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Abstract: The paper studies ¢-entropies Hy(X) of random messages X defined
as maximal ¢-informations I4(X;Y") about X in observations Y. We show that
nonconcave entropies can be obtained in this manner. A class of power entropies
H,(X) parametrized by o € R is given which are concave or convex functions
of distributions px for a > 0 or a < 0 respectively. The paper studies also the
accuracy of estimation of the errors e(X) of Bayesian decisions about the values
of X by means of two special ¢-entropies: the Shannon entropy H;(X) and the
so-called quadratic entropy Ha(X).
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1 Introduction and basic concepts

The models of data and observations in the digital world are usually discrete. There-
fore we are interested in random observations with true distributions p = (p(3) :
i € 7) and hypothetical distributions ¢ = (¢(%) : ¢ € Z) where Z is finite. We drop
the observation indices ¢ € Z with p(i) + ¢(¢) = 0, i.e. we suppose p(i) + ¢(i) > 0
for all ¢ € 7.

The divergence of distributions p, g is often expressed by the ¢-divergence for ¢
from the class @ of real valued functions defined and convex on the interval (0, co)
which are strictly convex at ¢ = 1 with ¢(1) = 0. Following Csiszar [1, 2] or Liese
and Vajda [7], the ¢-divergence of distributions p, ¢ can be defined by formula

Dy (pllg) = ()Z RCL (%) ; ()Z 09 (j%) (L.1)
i:q(2) >p(i a:q(2) <p(i

where ¢* € ® is conjugated to ¢ in the sense that for all ¢ € (0, 00)

s =1(3).

and the (possibly infinite) values ¢(0), ¢*(0) needed in (1.1) are obtained as limits of
@(t), ¢*(t) for ¢t | 0. It is clear from (1.1) that Dy« (pllq) = Dy(ql|p)- As well known,
the ¢-divergences take on values between 0 and ¢(0) + ¢*(0) where Dy(p, q) = 0 if
and only if p = ¢. For this and further properties see Liese and Vajda [7].
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The most simple functions ¢ € @ are ¢ (t) = (t — 1) = max(t — 1,0) and
¢ (t) = ¢7(t) = (t — 1)~ = —min(t — 1,0) leading to the upper variation

Dy, (pll)) =Valplla) = DY (p(5) — (@) (1.2)
(i) >q(3)

and lower variation

Dy_(pllg) =V-(lla) = D (a(d) — (i), (1.3)

i:p(8)<q(é)

and their sum ¢(t) = ¢4 (t) + ¢_(¢) = |t — 1| which is self-conjugated in the sense
¢*(t) = ¢(t) and leads to the total variation

Dy (plla) = V(plla) = Z Ip(i) (1.4)

Well known class of ¢-divergences parametrized by o € R is obtained from the

power functions

t—at—1)—1
ala—1)

da(t) = for a(a—1) #0 (1.5)

and their limits
p(t)=tlnt—1+1, ¢o(t) =—-lnt+t—1 (1.6)

which are conjugated by the rule ¢%(t) = ¢1_4(¢t). In what follows we use the
simplified notation D4 (pl|g) = Dy, (p|lg). The best known statistical divergence is

Dﬂpﬂq)zz%—hzw. 7)

Here and in the sequel the summands with ¢(7) = 0 in the denominator are assumed
to be infinite. This divergence will be called Pearson divergence. We shall see that
it is in some sense information-theoretically neutral and therefore it may be used
as a basis of the standardized terminology where

pl
Z

Di4(pllg) = (1.8)

is a double-Pearson divergence, the classical information-theoretic divergence (Kull-
back divergence)

Di(pllg) = Zp 2() (1.9)

’L



Informations, Entropies and Bayesian Decisions 3

is a half-Pearson divergence and the squared Hellinger distance
2
D ps(plla) =43 (Vo) - va(®) (1.10)
i

is a quarter-Pearson divergence.

