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Cluster Analysis

Automatic numerical methods for finding groups in data that are

separated
internally cohesive

Invented in the 1950s by Sokal, Sneath and others motivated by

biological taxonomy
market segmentation

Interest now driven by new types of data:

Gene expression microarray data
finding groups and patterns in retail barcode data
datamining more generally
analysis of Web data (finding groups of users and sites) −→
Collaborative filtering
medical image segmentation, e.g. for finding tumors.
Here, cluster = group of pixels
color image quantization (e.g. for the Internet on mobile phones)
automatic document clustering for technical documents and Web
sites



Cluster Analysis

Automatic numerical methods for finding groups in data that are

separated
internally cohesive

Invented in the 1950s by Sokal, Sneath and others motivated by

biological taxonomy
market segmentation

Interest now driven by new types of data:

Gene expression microarray data
finding groups and patterns in retail barcode data
datamining more generally
analysis of Web data (finding groups of users and sites) −→
Collaborative filtering
medical image segmentation, e.g. for finding tumors.
Here, cluster = group of pixels
color image quantization (e.g. for the Internet on mobile phones)
automatic document clustering for technical documents and Web
sites



Cluster Analysis

Automatic numerical methods for finding groups in data that are

separated

internally cohesive

Invented in the 1950s by Sokal, Sneath and others motivated by

biological taxonomy
market segmentation

Interest now driven by new types of data:

Gene expression microarray data
finding groups and patterns in retail barcode data
datamining more generally
analysis of Web data (finding groups of users and sites) −→
Collaborative filtering
medical image segmentation, e.g. for finding tumors.
Here, cluster = group of pixels
color image quantization (e.g. for the Internet on mobile phones)
automatic document clustering for technical documents and Web
sites



Cluster Analysis

Automatic numerical methods for finding groups in data that are

separated
internally cohesive

Invented in the 1950s by Sokal, Sneath and others motivated by

biological taxonomy
market segmentation

Interest now driven by new types of data:

Gene expression microarray data
finding groups and patterns in retail barcode data
datamining more generally
analysis of Web data (finding groups of users and sites) −→
Collaborative filtering
medical image segmentation, e.g. for finding tumors.
Here, cluster = group of pixels
color image quantization (e.g. for the Internet on mobile phones)
automatic document clustering for technical documents and Web
sites



Cluster Analysis

Automatic numerical methods for finding groups in data that are

separated
internally cohesive

Invented in the 1950s by Sokal, Sneath and others motivated by

biological taxonomy
market segmentation

Interest now driven by new types of data:

Gene expression microarray data
finding groups and patterns in retail barcode data
datamining more generally
analysis of Web data (finding groups of users and sites) −→
Collaborative filtering
medical image segmentation, e.g. for finding tumors.
Here, cluster = group of pixels
color image quantization (e.g. for the Internet on mobile phones)
automatic document clustering for technical documents and Web
sites



Cluster Analysis

Automatic numerical methods for finding groups in data that are

separated
internally cohesive

Invented in the 1950s by Sokal, Sneath and others motivated by

biological taxonomy

market segmentation

Interest now driven by new types of data:

Gene expression microarray data
finding groups and patterns in retail barcode data
datamining more generally
analysis of Web data (finding groups of users and sites) −→
Collaborative filtering
medical image segmentation, e.g. for finding tumors.
Here, cluster = group of pixels
color image quantization (e.g. for the Internet on mobile phones)
automatic document clustering for technical documents and Web
sites



Cluster Analysis

Automatic numerical methods for finding groups in data that are

separated
internally cohesive

Invented in the 1950s by Sokal, Sneath and others motivated by

biological taxonomy
market segmentation

Interest now driven by new types of data:

Gene expression microarray data
finding groups and patterns in retail barcode data
datamining more generally
analysis of Web data (finding groups of users and sites) −→
Collaborative filtering
medical image segmentation, e.g. for finding tumors.
Here, cluster = group of pixels
color image quantization (e.g. for the Internet on mobile phones)
automatic document clustering for technical documents and Web
sites



