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Performance Analysis of the FastICA Algorithm
and Cramér-Rao Bounds for Linear Independent

Component Analysis
Petr Tichavský, Zbyněk Koldovský and Erkki Oja

Abstract— The FastICA or fixed point algorithm is one of the
most successful algorithms for linear independent component
analysis (ICA) in terms of accuracy and computational com-
plexity. Two versions of the algorithm are available in literature
and software: a one-unit (deflation) algorithm and a symmetric
algorithm. The main result of this paper are analytic closed
form expressions that characterize the separating ability of both
versions of the algorithm in a local sense, assuming a “good”
initialization of the algorithms and long data records. Based
on the analysis, it is possible to combine advantages of the
symmetric and one-unit version algorithms, and predict their
performance. To validate the analysis, a simple check of saddle
points of the cost function is proposed that allows to find a global
minimum of the cost function in almost 100% simulation runs.
Second, the Cramér-Rao lower bound for linear ICA is derived
as an algorithm independent limit of the achievable separation
quality. The FastICA algorithm is shown to approach this limit
in certain scenarios. Extensive computer simulations supporting
the theoretical findings are included.

Index Terms— Blind source separation, Independent compo-
nent analysis, Cramér-Rao lower bound

I. INTRODUCTION

Blind Source Separation (BSS), which consists of recov-
ering original signals from their mixtures when the mixing
process is unknown, has been a widely studied problem in
signal processing for the last two decades; for a review,
see [1]. Independent Component Analysis (ICA), a statistical
method for signal separation [2], [3], is also a well-known
issue in the community. Its aim is to transform the mixed
random signals into source signals or components which are
as mutually independent as possible. There are a number of
methods intended to solve related problems such as blind
deconvolution and blind equalization [4], [5], [6].

One of the most widely used ICA algorithms for the
linear mixing model is FastICA, a fixed point algorithm first
proposed by Hyvärinen and Oja [7], [8]. It is based on the
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optimization of a nonlinear contrast function measuring the
nongaussianity of the sources. A widely used contrast function
both in FastICA and in many other ICA algorithms is the
kurtosis [9], [10], [11]. This approach can be considered as an
extension of the algorithm by Shalvi and Weinstein [6].

There are two varieties of the FastICA algorithm: the
deflation or one-unit algorithm and the symmetric algorithm.
The deflation approach, which is common for many other ICA
algorithms [9], estimates the components successively under
orthogonality conditions. The symmetric algorithm estimates
the components in parallel. This consists of parallel compu-
tation of the one-unit updates for each component, followed
by subsequent symmetric orthogonalization of the estimated
demixing matrix after each iteration. A version of FastICA
for complex valued signals was proposed in [12].

An essential question is the convergence of the FastICA
algorithm. This can be approached from two directions. First,
assuming an ideal infinitely large sample, theoretical expec-
tations for the contrast functions such as the kurtosis can
be used in the analysis. Then the contrast function and the
algorithm itself become deterministic, and questions such as
asymptotic stability of the extrema and the convergence speed
can be discussed. For the kurtosis cost function and the one-
unit algorithm, this analysis was done in [7], showing cubic
convergence. For a general cost function the convergence
speed is at least quadratic, as shown in [8]; see also [3].
The monotonic convergence and the speed for a general cost
function for the related gradient algorithm was considered in
[13]. For the kurtosis cost function and the symmetric FastICA
algorithm, the cubic convergence was proven in [14]; see also
[15]. Different properties of the one-unit version have been
illustrated by computer simulations in [16] where also the
accuracy is shown to be very good in most cases.

The second question of convergence considers the behavior
of the algorithm for a finite sample, which is the practical case.
Then, the theoretical expectations in the contrast functions
are replaced by sample averages. This results in errors in
the estimator for the demixing matrix. A classical measure
of the error is the asymptotic variance of the matrix elements.
The goal of designing an ICA algorithm is then to make this
error as small as possible. For the FastICA algorithm, such an
asymptotic performance analysis for a general cost function
was proposed in [17].

The Cramér-Rao lower bound (CRB) provides an algorithm
independent bound for parameter estimation. In the context
of ICA, a Cramér-Rao-like bound for inter-signal interference
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is derived as asymptotic variance of a maximum likelihood
estimate in [24], [26], [27], [28], [29]. A similar result is
known for a related problem of blind deconvolution [30].

The purpose of the present paper is to look at the per-
formance of the FastICA algorithm, both the one-unit and
symmetric versions, in this latter sense of asymptotic error, and
compare it with the exact CRB computed from its definition.
The paper is organized as follows. In Section II, the linear ICA
model and the FastICA algorithm are described. In addition,
a novel check of saddle points of the FastICA cost function is
proposed that allows to find the global minimum of the cost
function in almost 100% simulation runs. Finally, the follow-
ing criteria to characterize the performance of the algorithm
are introduced: a gain matrix (variance of its elements) and a
signal-to-interference ratio. In Section III, analytic expressions
for the variance of the off-diagonal gain matrix elements are
derived and discussed. These expressions are asymptotically
valid for large data sets when a “good” initialization of the
algorithm is assumed. Most of the details of the analysis
are deferred to Appendices. As an example of utilization
of the analysis, a novel variant of FastICA is proposed,
which combines the one-unit algorithm and the symmetric
algorithm adaptively, depending on empirical distribution of
the estimated signal components, to improve the performance.

In section IV, the CRB on the variance of the off-diagonal
gain matrix elements is computed via inverse of a Fisher infor-
mation matrix. Section V compares the CRB with the asymp-
totic performance of FastICA and explains non-existence of
the CRB for signals with bounded magnitude (e.g. uniform
distribution), and for some long-tailed distributions.