In his classical papers on information theory, Shannon introduced probability
distributions px,v (i), s € T = X x ) as models for the situations where an Y-valued
observation Y informs about on X-valued message X. As a measure of information
he proposed a nonnegative quantity I(X;Y") which is nothing but the half-Pearson
divergence D1 (px,v||[pxpy) between the joint distribution px,y of X,Y and the
product pxpy of the marginal distributions

px(@) =Y pxy(@y), pr(y) = p,y)
Y T

of X and Y on X and ). In other words, the Shannon information is

p(z,y)
L(X;Y)=D = z,y)In ———~ 1.11
(cf. (1.9)). Here and in the sequel we use the conventions
p(z,y) =pxy(z,y), plx)=px(z) and p(y) =py(y) (1.12)

which are common in the literature on information theory. We see from (1.11) that
the Shannon information is a nonnegative measure of association of the random
variables X, Y which is equal zero if and only if X, Y are independent.

A similar measure of association was proposed much earlier by Pearson [9],
namely the mean square contingency

(p(z,y) — p(z) p(y))?

OI0) (113)

L(X;Y) = Dy (pxvlpxpy) = Z
z,y

(cf. (1.7) and (1.12)), used later as a basis in various criteria of statistical association
(Cramér, Tschuprow and others). Hoffding [5] proposed postulates for measures of
association of random pairs (X,Y’) based on the measure

V(X;Y) =V (pxvllpxpy) =Y |p(z,y) — p(z) p(y)| (1.14)

(cf. (1.4) and (1.12)) called Hoffding coefficient in Zvéarové [13].
Motivated by these proposals and also by earlier papers of A. Rényi, Csiszar [3]
and Zvéarova [13] introduced the general ¢-information

p(z,y)
(

(@) y)) (1.15)

1,(X;Y) = Dy (o, [pxov) = 3 () ply) & (
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(cf. (1.12)) where we used a simplified form of (1.1) since p(z) p(y) > 0 follows for
all z € X, y € Y from the assumption p(z) p(y) + p(x,y) > 0. In other words,
¢-information is the ¢-divergence of true distribution px y and the hypothetic
distribution pxpy which is true only if X and Y are independent.

As observed already by Shannon, the information I; (X;Y) is maximal if Y = X
i.e. if the observed variable is the message X itself. The amount of information
I (X; X) in the message X is the Shannon entropy

Zp )Inp(z) (in nats). (1.16)

This is one element from the family of a-entropies defined for arbitrary distributions
p = px and all a € R by the formula

H.(p) = Z p(z (1.17)
where
1—qgo-t .
Yalm) = =T, 7€l Ya(0) = limpa(r) (118)
with the limit
() = —Inm, we(0,1], ¢¥1(0) =cc (1.19)

are decreasing measures of information in an event of probability = € [0,1] and
0¢4(0) = 0. Therefore the entropies H,(X) are expected amounts of informations
in the individual events X = z. If we normalize in (1.18) by (o — 1)In2 then
the limit entropy H;(X) for @ — 1 will differ from (1.16) by log, at the place of
In = log,, i.e. the information H; (X) will be in bits instead of nats.

In a slightly differently normalized form, the a-entropies with parameters a > 0
were introduced by Havrda and Charvét [4]. As we shall see, interesting examples
in addition to the Shannon entropy are

X)=1-) p(z)’ (1.20)

called quadratic entropy by Vajda [10] and

Hy(X) = (#z:p(z)>0) -1 (1.21)

indicating the number of possible messages which differ from the delivered one,
which may be called Hartley entropy (cf. Morales et al [8]).
The a-entropies (1.17) belong to the class of 1-entropies

Hy(p) = Hy(X) = Y _ p(2) Y (p(2)) (1.22)

for decreasing continuous functions () of variable = € (0,1] with ¢)(1) = 0. These
general entropies were studied in Vajda [11] who proved that the ¢-entropies satisfy
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standard desirable properties of information measures if 74 (7) ic concave on (0, 1).
The a-entropies (1.17) are concave in this sense only for a > 0.

In Section 2 we show that the non-concave a-entropies can be desirable infor-
mation measures too. Section 3 studies relations between the entropies Hj(X),
H,(X) and the errors e(X) of Bayes decisions about X.

2 Informations and entropies
Let us start this section with the formula

supI4(X;Y) = Iy(X; X) = H;
Y

(X)) (cf. (1.22)) (2.1)

for ¢(t) = ¢*(t) + ¢(0) (1 — t) proved by Zvarova [13]. This formula says that the
¢-information obtained by observing a message X distributed by p(z) = px(z) is
given by the ¢-entropy

Hy(p) = Zp )) + ¢(0) Ha(X) (cf. (1.22) and (1.20)). (2.2)

This formula and also the next assertion emphasize the prominent role of the
quadratic entropy.