Cluster Analysis

Automatic numerical methods for finding groups in data that are

separated
internally cohesive

Invented in the 1950s by Sokal, Sneath and others motivated by

biological taxonomy
market segmentation

Interest now driven by new types of data:

Gene expression microarray data
finding groups and patterns in retail barcode data
datamining more generally
analysis of Web data (finding groups of users and sites) −→
Collaborative filtering
medical image segmentation, e.g. for finding tumors.
Here, cluster = group of pixels
color image quantization (e.g. for the Internet on mobile phones)
automatic document clustering for technical documents and Web
sites



Cluster Analysis

Automatic numerical methods for finding groups in data that are

separated
internally cohesive

Invented in the 1950s by Sokal, Sneath and others motivated by

biological taxonomy
market segmentation

Interest now driven by new types of data:

Gene expression microarray data

finding groups and patterns in retail barcode data
datamining more generally
analysis of Web data (finding groups of users and sites) −→
Collaborative filtering
medical image segmentation, e.g. for finding tumors.
Here, cluster = group of pixels
color image quantization (e.g. for the Internet on mobile phones)
automatic document clustering for technical documents and Web
sites



Cluster Analysis

Automatic numerical methods for finding groups in data that are

separated
internally cohesive

Invented in the 1950s by Sokal, Sneath and others motivated by

biological taxonomy
market segmentation

Interest now driven by new types of data:

Gene expression microarray data
finding groups and patterns in retail barcode data

datamining more generally
analysis of Web data (finding groups of users and sites) −→
Collaborative filtering
medical image segmentation, e.g. for finding tumors.
Here, cluster = group of pixels
color image quantization (e.g. for the Internet on mobile phones)
automatic document clustering for technical documents and Web
sites



Cluster Analysis

Automatic numerical methods for finding groups in data that are

separated
internally cohesive

Invented in the 1950s by Sokal, Sneath and others motivated by

biological taxonomy
market segmentation

Interest now driven by new types of data:

Gene expression microarray data
finding groups and patterns in retail barcode data
datamining more generally

analysis of Web data (finding groups of users and sites) −→
Collaborative filtering
medical image segmentation, e.g. for finding tumors.
Here, cluster = group of pixels
color image quantization (e.g. for the Internet on mobile phones)
automatic document clustering for technical documents and Web
sites



Cluster Analysis

Automatic numerical methods for finding groups in data that are

separated
internally cohesive

Invented in the 1950s by Sokal, Sneath and others motivated by

biological taxonomy
market segmentation

Interest now driven by new types of data:

Gene expression microarray data
finding groups and patterns in retail barcode data
datamining more generally
analysis of Web data (finding groups of users and sites) −→
Collaborative filtering

medical image segmentation, e.g. for finding tumors.
Here, cluster = group of pixels
color image quantization (e.g. for the Internet on mobile phones)
automatic document clustering for technical documents and Web
sites



Cluster Analysis

Automatic numerical methods for finding groups in data that are

separated
internally cohesive

Invented in the 1950s by Sokal, Sneath and others motivated by

biological taxonomy
market segmentation

Interest now driven by new types of data:

Gene expression microarray data
finding groups and patterns in retail barcode data
datamining more generally
analysis of Web data (finding groups of users and sites) −→
Collaborative filtering
medical image segmentation, e.g. for finding tumors.
Here, cluster = group of pixels

color image quantization (e.g. for the Internet on mobile phones)
automatic document clustering for technical documents and Web
sites



Cluster Analysis

Automatic numerical methods for finding groups in data that are

separated
internally cohesive

Invented in the 1950s by Sokal, Sneath and others motivated by

biological taxonomy
market segmentation

Interest now driven by new types of data:

Gene expression microarray data
finding groups and patterns in retail barcode data
datamining more generally
analysis of Web data (finding groups of users and sites) −→
Collaborative filtering
medical image segmentation, e.g. for finding tumors.
Here, cluster = group of pixels
color image quantization (e.g. for the Internet on mobile phones)

automatic document clustering for technical documents and Web
sites



Cluster Analysis

Automatic numerical methods for finding groups in data that are

separated
internally cohesive

Invented in the 1950s by Sokal, Sneath and others motivated by

biological taxonomy
market segmentation

Interest now driven by new types of data:

Gene expression microarray data
finding groups and patterns in retail barcode data
datamining more generally
analysis of Web data (finding groups of users and sites) −→
Collaborative filtering
medical image segmentation, e.g. for finding tumors.
Here, cluster = group of pixels
color image quantization (e.g. for the Internet on mobile phones)
automatic document clustering for technical documents and Web
sites



Cluster Analysis Methods

Most methods heuristic or algorithmic, not statistical, for example:

complete link clustering
average link clustering
single link clustering
k means
Ward’s sum of squares

Difficulties: No principled basis for answering:

Which method to use?
How many groups are there?
What’s the uncertainty in the results?
How to deal with outliers?

Model-based clustering:

A framework for cluster analysis
Bases cluster analysis on a statistical (mixture) model:
y ∼

PG
g=1 τg fg (y), where y is data and fg (·) are distributions

Gives answers to questions based on standard statistical principles
Here we focus on continuous data and take fg ∼ multivariate normal
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Basic Ideas of Model-Based Clustering

Based on a finite mixture of multivariate normal distributions:

yi ∼
G∑

g=1

τgMVNd(µg ,Σg ),

where Σg = λgDgAgDT
g

λg = 1st eigenvalue of Σg : controls the volume of the g th cluster

Ag = diag{1, α2g , . . . , αdg}

controls the shape of the gth cluster
(1 ≥ α2 ≥ . . . ≥ αd > 0)
E.g. α2 close to zero: Cluster g concentrated about a line.
E.g. α2g , . . . , αdg all close to 1: Cluster g nearly spherical.

Dg = Eigenvectors: Control the orientation of the g th cluster

Different clustering models can be obtained by constraining each of
volume, shape and orientation to be constant across clusters, or by
allowing them to vary (Banfield & Raftery, 1993, Biometrics)
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allowing them to vary (Banfield & Raftery, 1993, Biometrics)



Model-Based Clustering Strategy

Maximum likelihood estimation for the mixture model parameters
θ = (τ, µ,Σ), via the EM algorithm

Initialization of EM via hierarchical agglomerative model-based
clustering, in which the groups merged at each stage are those that
minimize the decrease in likelihood.

Choosing the Number of Clusters and the Clustering
Method/Model:

Both are reduced to statistical model selection problems, and solved
simultaneously.
Each combination of (Number of Clusters, Clustering Model) is
viewed as a separate statistical model
We use the Bayes factor, i.e. the ratio of posterior to prior odds for
one model against another.
This allows comparison of the multiple, nonnested models considered.
We approximate the Bayes factors via

BIC = 2 log maximized likelihood− (# parameters) log(n)

This is consistent for the number of clusters (Keribin 2000), and also
provides consistent density estimates (Roeder and Wasserman 1997).
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Example: Diabetes Diagnosis

Data: Glucose, insulin and SSPG measurements on 145 patients
(Reuven and Miller 1979).

Goal: Use these to diagnose patients as one of “Normal,” “Chemical
Diabetes,” or “Overt Diabetes.”

There is a clinical classification that we will ignore in the clustering,
but that we will use to evaluate it.

Many clustering methods require that we “know” the number of
clusters, but model-based clustering does not.
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The volume (Normal: small;
Diabetes clusters: bigger)
shape (Normal: spherical,
Diabetes clusters: long and
thin)
and orientation (Chemical
and Overt: orthogonal)
are all different

=⇒ Model is Σg all different
(unconstrained)

The mclust R package is used
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shape, varying
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The right answer!