Section VI presents a number of computer simulations using
artificial data that validate and support the theoretical analysis.
The simulations also compare the algorithmic performance
with the Cramér-Rao bound derived in section IV. Finally, Sec-
tion VII summarizes the results and presents the conclusions.

II. DATA MODEL AND THE METHOD

Let
�

represent a ����� data matrix, composed of � rows,
where each row ���	 , 
���
������������ contains � independent
realizations of a random variable � 	 . Next assume that � 	 has
a distribution function � 	������ ��� � � 	 �!��� . In a typical case
for ICA, the rows �"�	 are called the source signals, and the �
random variables � 	 are mutually independent.

The standard linear ICA model of a given �#�$� data matrix
is %

� & � (1)

where & is an unknown, nonsingular �'�(� mixing matrix. Thus
each row of

%
is a linear mixture of the unknown independent

signals ���	 . The goal of independent component analysis is to
estimate the matrix & or, equivalently, the de-mixing matrix) �*&,+.- or, equivalently, the original source signals

�
. It

is well known that

1) the separation is unique only up to an unknown scaling
and ordering of the components �"�	 ;

2) the separation is possible only if at most one of the
original source variables � 	 has a Gaussian distribution.

Since the scale of the source signals cannot be retrieved, one
can assume, without any loss in generality, that the sample
variance of the estimated source signals is equal to one. Thus,
instead of the original source signals

�
, a normalized source

signal matrix denoted / can be estimated, where

/ � 0 +.-�132 � �54 � � (2)0 � diag 6 7 8 2- �������9��78 2:�; (3)

7 8 2	 � � � 	 4 � 	 � � � � 	 4 � 	 ��< �=� (4)� 	 � � � � 	5>@?BA � ?�A < �C� 
D�!
E���������3� (5)

where ? A stands for �F�G
 vector of 1’s.

A. Preprocessing

The first step of many variants of the ICA algorithms
consists of removing the sample mean and a whitening (decor-
relation and scaling), i.e. the transformationH � 7I +J-�132 �

% 4 % � (6)

where

7I � �
% 4 % �9�

% 4 % � � < � (7)

is the sample covariance matrix, and

%
is the sample mean,

%
�
%
>K?�AL? � A < � . The output

H
contains decorrelated and

unit variance data in the sense that
H#H � < �M�ON (identity

matrix). Note that
H

can be re-written using (1), (2) asH � 7I +.-�132 &�0 -�132 /P� (8)

The ICA problem can be formulated as the one to find a de-
mixing matrix Q) � H � that separates the original signals from
the mixture

H
, i.e. 7/R��Q) � H � > H .

B. The FastICA algorithm for one unit

The fixed-point algorithm for one unit estimates one row of
the de-mixing matrix

) � H � as a vector 7S �T that is a stationary
point (minimum or maximum) of the expression E 6 U � S � H � ;V�WYX�ZU � S � H � ? A < � subject to [ S [\�]
 , where U � > � is a
suitable nonlinear and non-quadratic function [3]. In the above
expression, U � > � is applied elementwise.

Finding 7S T proceeds iteratively. Starting with a random
initial unit norm vector S iterateS_^ ` Hba � H � S � 4 S aKc � S � H � ?�A (9)S ` S ^ < [ S ^ [ (10)

until convergence is achieved. In (9) and also elsewhere in
the paper, in accord with the standard notation [3],

a � > � anda c � > � denote the first and the second derivative of the functionU � > � . The application of
a � > � and

a c � > � to the vector S � H
is elementwise. Classical widely used functions

a � > � include
“pow3”, i.e.

a ��de� � dgf (then the algorithm performs kurtosis
minimization), “tanh”, i.e.

a �hdJ� � tanh �hde� , and “gauss”,a �hde� � dji�kKlm� 4 d 2 <@no� .
It is not known in advance which column of

) � � H � is
being estimated: it largely depends on the initialization. Note
that the recursion for some components might not converge.
In the deflation method[9], whis is not studied in this paper,
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this problem is solved by separating the components from
the mixture one by one using orthogonal projections. Here
we shall assume that each signal component can be separated
from the original signal mixture using suitable initializations.
Assume that the separating vectors S are computed for all
components, are apropriately sorted [20] and summarized as
rows in a matrix denoted Q) - � � H � . The rows in Q) - � � H � may
not be mutually orthogonal, in general.

C. The symmetric FastICA algorithm

The symmetric FastICA proceeds similarly, the estimation
of all independent components (or equivalently, of all rows
of
)

) proceeds in parallel, and each step is completed by a
symmetric orthonormalization. Starting with a random unitary
matrix

)
iterate) ^ ` a � ) H � H � 4 diag 6 a�c � ) H � ?BA ; ) (11)) ` � ) ^ ) ^ � � +J-�132 ) ^ (12)

until convergence is achieved. The stopping criterion proposed
in [14] is


 4������ � abs � diag � ) � )��
	 : ��������
 (13)

for a suitable constant 
 .
The result of the symmetric FastICA (unlike in the one-

unit algorithm without deflation) is a unitary matrix denotedQ)������ � H � . As a consequence, sample correlations between
the separated signals are exactly equal to zero.

D. Check of Saddle Points

In general, the global convergence of the symmetric Fast-
ICA is known to be quite good. Nevertheless, if it is run 10 000
times from random initial demixing matrices, on the average
in 1 - 100 cases the algorithm gets stuck at solutions that can
be recognized by exceptionally low achieved SIR. The rate of
these false solutions depends on the dimension of the model,
on the stopping rule and on the length of the data - see the
example at the end of this subsection.

