1 \cap S2$$
:

$$S0 = \left\{ \underline{x}_0 \le x_0 \le \overline{x}_0, \, \underline{\Theta} \le \Theta \le \overline{\Theta} \right\}$$

$$S2 = \{\underline{x} \le x_t \le \overline{x}\}$$



OFF-LINE ESTIMATION

- state estimation
- parameter estimation

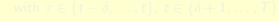
Sliding window (memory length) - δ

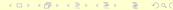
$$f(d^{t-\delta:t}, x^{t-\delta:t}, \Theta) \approx \text{const } \chi(\tilde{\mathcal{S}}_t)$$

$$\tilde{\mathcal{S}}_t = \tilde{\mathcal{S}} \mathbf{0}_t \cap \tilde{\mathcal{S}} \mathbf{1}_t \cap \tilde{\mathcal{S}} \mathbf{2}_t$$
:

$$\hat{S}0_t = \left\{ x_{t-\delta-1} = \hat{x}_{t-\delta-1}, \ \underline{\Theta} \le \Theta \le \overline{\Theta} \right\}$$

$$\tilde{S}2_t = \{\underline{x} \le x_\tau \le \overline{x}\}$$





Sliding window (memory length) - δ

$$f(d^{t-\delta:t}, x^{t-\delta:t}, \Theta) \approx \text{const } \chi(\tilde{\mathcal{S}}_t)$$

$$\tilde{\mathcal{S}}_t = \tilde{\mathcal{S}} \mathbf{0}_t \cap \tilde{\mathcal{S}} \mathbf{1}_t \cap \tilde{\mathcal{S}} \mathbf{2}_t$$
:

$$\tilde{S}0_t = \left\{ x_{t-\delta-1} = \hat{x}_{t-\delta-1}, \ \underline{\Theta} \le \Theta \le \overline{\Theta} \right\}$$

$$\tilde{S}1_{t} = \{ -x^{x}r \leq x_{\tau} - {}^{c}A_{\tau}x_{\tau-1} - {}^{c}B_{\tau}u_{\tau} - {}^{c}F_{\tau} \leq x_{\tau} - {}^{y}r \leq y_{\tau} - {}^{c}C_{\tau}x_{\tau} - {}^{c}D_{\tau}u_{\tau} - {}^{c}G_{\tau} \leq y_{\tau} \}$$

$$\tilde{\mathcal{S}}2_t = \{\underline{x} \le x_\tau \le \overline{x}\}$$

with $\tau \in \{t - \delta, \dots, t\}$, $t \in \{\delta + 1, \dots, T\}$

Sliding window (memory length) - δ

$$f(d^{t-\delta:t}, x^{t-\delta:t}, \Theta) \approx \text{const } \chi(\tilde{\mathcal{S}}_t)$$

$$\tilde{\mathcal{S}}_t = \tilde{\mathcal{S}}0_t \cap \tilde{\mathcal{S}}1_t \cap \tilde{\mathcal{S}}2_t$$
:

$$\tilde{S}0_t = \left\{ x_{t-\delta-1} = \hat{x}_{t-\delta-1}, \ \underline{\Theta} \le \Theta \le \overline{\Theta} \right\}$$

$$\tilde{S}1_{t} = \{ -x^{r} \leq x_{\tau} - {}^{c}A_{\tau}x_{\tau-1} - {}^{c}B_{\tau}u_{\tau} - {}^{c}F_{\tau} \leq {}^{x}r \\
-y^{r} \leq y_{\tau} - {}^{c}C_{\tau}x_{\tau} - {}^{c}D_{\tau}u_{\tau} - {}^{c}G_{\tau} \leq {}^{y}r \}$$

$$\tilde{\mathcal{S}}2_t = \{\underline{x} \le x_\tau \le \overline{x}\}$$

with $\tau \in \{t - \delta, \dots, t\}$, $t \in \{\delta + 1, \dots, T\}$

Sliding window (memory length) - δ

$$f(d^{t-\delta:t}, x^{t-\delta:t}, \Theta) \approx \text{const } \chi(\tilde{\mathcal{S}}_t)$$