The EII model, Σg = λI (≈ k
means) not good.

Thus k means would not be
good for these data.
BIC allows us to assess when
k means, or other methods,
would work well.

Tradeoff between the clustering
model and the number of
clusters:

E.g. with the EII model
(equal volume spherical), far
more clusters are needed
than with the VVV model
(unconstrained ellipses).
Thus BIC determines
whether it is better to use
the “peas” or the “pod.”
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Outliers in Model-Based Clustering

The model is expanded to explicitly include outliers:

Outliers arise from a low-intensity Poisson process on the “data
region,” R.
=⇒ outliers are generated from a uniform distribution on the data
region.

Expanded mixture model:

yi ∼
G∑

g=1

τgMVNd(µg ,Σg ) + τ0U(R)

Proceed as before with EM and BIC

This has good robustness properties (Hennig 2004, Ann Stat)
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Image Segmentation Application: Finding Regions
of Interest in Dynamic Breast MRI

Breast tumor detection is usually done using X-ray mammography

This has a high false positive rate, leading to

many unnecessary biopsies
unnecessary deaths
search for a better method

An alternative: Dynamic Magnetic Resonance Imaging (MRI):

Patient injected with a contrast agent, Gaudolinium
3-d images made every 10 seconds for about 4 minutes (25 images)

Our goal: Automatically find a region of interest that may contain
the tumor. Method:

Each slice analyzed separately; best results used
Each voxel has a 25-dimensional intensity measurement
Reduced to 5 variables: Time to peak, Difference at peak, ...
Mclust with G = 3 (background, heart, skin) and G = 4 (same +
tumor) groups
Bayesian morphology: Fast Bayesian image restoration via
mathematical morphology (Forbes and Raftery 1999, JASA)
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Breast MRI Example Results

Images at 10, 70, 150, 250 seconds Intensity curve for one voxel

Mclust segmentation with 4 clusters Bayesian morphology restoration
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Breast MRI Results for 19 patients

Reference: Forbes et al, 2006, J. Computer Assisted Tomography,
“Finding regions of interest in dynamic breast MRI.”
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Other Image Processing and Pattern Recogntion
Applications

Papers at:

www.stat.washington.edu/raftery/Research/publications.html
OR from my home page: −→ Research −→ Publications

Image segmentation with small features using incremental
model-based clustering (Fraley et al, 2005, J. Comput. Graph. Stat)

Multi-band image segmentation via model-based cluster trees
(Murtagh et al, 2005, Image & Vision Computing)

Segmentation of microarray images with inner holes, artifacts and
blank spots (Li et al, 2005, Bioinformatics)

Image segmentation with model-based clustering via sampling
(Wehrens et al, 2004, J. Classification)

Detecting features in spatial point patterns: minefields, earthquake
faults (papers with Byers, Dasgupta, Walsh 1998–)
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Variable/Feature Selection for Model-Based
Clustering

Which variables to include in clustering?

General approach: Treat it as a model choice problem by vewing
each combination of variables as a statistical model

Formulate both choices of variables as models for (Y1,Y2,Y3):

Model for (Y1, Y2) choice says that Y3 is conditionally independent
of the cluster assignment variable Z given (Y1, Y2)
Model for (Y1, Y2, Y3) choice says that all 3 variables depend on
which cluster the object is in
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Variable Selection Method

We consider whether to include one extra variable as a clustering
variable

Two models: One says that the new variable is useful for clustering
given the current clustering variables

The other model says that the variable is not useful for clustering
given the current clustering variables

We partition the data Y into 3 disjoint subsets Y (clust),Y (?) and
Y (other) where

Y (clust) is the set of currently selected clustering variables
Y (?) is the new variable considered for inclusion into Y (clust)

Y (other) is the set of all other variables

Let Z be the matrix of (unobserved) variables that say which group
each observation belongs to (as in EM and MCMC for mixtures)
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The Two Models

p(Y | Z ,M1) = p(Y (clust),Y (?),Y (other) | Z )

= p(Y (other) | Y (clust),Y (?))