A detailed investigation of the false solutions showed that
they contain one or more pairs of estimated components,
say � 7� 	 � 7��� � such that they are close to � � 	�� ��� ��<�� n and� � 	 4 ��� ��<�� n , respectively, where � � 	 � ��� � is the desired
solution, see Figure 1. Due to symmetry, the saddle points
of the criterion function lie approximately on half the way
between two correct solutions that differ in the order of two
of their components. Thus, an appropriate estimate of � � 	 � � � �
would be � 7 � c 	K� 7� c� � where

7� c 	 � � 7� 	�� 7��� ��< � n and 7� c� � � 7� 	 4 7 ��� ��< � n
A selection between given candidates � 7� 	 � 7� � � , � 7 � c 	�� 7� c� � for
a better estimate of � � 	 � ��� � can be done by maximizing the
criterion used in the very beginning of derivation of FastICA,

� � 7� 	 � 7 � � � � 6 U � 7� � 	 � ? A < � 4 U� ; 2 � 6 U � 7 � �� � ? A < � 4 U� ; 2
where U! � E 6 U �#"E� ; and " is a standard normal random
variable. In the case of the nonlinearity “tanh”, U �hde� �$&%�')(*%�+-, ��de� and U� /.10B� 2�354�6 .

Table I
Number of failures of symmetric FastICA (tanh) among 10 000

trials
N=200 N=500 N=1000 N=100007)8:9<;>=�8@?-ACBED

85 57 59 467)8:9<;>=�8@?-ACBGF
49 16 15 127)8:9

& stop 3 H 41 4 1 27)8:9
& s.p.check 0 0 0 07)8:I<;>=�8@?-A BED

49 5 4 67)8:I<;>=�8@?-A BGF
43 0 1 07)8:I

& stop 3 H 45 0 0 07)8:I
& s.p.check 0 0 0 07)8KJL;>=�8@?-ACBED

95 9 4 117)8KJL;>=�8@?-ACBGF
85 2 0 57)8KJ

& stop 3 H 90 1 0 17)8KJ
& s.p.check 5 0 0 07)8:M<;>=�8@?-ACBED

166 2 4 117)8:M<;>=�8@?-A BGF
151 1 2 27)8:M

& stop 3 H 157 1 2 07)8:M
& s.p.check 17 0 0 0

Thus, we suggest to complete the plain symmetric FastICA
by the check of all N :2

O
pairs of the estimated independent

components for a possible improvement via the saddle points.
If the test for saddle point is positive, it is suggested to perform
one or two additional iterations of the original algorithm,
starting from the improved estimate.

The failure rates of the plain symmetric FastICA with three
different stopping rules and of the improved FastICA with
the check of the saddle points are compared in the following
example. The first stopping rule was (13) with 
 � 
P0 +LQ , the
second stopping rule was the same with 
 � 
P0 +SR . The third
stopping rule required the former condition to be fulfilled in
three consecutive steps. The improved algorithm used the first
stopping rule and the test of the saddle points.

These four variants of the algorithm were applied to separate�C� n �T2B�-4 and 5 independent signals with uniform distribu-
tion and varying length in 10000 independent trials with a
randomly selected initial de-mixing matrix. The number of
algorithmic failures, that are detected by the condition that SIR
of some of the separated components is smaller than 3dB, is
displayed in Table I. The table shows zero rate of the improved
algorithm except for the case of the data with the shortest
length, � � n 0�0 . In the latest case, the rate of failures has
significantly dropped compared to the former 3 variants.

E. Measure of the separation quality

The separation ability of ICA algorithms can be charac-
terized by the relative presence of the 
 4 th source signal in
the estimated U 4 th source signal. It is possible, if the source
signals are known. Due to the permutation and sign/phase
uncertainty, the estimated sources need to be appropriately
sorted to fit the original ones. In this paper, the method
proposed in [20] is used. Formally, the estimated source
signals can be written using (8) as

7/ � Q) � H � > H ��Q) � H � 7I +.-�132 &�0 -�132 /
� V / (14)

where V � Q) � H � 7I +J-�1�2�&�0,-�1�2 and Q) � H � stands either forQ) - � � H � or for Q)��W�X� � H � . Note that V has the meaning of
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for
�,(-*/.103254

and
032�6

, respectively;
� � .7� � .7� $

were generated as i.i.d. uniformly distributed in 8�9;: < . : < % with the length = (?>"*@*�*�*
,

and
���BAC!D(-E���FG����	�H��BAC!

. The point 8 ��.I
C%�( 8 0�2J4K.1*5% is a saddle point of the contrast function - it is its local minimum wrt.
�

and a local
maximum wrt.
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the estimated de-mixing matrix provided that & ��0R��N . It
will be called the gain matrix for brevity.