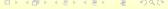
$$\tilde{\mathcal{S}}_t = \tilde{\mathcal{S}}0_t \cap \tilde{\mathcal{S}}1_t \cap \tilde{\mathcal{S}}2_t$$
:

$$\tilde{S}0_t = \left\{ x_{t-\delta-1} = \hat{x}_{t-\delta-1}, \ \underline{\Theta} \le \Theta \le \overline{\Theta} \right\}$$

$$\tilde{S}1_{t} = \{ -x^{r} \leq x_{\tau} - {}^{c}A_{\tau}x_{\tau-1} - {}^{c}B_{\tau}u_{\tau} - {}^{c}F_{\tau} \leq {}^{x}r \\
-y^{r} \leq y_{\tau} - {}^{c}C_{\tau}x_{\tau} - {}^{c}D_{\tau}u_{\tau} - {}^{c}G_{\tau} \leq {}^{y}r \}$$

$$\tilde{\mathcal{S}}2_t = \{\underline{x} \le x_\tau \le \overline{x}\}$$

with $\tau \in \{t - \delta, \dots, t\}$, $t \in \{\delta + 1, \dots, T\}$



ON-LINE ESTIMATION

- state estimation
- parameter estimation
- joint state and parameter estimation

ON-LINE JOINT ESTIMATION

- evaluation of the pdf

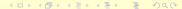
$$f(x^{t-\delta:t},\Theta|d^{t-\delta:t}), t \in {\delta+1,\ldots,T}, \delta > 1.$$

- MAP estimates - solved by linear programming (LP)

Find a vector
$$X$$
 such that $J \equiv \mathcal{C}'X$

$$= \sum_{i=1}^{x^{\ell}} {}^{x}r_{i} + \sum_{j=1}^{y^{\ell}} {}^{y}r_{j} \rightarrow \min$$
while $\mathcal{A}X < \mathcal{B}, \ X < X < \overline{X},$

$$\begin{aligned} \mathcal{C}' &\equiv [\mathbf{0}'_{(X^{\ell} - x^{\ell} - y^{\ell})}, \mathbf{1}'_{(x^{\ell} + y^{\ell})}], \\ \mathcal{A}, \ \mathcal{B} &- \text{ from } \mathcal{S}1_t \\ \underline{X}, \ \overline{X} &- \mathcal{S}0_t \text{ and } \mathcal{S}2_t \end{aligned}$$



ON-LINE JOINT ESTIMATION

- evaluation of the pdf

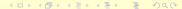
$$f(x^{t-\delta:t},\Theta|d^{t-\delta:t}), t \in {\delta+1,\ldots,T}, \delta > 1.$$

- MAP estimates - solved by linear programming (LP)

Find a vector
$$X$$
 such that $J \equiv \mathcal{C}'X$

$$= \sum_{i=1}^{x^{\ell}} {}^{x}r_{i} + \sum_{j=1}^{y^{\ell}} {}^{y}r_{j} \rightarrow \min$$
while $\mathcal{A}X \leq \mathcal{B}, \ \underline{X} \leq X \leq \overline{X},$

$$\begin{split} \mathcal{C}' &\equiv [\mathbf{0}'_{(X^{\ell}-x^{\ell}-y^{\ell})}, \mathbf{1}'_{(x^{\ell}+y^{\ell})}], \\ \mathcal{A}, \ \mathcal{B} &\text{- from } \mathcal{S}\mathbf{1}_{t} \\ X, \ \overline{X} &\text{- } \mathcal{S}\mathbf{0}_{t} \text{ and } \mathcal{S}\mathbf{2}_{t} \end{split}$$



ON-LINE JOINT ESTIMATION

- evaluation of the pdf

$$f(x^{t-\delta:t},\Theta|d^{t-\delta:t}), t \in {\delta+1,\ldots,T}, \delta > 1.$$

- MAP estimates - solved by linear programming (LP)