Assertion 2.1. The ¢-informations I4(X;Y) corresponding to the simple functions
¢ = ¢+ and ¢ = ¢_ from ® achieve maxima given by the quadratic entropy, i.e.

H

5, (X) = H;_(X) = Hy(X) (cf. (1.20)). (2.3)

Therefore the entropy H;(X) which maximizes the H6ffding measure of information
(1.14) is 2Hy(X).

Proof. For ¢, (t) we get ¢, (0) = 0 and ¢} (t) = ¢_(t) = 1 —¢ for all t € [0,1].
Therefore ¢, (t) = 15(t) from (1.18) so that Hj; (X) = Hy(X). For ¢_ we get

$_(0) =1 and ¢* (t) = ¢4 (t) = 0 for all ¢t € [0,1] so that again ¢_(t) = 15 (t) and
the rest is as above. The last statement follows from the fact that if ¢(¢) = |t — 1|

then ¢(t) = ¢ (1) + - (b). O

In the next assertion we are interested in the entropies

Ho(p) = Ha(X) = H, (X) (24)

given by (2.2) when ¢ = ¢, which maximize the general a-informations
I,(X;Y) = Do (pxvllpxpy), a€R (2.5)

(cf. (1.15) and (1.5)). The trivial case when the Hartley entropy Hy(X) is zero is
excluded.
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Assertion 2.2. The entropies H,(X) are infinite for a < 0 and finite, given by
- 1
Au(X) =~ Hy o(X) (2.6)

for o > 0. This confirms the well known fact that the maximal Shannon information
H, (X) is the Shannon entropy H; (X). However, this implies also that the maximal
Pearson information H,(X) is half of the Hartley entropy Hy(X) given in (1.21),
the maximal quarter-Pearson information (Hellinger information) H s2(X) is the

entropy
Hy»(X) =4 p(@) (1- /(@) (2.7)

and the maximal double-Pearson information Hy(X) is the non-concave entropy

1 1 1
SH-2(X) = o (Z R 1) . (2.8)

T

Proof. As mentioned above, the assumption p(z) p(y) —p(z,y) > 0 implies p(z) > 0
for all z € X. Therefore the sum in (2.2) is finite and H>(X) is by assumptions
positive. Therefore Hj;(X) = oo if and only if

$(0) = ¢a(0) = oo.

From (1.5), (1.6) we see that this takes place for a < 0 while ¢, (0) = 1/a for a > 0.
Now assuming « > 0 and substituting ¢(0) = 1/« and

¢*(t) = $1-a(t) = % - é(l —t) fora#1l

and
o*t)=¢o(t) =—Int+t—1 fora=1

in (2.2) we find the desired form (2.6) for H,(X). The concrete expressions
Hy(X) = Hy(X)/2 as well as the expressions (2.7) and (2.8) follow from (2.6)
and from the definition of a-entropies in (1.17), (1.18). O

Let us consider for p = (7, 1 — 7) the nonconcave entropy

Ha) =) = 35 (75 + =g =) (2.9

2

given by (2.8). Since ¢p(m) = 1/7? is convex on (0, 1), we get

h(r) > % ((1/%)2 - 1) = h(1/2) (2.10)
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for m # 1/2. This as well as the discontinuity h(m) — oo for 7 — 0 is contrary to
what we observe in the case of concave entropies like Ha(p) = 1 — 7% — (1 — m)2.
But nevertheless the information measure h(rw) of (2.9) is justified. By (2.1) and
Assertion 1.2, h(m) is the double-Pearson information I4(X; X), i.e. it is the double-
Pearson divergence of the 2 x 2 contingency tables for px x and px px given below.

m 0 w2 w(l—m)

0 1-n a(l—m)|(1—m)?