The relative presence of the 
 4 th source signal in the esti-
mated U 4 th source signal is represented by the � U3� 
 � 4 th ele-
ment of V , denoted V�L 	 . Then, the total signal-to-interference
of the 
 4 th source signal is defined as

SIR 	 � E 6 V 2 	9	 ;
E MON : P
QSRP5TQKU V 2L 	WV (15)

It is important to note that the estimator 7/ is invariant with
respect to orthogonal transformations of the decorrelated dataH

, or equivariant [10]. It is because the recursions (9)-(10)
or (11)-(12) that represent the algorithm are equivalent to the
same relations with

H
,
) ^ and

)
replaced by X H ,

) ^ X +.-
and
) X +.- , respectively, where X is an arbitrary unitary (i.e.

obeying X_� �YX +J- ) matrix. Then, the product

7/ � ) > H � ) X +J- > X H
remains independent of X . From these facts it follows that the
gain matrix V and consequently the SIR are independent of
the mixing matrix & .1

III. ANALYSIS

Thanks to the above mentioned equivariant property of
FastICA it can be assumed, without any loss in generality, that
the recursions (9)-(10) or (11)-(12) begin with the decorrelated
data of the form H �[Z +J-�132 / (16)

where

Z � 
� / / � (17)

1To be exact, a change of the mixing matrix (or a change in the algorithm
initialization) may cause a change of the order or sign of the components at
the algorithm output. Here, however, we assume that the order and signs of
the components are post-processed to fit the original signals[20].

The gain matrix of interest is now

V � Q) � H � > Z +.-�132 � (18)

Note that the gain matrix V (and consequently the SIR as
well) is a function of the normalized source signals / and of
the nonlinear function

a � > � used in the algorithm only.
The main result of this section can be summarized as

follows.
Proposition 1

Assume that (1) all original independent components have
zero mean and unit variance, and are temporarily white, (2)
the function

a
in algorithm FastICA is twice continuously

differentiable, (3) the following expectations exist

E 6 � 	 a � � 	E� ; V�WYX� \ 	 (19)

E 6 a�c � � 	E� ; V�WYX� ] 	 (20)

E 6 a 2 � � 	 � ; V�WYX� ^ 	 (21)

for 
*� 
������������ , and (4) the FastICA algorithm (in both
variants) is started from the correct demixing matrix and stops
after a single iteration.

Then, the normalized gain matrix elements � -�132CV,- �	 � and� -�132CV �W�X�	 � for the one-unit FastICA and for symmetric Fast-
ICA, respectively, have asymptotically Gaussian distribution_ � 0 ��` - �	 � � and

_ � 0B��` �W�X�	 � � , where

` - �	 � � ^ 	 4 \.2	� \ 	 4 ] 	 � 2 (22)

` �W�X�	 � � ^ 	 4 \.2	 � ^ � 4 \.2� � � \ � 4 ] � � 2�
a \ 	 4 ] 	 aP�ba \ � 4 ] � a � 2 (23)

for 
e�Icj� 
E�������9��� , 
ed�fc , provided that the denominators are
nonzero.

Proof: See Appendix A. Expression similar to (22) can be
found in [17], [10], but (23) is novel.

The assumption 4 may look peculiar at the first glance, but
it is not so restrictive as it seems to be. It reflects the fact
that the presented analysis is “local”, and assumes a “good”
initialization of the algorithm. The algorithm itself may have
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TABLE II
Signal-to-interference ratio (SIR) [dB] of FastICA in its main six
variants for two components with the same distribution, and the

Cramér Rao bound (derived in section IV) for = (?> *�*�*
. The best

SIR is marked by bold characters.
PDF SYMMETRIC ONE UNIT CRB

TANH GAUSS POW3 TANH GAUSS POW3
uniform 32.3 32.2 33.3 31.6 31.5 33.7 �

sinus 34.7 34.7 35.1 37.5 37.6 39.5 �
bpsk 36.0 36.0 36.0 � � � �

GG(4) 27.6 27.5 28.0 25.2 25.1 25.7 28.1
GG(3) 23.9 23.7 23.7 21.1 20.1 20.1 24.0

Laplace 29.0 29.4 24.9 27.0 27.4 22.2 31.8
GG(0.5) 33.3 33.9 24.9 33.6 35.0 22.2 �
GG(0.1) 35.9 35.9 -3.1 47.8 50.7 -6.11 �

good global convergence properties, see Section VI below, but
it is not a subject of this proposition. Once the algorithm
is started from an initial

)
that lies in a right domain

of attraction, the resultant stationary point of the recursion,
denoted Q) , is the same, and is approximately equal to

) ^
obtained after one step from the ideal solution, thanks to the
fact that the convergence is quadratic2.

Our numerical simulations presented in Section VII, and
also other simulations that were skipped for lack of space, con-
firm validity of the asymptotic variances (22)-(23) for the algo-
rithm variant introduced in Section VI working with arbitrary
(random) initialization. Namely it is shown that var 6 V - �	 � ; .-A ` - �	 � and var 6 V ��� �	 � ; . -A ` �W� �	 � . The expressions in (22)-
(23) are functions of the probability distribution of � 	 and of
the nonlinear function

a � > � via the expectations in (19)-(21).
Given the distribution and the nonlinearity, these expressions
can be evaluated.

Table II shows the theoretical signal-to-interference ratio
(SIR) of the main six variants of FastICA for separation of two
components with the same distribution, computed for a few
distributions considered frequently in the literature, for sample
size � � 
P0�0�0 . Here, the distribution “sinus” means the
distribution of � n sin ���J� , where � is uniformly distributed in� 0B� n��m� , “bpsk” is the discrete distribution with values

� 
 , both
with the probability 0.5, and GG( � ) means the generalized
Gaussian distribution with parameter � , described in Appendix
F. Note that the latter distribution is standard Gaussian for�\� n , the Laplace distribution for � � 
 , sub-Gaussian for��� n , approaching the uniform distribution for �
	�� , and
super-Gaussian (spiky) for �
	 0 ^ .

Note that for separation of �
� n components, the SIR
would be � � 4 
 � � 2 dB lower than in the table, and if � is
increased/decreased 10 times, the resultant theoretical SIR is
increased/decreased by 10dB compared to the table.