Find a vector X such that $J \equiv \mathcal{C}'X$ $= \sum_{i=1}^{x^{\ell}} {}^{x}r_{i} + \sum_{j=1}^{y^{\ell}} {}^{y}r_{j} \rightarrow \min$ while $\mathcal{A}X < \mathcal{B}, \ X < X < \overline{X},$

$$\begin{split} \mathcal{C}' &\equiv [\mathbf{0}'_{(X^{\ell} - x^{\ell} - y^{\ell})}, \mathbf{1}'_{(x^{\ell} + y^{\ell})}], \\ \mathcal{A}, \ \mathcal{B} &\text{- from } \mathcal{S}1_t \\ \underline{X}, \ \overline{X} &\text{- } \mathcal{S}0_t \text{ and } \mathcal{S}2_t \end{split}$$

LINEARIZATION FOR LP

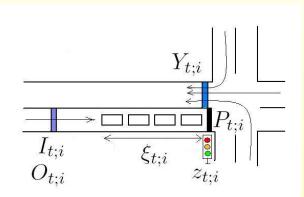
$${}^{e}Ax_{t-1} \approx {}^{e}A\hat{x}_{t-1} - {}^{e}\hat{A}\hat{x}_{t-1} + {}^{e}\hat{A}x_{t-1}, t \in t^{*},$$

$${}^{e}Cx_{t} \approx {}^{e}C\hat{x}_{t} - {}^{e}\hat{C}\hat{x}_{t} + {}^{e}\hat{C}x_{t}, t \in t^{*},$$

EXAMPLE WITH TRAFFIC DATA

Model of **controlled intersection** - quantities:

- measured intensity I_t and Y_t , occupancy O_t
- estimated length of the car queue ξ_t , parameters κ , β , λ
- given green time z_t , sat. flow S, turning rates α



APPLICATION OF LU MODEL ON TRAFFIC DATA

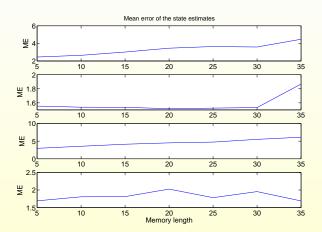


Figure: Mean errors of queue length estimates depending on memory length δ

EXAMPLE WITH TRAFFIC DATA

Discussion of the results

ME of ξ estimates reach approximately 20% of the mean value ξ (50% for the 3rd arm)

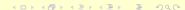
Improving by:

- including I_t into the state vector
- ullet estimation of turning rates lpha

CONCLUSIONS - ACHIEVED RESULTS

Benefits of LU model

- promising alternative for the KF in the case of bounded data
- computationally feasible Matlab algorithms $(MAP \rightarrow LP)$
- complying with hard prior bounds on model parameters and states
- reduction of the model ambiguity
- on-line estimation update on the whole window δ
- estimation of the innovation ranges included



CONCLUSIONS - ACHIEVED RESULTS

Possible exploitation of LU model

- off-line estimates of the innovations boundaries initial setting of covariances for Kalman filtering
- application on the traffic data is promising
- starting point for estimation of a class of non-uniform distributions with restricted support

CONCLUSIONS - FUTURE PLANS

Improving of the estimates quality

General LU model:

- the method of selection of the inequalities for LP (informative data)
- the computation of the parameter estimates precision
- the approximation of the non-uniform pdf by the uniform one
- the use of the nonlinear programming

LU model of the intersection

- the introduction of the model for the input intensity
- the on-line estimation of α

CONCLUSIONS - FUTURE PLANS

Improving of the estimates quality

General LU model:

- the method of selection of the inequalities for LP (informative data)
- the computation of the parameter estimates precision
- the approximation of the non-uniform pdf by the uniform one
- the use of the nonlinear programming

LU model of the intersection

- the introduction of the model for the input intensity
- the on-line estimation of α

CONCLUSIONS - FUTURE PLANS

Improving of the estimates quality

General LU model:

- the method of selection of the inequalities for LP (informative data)
- the computation of the parameter estimates precision
- the approximation of the non-uniform pdf by the uniform one
- the use of the nonlinear programming

LU model of the intersection:

- the introduction of the model for the input intensity
- the on-line estimation of α

Thank you for your attention!