We see that the absolute deviations |(p(z, y)/p(z) p(y))—1| for m # 1/2and 7 = 1/2

are 1
-7 ™
1, 1
T ’ ’ ) 1—1

or 1,1, 1,1

respectively, so that the sum of positive powers of the left-hand deviations may
be arbitrarily larger than the similar sum on the right-hand side. This helps to
understand that if the information in X is measured on the double-Pearson scale
by h(m) then h(m) with 7 close to zero may be considerably larger than h(1/2).
Explicitly one can calculate the double-Pearson divergence of the contingency tables
for m = 1/2 which is smaller than that for 7 = 1/4 while the half-Pearson divergence
for m = 1/2 is larger than that for # = 1/4 (and the ordinary Pearson divergence is
in both cases the same). Therefore h(w) of (2.9) satisfies (2.10) while the Shannon
information

h(r) = —mlnm — (1 —m)In(1 — ) (2.11)

is for # = 1/2 larger than that for 7 = 1/4 and the Pearson information h(r) = 1/2
is constant for all = € (0,1).

Thus we can summarize that the form of the entropy measuring the information
in a message X from a given source (X, p(z)) depends on the ¢-divergence used
to quantify the information in ¥ about X. Some ¢-divergences legitimize in this
manner nonconcave entropies.

3 Entropies and Bayesian decisions

In statistical decisions it is desirable to estimate the minimal achievable decision
error (the Bayes error)

e(X) =1 —maxp(z) for p(z)=px(z) (3.1)

by an analytically more tractable function. Natural candidates for this role are
the measures of information Hy(X), in particular H;(X) and H»(X) as the most
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prominent of them. R. M. Fano was the first who found for e = e(X) achievable up-
per bound in terms of the Shannon entropy H; = H;(X) of (1.16) and Kovalevskij
[6] was probably the first who found the corresponding lower bound. These bounds
are

h(k(1—e))+ k(1 —e)lnk < Hy < h(e)+eln(n —1) (3.2)

for h(m) given by (2.11) and n denoting the number of messages in X . The upper
bound holds in the whole range 0 < e < (n — 1)/n. The lower bound holds in the
subrange

k-1 k
< =1,...,n—1. .
o SesS o k=1,...,n (3.3)
Assertion 3.1. Achievable bounds for quadratic entropy Ha = H2(X) of (1.20) are
ne
k(l—e)(1+e—(1—e)k)§H2§e<2— 1) (3.4)
n—

where the lower bound holds for e satisfying (3.3).

Proof. Vajda and Vagek [12] proved that if H(p) is a concave function of probability
distributions p = (p1,...,pn) then among all p with e = 1 — maxp; € ((k —
1)/k, k/(k+1)] the function H (p) is maximized at p* = (1—e, e/(n—1),...,e/(n—
1)) and minimized at p~ = (1 —e,...,1—¢e, 1—k(1—¢),0,...,0). It is easy to see
that Ha(pt) and Hy(p~) are the bounds given in (3.4). O

The conjecture of Vajda [10] was that the quadratic entropy provides tighter
bounds for the Bayes error than the Shannon entropy. This conjecture was so far
neither rejected nor confirmed. It can be rigorously studied using the differences
emax(H)—e™in(H) between maximal and minimal Bayes errors under the a-entropy
H, = H in the domain 0 < H < H®* and the average inaccuracies

Hme .
Ay = — / (€M< (H) — ™" (H)] dH (3.5)
0

= Hmax « «
«

of the best possible estimates of Bayes errors e(X) on the basis of entropies Hqo (X).
max

Applying the formula (3.5) to the Shannon entropy H; with H"®* = Inn and to
the quadratic entropy Hy with HI"™* = (n — 1) /n we get the following result.

Assertion 3.2. For every n > 2 it holds

n—1
n—1 1 In(k + 1)

A = - .

T 2in & k(k+1) (36)

and )
n 1 1

Ay = - .

> 3n-1) D k(k+1)2 3n (37)

k=1
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Proof. This result follows by a standard integration using the formula

1 (n-1)/n N B
Ao = Fors /0 [H(e) — HI(e)] de (3.8)
where H} and H, are the a-entropy extremes under the Bayes errors 0 < e <
(n—1)/n given for a =1 in (3.2),(3.3) and for a = 2 in (3.3), (3.4). O
Next follows a table of values obtained from (3.6) and (3.7).
n|2 3 4 5 6 7 8 9 10 11 12

A |0 .092 .0142 175 .198 215 .229 .240 .249 .257 .264
A, | 0 .042 062 .074 .081 .087 .091 .094 .096 .098 .100

From this table we see that the values A; are more than 100% above the values
of Ay. This rigorously confirms the mentioned conjecture of Vajda [10].
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