A. Example of Utilization

In this subsection, the previous analysis is used to derive
a novel variant of the FastICA algorithm, which combines
advantages of both previously discussed variants. For easy
reference it will be called “Smart FastICA”. This algorithm
begins with applying symmetric FastICA with nonlinearity

2The quadratic convergence means that if the initial difference between the
initial � and �� is ��� , the distance of ��� (that is � after one iteration)
is ����������� ��� .

“tanh”. For each estimated component signal 7� � 	 , parameters\ 	 �
] 	 and ^ 	 are computed as sample estimates of the
expectations in (19)-(21), namely 7\ 	 � 7� � 	 a � 7 � 	 ��< � , 7] 	 �7 ? � A a c � 7 � 	 ��< � , 7^ 	 � 7 ? � A a 2 � 7� 	 ��< � and then they are plugged
in (22)-(23) and (15), namely�

SIR
� - � �	 � �N : ! QSR! TQSP 7` � - � �	 ��

SIR
� �W� � �	 � �N : ! QSR! TQSP 7` � ����� �	 �

If the obtained SIR 	 for the one-unit algorithm is better
than for the former estimate, the algorithm is performed,
taking advantage of a more suitable nonlinearity

a
for each

of particular cases: In the supergaussian case, defined by the
condition Q\ 	�� 7] 	 , the option “gauss” is selected, and in the
subgaussian case with 7\ 	 � 7] 	 , “pow3” is applied (see the
simulation section for a reason).

Then, \ 	 �1] 	 �
^ 	 and SIR 	 are computed again. If the new
SIR 	 is better than the previous one and if, at the same time,
the scalar product between the former separating vector and
the new one is higher in absolute value than a constant (we
have used 0.75), then the one unit refinement is accepted
in favour of the former vector. The condition on the scalar
product is intended to eliminate the cases where the one
unit algorithm converged to a wrong component. A further
optimization of the algorithm exceeds the scope of this paper.

B. Optimum nonlinearity
a

It is interesting to know, which function
a � > � would be

optimal for given pdf of � 	 . If all source signals have the same
distribution, the answer is well known. It is the so-called score
function of the distribution, defined as " ��de� � 4$# c ��de��< # �hdJ� ,
where

# �hdJ� is the underlying pdf. Introduce the notation

% � E 6 " 2 �#"E� ; � &(' # c 2 ��de�# �hdJ� � d (24)

where " is a random variable with the pdf
# � > � . Note that if" has zero mean and variance one, it holds %
) 
 where the

equality is attained if and only if the underlying distribution
is standard Gaussian, see Appendix E. Thus, % represents a
measure of non-gaussianity.

For the optimum nonlinearity
aW�+*�, �hdJ� �-" ��de� , a straight-

forward computation gives \ 	 �F
 and ] 	 � ^ 	 � % , and
consequently

���&�. ` - �	 � � 
% 4 
 (25)

�����. ` �W���	 � � 
4 � 
n 
% 4 
 (26)

IV. CRAMÉR-RAO LOWER BOUND FOR ICA

Consider a vector of parameters / being estimated from
a data vector 0 , having probability density

#2143 5 � 0 a / � , using
some unbiased estimator 6/ . The Cramér-Rao lower bound
(CRB) is the lower bound for the variance of 6/ . Assume that
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# 143 5
is smooth and the following Fisher information matrix

exists:� 5 � E
5 � 
# 2143 5�� # 143 5 � 0 a / �� / � � # 143 5 � 0 a / �� / � ��� (27)

Then, under some mild regularity condition [18],3 it holds

cov 6/ ) CRB
5 � � +J- �

Next, if ���	� � / � is a differentiable function of / , then the
Fisher information matrix for � exists as well and is equal to��
 �
� +J-5 � 5 � +g�5 � (28)

where � is the Jacobian of the mapping � � / � . If the mapping
is linear, or � � / � ��� / for some regular matrix � , then� 5 ��� � .

In the context of ICA, we first focus on deriving the CRB
for estimation of the de-mixing matrix

) � & +.- , i.e., the
parameter vector is / � vec 6 ) ; .

The following assumptions will be considered throughout
this section:

E � � 2L�� � &4' � 2 # L � ��� � � � 
 (29)

% L V�WYX� E � " 2L � � L � � � & ' " 2L ����� # L � ��� � � � � � (30)� L V�WYX� E � � 2L " L � ��L � 2 � � &4' � 2 " 2L � ��� # L ����� � � � � � � (31)

where Uj� 
E�������9�3� and " L denotes the score function of the
corresponding pdf, i.e., "#L �hdJ� � 4����U ��� �� U ��� � . "GL is assumed to have
zero mean for all U , and

# L ��de� � 0 for all U and d .

A. The Fisher information matrix

From the independence of the original signals it follows that
their joint pdf is

#�� � � � ��� :L� - � A!  - # L � � L ! � . Then, using the
transformation

%
� ) +J- � ,# 1 � % � � a#"�i%$ ) a # � � ) % � � (32)

Incorporating this density into (27) the &(' -th element of the�E2 �$�o2 Fisher information matrix
� 5

, where &R� � U 4 
 � � �*) ,' � ��� 4 
 � � �,+ , and - L ! denotes the U ) -th element of the
matrix

)
, is��.0/ � E 1 a#"�i%$ ) a +e2# 2� � � � � # 1� - L ! � # 1� -�24365 � (33)

A straightforward computation (see Appendix C) gives� .0/ � � � 4 
 � 2%7 ! L 7 3�2 � � 7 ! 2 7 3 L �
�98 L�2 � 7 ! L 7 3 L � � L 4 nE���:8 L�2 � % L :;