× p(Y (?) | Y (clust))p(Y (clust) | Z )

p(Y | Z ,M2) = p(Y (clust),Y (?),Y (other) | Z )

= p(Y (other) | Y (clust),Y (?))

× p(Y (?),Y (clust) | Z )
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Implementation of Variable Selection

If Y (?) is a single variable, then

E (Y (?) | Y (clust)) = α + Y (clust)β

⇒ p(Y (?) | Y (clust)) = regression model

Given the partition and the two models we would like to make a
decision based on the Bayes factor B21.

We use the BIC approximation

2 log B21 ≈ BIC (M2)− BIC (M1)

With mild assumptions about the models’ parameter priors, each
Bayes factor decomposes into separate mixture model and regression
components.

Thus each BIC is the sum of BICs for mixture models and possibly
regression models.
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Search Algorithm

In order to explore all of the model space (create different partitions
of the variables to check) we need a search algorithm.

We iterate between inclusion and exclusion steps:

Inclusion steps test new variables for inclusion into the set of
clustering variables
Exclusion steps test variables currently in the set of clustering
variables for exclusion from that set
Inclusion and exclusion decisions are based on the approximate Bayes
factors
We stop when two proposed changes in a row are rejected
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Simulated Data with No Noise Variables

First we look at an example
where there are no noise
variables present

Have two variables with
clustering information

150 observations

The clusters are well separated
with different variances

The method correctly selects
both variables
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Simulated Data with Noise Variables

Same 2 clustering variables as
before

5 noise variables added:

X3, X4 and X5 are
independent
X6 and X7 are dependent

Compare clustering results:

Variables # of Error
Groups rate

All 7 5 44.7%
All 7 2 (constrained) 3.3%

Selected 2 2 0%
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Crabs Data

4 groups: male orange, female
orange, male blue and female
blue

200 observations (50 per group)

5 variables measuring size

Variables selected: 4 of the 5
variables were selected, all
except length along mid-line of
carapace (CL)

Compare clustering results:

Variables # of Error
Groups rate

All 5 7 42.5%
All 5 4 7.5%

(constrained)
Selected 4 4 7.5%



Crabs Data

4 groups: male orange, female
orange, male blue and female
blue

200 observations (50 per group)

5 variables measuring size

Variables selected: 4 of the 5
variables were selected, all
except length along mid-line of
carapace (CL)

Compare clustering results:

Variables # of Error
Groups rate

All 5 7 42.5%
All 5 4 7.5%

(constrained)
Selected 4 4 7.5%



Crabs Data

4 groups: male orange, female
orange, male blue and female
blue

200 observations (50 per group)

5 variables measuring size

Variables selected: 4 of the 5
variables were selected, all
except length along mid-line of
carapace (CL)

Compare clustering results:

Variables # of Error
Groups rate

All 5 7 42.5%
All 5 4 7.5%

(constrained)
Selected 4 4 7.5%



Crabs Data

4 groups: male orange, female
orange, male blue and female
blue

200 observations (50 per group)

5 variables measuring size

Variables selected: 4 of the 5
variables were selected, all
except length along mid-line of
carapace (CL)

Compare clustering results:

Variables # of Error
Groups rate

All 5 7 42.5%
All 5 4 7.5%

(constrained)
Selected 4 4 7.5%



Crabs Data

4 groups: male orange, female
orange, male blue and female
blue

200 observations (50 per group)

5 variables measuring size

Variables selected: 4 of the 5
variables were selected, all
except length along mid-line of
carapace (CL)

Compare clustering results:

Variables # of Error
Groups rate

All 5 7 42.5%
All 5 4 7.5%

(constrained)
Selected 4 4 7.5%



Crabs Data

4 groups: male orange, female
orange, male blue and female
blue

200 observations (50 per group)

5 variables measuring size

Variables selected: 4 of the 5
variables were selected, all
except length along mid-line of
carapace (CL)

Compare clustering results:

Variables # of Error
Groups rate

All 5 7 42.5%
All 5 4 7.5%

(constrained)
Selected 4 4 7.5%



Crabs Data

4 groups: male orange, female
orange, male blue and female
blue

200 observations (50 per group)

5 variables measuring size

Variables selected: 4 of the 5
variables were selected, all
except length along mid-line of
carapace (CL)

Compare clustering results:

Variables # of Error
Groups rate

All 5 7 42.5%
All 5 4 7.5%

(constrained)
Selected 4 4 7.5%



Crabs Data

4 groups: male orange, female
orange, male blue and female
blue

200 observations (50 per group)

5 variables measuring size

Variables selected: 4 of the 5
variables were selected, all
except length along mid-line of
carapace (CL)

Compare clustering results:

Variables # of Error
Groups rate

All 5 7 42.5%
All 5 4 7.5%

(constrained)
Selected 4 4 7.5%



Crabs Data

4 groups: male orange, female
orange, male blue and female
blue

200 observations (50 per group)

5 variables measuring size

Variables selected: 4 of the 5
variables were selected, all
except length along mid-line of
carapace (CL)

Compare clustering results:

Variables # of Error
Groups rate

All 5 7 42.5%
All 5 4 7.5%

(constrained)
Selected 4 4 7.5%



Crabs Data

4 groups: male orange, female
orange, male blue and female
blue

200 observations (50 per group)

5 variables measuring size

Variables selected: 4 of the 5
variables were selected, all
except length along mid-line of
carapace (CL)

Compare clustering results:

Variables # of Error
Groups rate

All 5 7 42.5%
All 5 4 7.5%

(constrained)
Selected 4 4 7.5%



Crabs Data

4 groups: male orange, female
orange, male blue and female
blue

200 observations (50 per group)

5 variables measuring size

Variables selected: 4 of the 5
variables were selected, all
except length along mid-line of
carapace (CL)

Compare clustering results:

Variables # of Error
Groups rate

All 5 7 42.5%

All 5 4 7.5%
(constrained)

Selected 4 4 7.5%



Crabs Data

4 groups: male orange, female
orange, male blue and female
blue

200 observations (50 per group)

5 variables measuring size

Variables selected: 4 of the 5
variables were selected, all
except length along mid-line of
carapace (CL)

Compare clustering results:

Variables # of Error
Groups rate

All 5 7 42.5%
All 5 4 7.5%

(constrained)

Selected 4 4 7.5%



Crabs Data

4 groups: male orange, female
orange, male blue and female
blue

200 observations (50 per group)

5 variables measuring size

Variables selected: 4 of the 5
variables were selected, all
except length along mid-line of
carapace (CL)

Compare clustering results:

Variables # of Error
Groups rate

All 5 7 42.5%
All 5 4 7.5%

(constrained)
Selected 4 4 7.5%



Summary

Model-based clustering puts cluster analysis on a solid statistical
basis and answers questions such as:

How many groups?
Which clustering method to use?
How certain can we be about the clustering?
How to deal with outliers?

Successfully applied to several image segmentation problems

A statistically based method proposed for variable selection/feature
selection in model-based clustering

Software: R packages available at http://cran.r-project.org:

Model-based clustering: mclust

Variable selection: clustvarsel

References:

Model-based clustering:

Banfield and Raftery (1993, Biometrics)
Fraley and Raftery (2002, J. Amer. Statist. Ass.)

Variable selection: Raftery and Dean (2006, J. Amer. Statist. Ass.)

Website: www.stat.washington.edu/raftery
−→ Research −→ Model-based clustering
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