�  -�< �%= >2 7 ! � 7 3 � (34)

with % L , � L defined in (30)-(31), 8 L�2 is the Kronecker’s delta,
and 7 L ! denotes the U ) -th element of the mixing matrix & . It
can be shown, using (28), that� 5 � � &@? N � ��A � & � ? N � � (35)

3(1) support of BDCFE G is independent of H , (2) IFBDC�E G ��J6K H �ML INH exists for
all O from an open set, and (3) E P I�BQC�E G ��JRK H �ML INHNS 8:A

where
�TA

stands for the Fisher information matrix derived for
a case when & � N (identity matrix); ? denotes the Kronecker
product. Substituting 7 L ! � 8 L ! into (34), it easily follows that

� � A � .0/ � � � 4 
 � 2 8 ! L 8 3�2 � � 8 ! 2 8 3 L �
� ��U 8 ! L 8 3�2 8 3 L � � L 4 % L 4 no���:8 L�2 8 3 ! % LWV � (36)

Some properties of the matrix will be shown in Appendix D.

B. Accuracy of the estimation of V 2 � Q) &
Let Q) denote an estimator of the de-mixing matrix

)
.

Estimated signals 6� are then 6� �MQ)
%
�MQ) & � . It is

interesting to compute the CRB for the elements of the gain
matrix V 2 � Q) & , which is closely related to the gain
matrix V defined in (14). A comparison of the definition
relations gives V � V 2 0,-�132 where 0 contains, on its
diagonal, sample variances of the original independent signal
components. Asymptotically, 0 converges to unity matrix, and
hence any estimate of V is at the same time an estimate of V 2 ,
and vice versa. Also, it follows from the analysis in Appendix
A that the asymptotic distribution of non-diagonal elements ofV and those of V 2 is the same.

To compute the CRB for V 2 , note that the new parameter
vector /YX � vec 6 V 2 ; is just a linear function of the parameter/ , i.e. /YX � vec 6 Q) & ; � � & � ? N � vec 6 Q) ; � � & � ?�N � / .
Then, using (28), the Fisher information matrix of /6X is� X � � ) ? N � � 5 � ) � ? N � � ��A � (37)

Note that
� X is independent of the mixing matrix & . The

CRB for the U ) 4 th element of V is

var ��� V 2 � L ! � ) CRB ��� V 2 � L ! � � � ��A +.- � .Z.
where & � � U 4 
 � � �[) and U d� ) . In Appendix D it is proved
that for such &

� ��A +.- � .0. � 
�
% !% L % ! 4 
 � (38)

which gives us the desired lower bound

CRB ��� V 2 � L ! � � 
�
% !% L % ! 4 
 � (39)

The diagonal elements of V 2 are not as important, they just
reflect the accuracy of estimating the power of the components,
or equivalently, the norm of rows of the de-mixing matrix.

V. DISCUSSION

A. Comparison of CRB with performance of FastICA with
optimum

a
The Cramér-Rao lower bound in (39) is compared with the

asymptotic variance of FastICA in (25)-(26) in Figure 2. We
can see that for % close to 1, the CRB is close to the variance of
the symmetric FastICA with the optimum nonlinearity. In this
case, however, the estimation may fail, because the variance
of the estimator itself goes to infinity, and convergence of the
algorithm may be slow.
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Fig 3. Performance of (a) One-Unit FastICA and (b) symmetric FastICA in separating signals with distribution GG
� � ! as a function of � .

In the opposite case, for %�� 
 the CRB asymptotically
coincides with the variance of the one-unit FastICA with the
optimum nonlinearity, because

var 6 V - � + �+*�,	 � ;
CRB 6 V 	 � ; . � +.-D` - � +

� *�,	 �
CRB 6 V 	 � ; 	 
 for % 	��]�

We conclude that the FastICA algorithm with the optimum
nonlinearity is asymptotically efficient in two cases: (1) one
unit version for % L � 
 and (2) symmetric version for% L 	=
 ^ provided that all components have the same distri-
bution law.
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ij
1U 

N⋅CRB[G
ij
]

Fig. 2: Asymptotic performance of one unit and symmetric
FastICA and the CRB versus parameter % .

B. Separation of sources with the generalized Gaussian dis-
tribution

Properties of the generalized Gaussian distribution are listed
for easy reference in Appendix F. Note that the score function
of this distribution is proportional to a dGa � +.- sign �hdJ� , so thata ��de� � a d�a � +.- sign �hdJ� is the theoretically optimum non-
linearity for the distribution. However, only for � � 
 is
this function continuous and hence suitable nonlinearity for
FastICA. For discontinuous

a
’s, the algorithm appears not to

converge.

C. Distributions with finite support

The CRB does not exist (the bound is infinite) for the
bounded magnitude distributions such as “uniform”, “sinus”

and “bpsk” in Table II. It happens because these distributions
do not have infinite support, as required for existence of the
CRB. Since the uniform distribution is a limit of the GGD � � �
for � going to infinity, it is natural to study FastICA with
nonlinearity

a 	 �hdJ� � a d�a 	 sign �hdJ� with large 
 . It can be easily
shown that the one unit FastICA with this nonlinearity has
asymptotic variance ` - �L ! � 
 � . 2 <�� n 
 � 
 � that goes to zero
for 
 	 � . Similar result can be obtained for the distribution
“sinus”. In other words, the asymptotic variance of FastICA
cannot be lower bounded by any bound of the form � < � .
Implications of the above observation for an adaptive choice
of the nonlinearity exceed the scope of this paper.

D. Distributions with long tails

The CRB does not exists for the GGD( � ) distribution
with with parameter � � 
 <@n , cf. lines 7,8 in Table II.
These distributions are sometimes called “long tailed”. In-
stead of the score function, let us consider the nonlinearitya
� < 	 �hde� � dji9k�l 6 4 � 
 a dGa ��� ; . This choice has the advantage,

that the asymptotic variance of FastICA with this nolinearity
can be computed analytically. The result is ` - �L ! � � � 
 � .n + f 1 �'� ^ � < 
 � - +e2 � for large 
 and � � 
 <@n , with ^ � defined
in (93). Again, ` - �L ! � � � 
 � goes to zero for 
 	 � and all0 � � � 
 <�n . This explains non-existence of the CRB in
this case. Design of an FastICA-based algorithm taylored for
long-tailed distributions exceeds the scope of this paper.

VI. NUMERICAL RESULTS

Example 1. Four independent random signals with generalized
Gaussian distribution (see Appendix C) with parameter � and
length � ��� 0�0�0 were generated in 100 independent trials.
The signals were mixed with a matrix that was randomly
generated in each trial, and de-mixed again by eight variants of
the algorithm: the symmetric FastICA with nonlinearities tanh,
gauss, pow3, and with the score function (dependent on � ),
as well as the one-unit FastICA with the same nonlinearities,
implemented like smart FastICA. The resulting theoretical and
empirical SIR is plotted in Figure 3 (a) and (b). An erratic
behavior of the empirical results is experienced for small � and
nonlinearity pow3. Here, the convergence of sample estimates
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Fig 4. Relative Efficiency of (a) One-Unit FastICA and (b) Symmetric FastICA.

of the expressions in (19)-(21) to their expectations is slow.
We can see that among the � -independent nonlinearities, the
“pow3” performs best in the case of � � n that corresponds to
the sub-Gaussian case, and “gauss” is the best one for � � n
where the distribution is super-Gaussian. FastICA with

a � > �
equal to the score function does not work properly (does not
converge at all) for � � 
 , because the score function is not
continuous for these � ’s.

Figure 4 is similar, showing the relative efficiency of the
eight methods compared to the corresponding Cramér-Rao
bound.
Example 2. In the second experiment, we have generated
three different components with Gaussian, GG( � ), and Laplace
distribution of the fixed length � � � 0�0�0 in 100 independent
trials for each � . Signals were randomly mixed and separated
by the symmetric FastICA and Smart FastICA with nonlinear-
ity tanh. Note that this example includes the situation where
the mixture includes two Gaussian distributions for � � n .
The empirical and theoretical SIR are shown to agree very
well. The Smart FastICA outperforms the symmetric version
for such � when the one-unit approach has better variance
than the symmetric one, and gives the same result otherwise.
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Fig. 5: Performance of symmetric FastICA and smart
FastICA separating three different components using “tanh”

nonlinearity.

Example 3. In the last experiment, we studied performance
of two computationally extensive algorithms that are claimed
to be more accurate than older algorithms: RADICAL [22]
and NPICA [23]. We tested implementations available on
internet and compared their performance with the CRB. The
simulations are obtained from 50 independent separations of
a signal of length � � 
P0�0�0 with � � 2 components,
all having the same distribution function, GGD( � ). In the
neighborhood of the point � � n the symmetric FastICA
appears to outperform the other techniques. In general, it
appears to give stable results unlike the NPICA.
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VII. CONCLUSIONS

In this paper, (1) a novel technique to improve stability
of FastICA is proposed, (2) novel analytical expressions are
derived for the variance of gain matrix elements for one-unit
and symmetric FastICA, with an arbitrary twice differentiable
nonlinear function and arbitrary probability distribution with
finite variance of the independent components in the linear
mixture, and (3) the Cramér-Rao bound for the above ICA
problem are computed. The CRB does not exist for sources
with bounded magnitude and for sources with long-tailed dis-
tribution. It was shown that asymptotic variance of estimates
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produced by FastICA with properly selected nonlinearity can
approach the CRB, if the CRB exists, or aproach zero, if
the CRB does not exist. Good general performance of this
popular algorithm is confirmed and possibilities of its further
improvements are indicated.

Computer simulations confirm very well the validity of the
theoretical predictions.

APPENDIX A - PROOF OF PROPOSITION 1

A. Preliminaries

Invoking assumption (1) of the proposition, and the weak
law of large numbers it follows that the sample variance of� 	 defined in (4) converges to 1 in probability for � going
to infinity, symbolically 68'2	 *4 	 
 , or 68 	 � 
 � � * � 
 � , where� * � > � is the stochastic order symbol (see e.g. Appendix C in
[31]). Similarly, thanks to the assumption (3),

� +.- � � 	 a � � 	 � *4 	 \ 	 (40)

� +J- a c � � � 	 � ? A *4 	 ] 	 (41)

In addition, thanks to the mutual independence of components,
it holds for c�d� 
 ,

� +.- a�c � � � 	�� � � ��� � � � *4 	 E 6 a�c � � 	�� ; E 6 � 2� ; � ] 	 (42)

where � denotes the elementwise product. It can be shown,
that the same limits are obtained if � 	 , � � in (40)-(42) are
replaced by the normalized components � 	 , � � , where � 	 is
the 
 4 th column of / , 
�� 
��������9�3� . Note from (2) that� 	 � � � 	 4 � 	E��< 78 	 , � 	 ��� * � � +.-�132 � , 7 8 	 � 
 � � * � 
 � ,
consequently � 	 � � 	�� � * � 
 � , a � � 	E� � a � � 	@��� � * � 
 � , and

� � 	 a � � 	E� � 6 � 	 � � * � 
 � ; � 6 a � � 	E��� � * � 
 � ;
�,� �	 a � � 	���� � * � � � � �e\ 	 � � * � � � � (43)

Similarly, it can be shown thata c � � � 	�� ?BA � �e] 	�� � * � � � (44)a�c � � � 	�� � ����� ��� � � �e] 	�� � * � � � (45)

Moreover, using the asymptotic expression for Z , to be derived
in the next subsection, it can be shown that the relations (40)
and (41) hold true as well, if � 	 is replaced with � 	 , that is
defined as the 
 4 th column of

H
, 
D� 
��������9�3� ,� � 	 a � � 	�� � �e\ 	 � � * � � � (46)a�c � � � 	E� ?�A � �e] 	 � � * � � � � (47)

B. Asymptotic behaviour of Z
As � goes to infinity, the matrix Z defined in (17)

approaches identity matrix in the mean square sense. To see
this, note that the diagonal elements of Z are equal to one by
definition, and that the off-diagonal elements Z 	 � with 
 d�fc
have zero mean. Thanks to assumed independence of ���� 	 ��78 	E�
and ���� � ��78 � � , it holds

E 6 Z 2 	 � ; � E � � � 	 � �� � 2 � 
� 2 E � ����	 �� �7 8 	 78 � � 2 �
� 
� 2 E

	 ����	7 8 	 E � �� � �����7 8 2� � �� 	78 	�
 (48)

where �� 	 � � 	 4 � 	 . Let
� � � � � E 6 �� � ����� < 78J2� ; . Since all elements

of �� � have the same distribution, the diagonal elements of
� � � �

have all the same value,

� � � �/ / � E 6 �� 2� / < 7 8 2� ; � 
�
A;.  - E 6 �� 2� . < 7 8 2� ;� 
� E 6 �� �� �� � < 78 2� ; � E 6 
 ; � 
E� (49)

for 'C�!
E���������3� . The off-diagonal elements have all the same
value as well,

� � � �.0/ � E 6 �� � . �� � / < 7 8 2� ; � 
� 4 

A; � Q�R� TQ�
 E 6 �� ��� �� � / < 7 8 2� ;

� 4 
� 4 
 E 6 �� 2� / < 7 8 2� ; � 4 
� 4 
 (50)

for &G�D'5� 
��������9��� . Combining (49), (50), and (48) gives

� � � � � �� 4 
 N 4 
� 4 
 ? A ? � A (51)

E 6 Z 2 	 � ; � 
� 2 E

	 ����	7 8 	 � � � � �� 	7 8 	�

� 
� � � 4 
 � E

	 ����	78 	 �� 	7 8 	�
 � 
� 4 
 � (52)

It follows from (52) that� Z V�WYX� Z 4 Nj��� * � � +J-�1�2 � (53)

where � * � > � denotes a standard stochastic order symbol, or a
matrix of stochastic order symbols of appropriate dimension.
Using Lemma 1 in Appendix B it can be derived that

Z +.-�132 � N 4 
n � Z � � * � � +J- � � (54)

C. Approximation for
H

,
a � H �

Obviously, / ��� * � 
 � and

H �[Z +.-�132 / � � N 4 
n � Z � � * � � +.- � � /
�5/ 4 
n � Z�/ � � * � � +J- � � (55)

A Taylor series expansion of function
a � > � in a neighborhood

of
H � / givesa � H � � a � / ��� a c � / � � � H � � * � � +.- � (56)

where � denotes the elementwise product and� H V�WYX� H 4 / � 4 
n � Z / � � * � � +J- � (57)

Using (17), the 
 4 th column of
� H � is� � 	 � 4 
n �

:;� QSR� TQSP � � 	 � . � . � � * � � +.- � (58)
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D. Approximation for
) ^ , Q)

Inserting
) � N in (11), the 
Sc 4 th element of

) ^ reads

) ^	 � �
	 a � ���	 � � � for 
 d�?ca � ���	 � � 	 4 a c � ���	 � ? A for 
D�?c (59)

For 
D� c we get using (46)-(47)

) ^	9	 �C� � \ 	 4 ] 	 � � � * � � � (60)

For 
 d� c we get using (56)

) ^	 � � a � � � 	 � � �
� 6 a � � � 	 ��� a c � � � 	 � � � � � 	 � � * � � +J- � ; 6 � � � � � � ;
�

��� a � � � 	 � 4 
n �
:;� QSR� TQSP aKc � � � 	 � � � � � 	 � . � �. ������

>
��� ��� 4 
n �

:;� Q�R� TQ ! � �� � . � . ���� � � * � 
 � (61)

The reminder term in (61) has the stochastic order � * � 
 �
for the following reason. It holds that � 	 � � * � 
 � , and
the remainder in the expansion of

a � �o�	 � , that is � * � � +J- � ,
are � -element vectors. The stochastic order notation is valid
uniformly over elements of these vectors. Hence scalar product
of these two vectors is � * � 
 � . Similarly,

� � � � � * � � +.-�132 � ,a c � � � 	 � � � � � � � * � � +.-�132 � , and � a c � � � 	 � � � ���	 � � � � �� * � 
 � .
In the following, let � 	 and � c	 stand for

a � � 	�� and
a c � � 	�� ,

respectively, 
�� 
��������9��� . Note that, thanks to (21) and thanks
to independence of � 	 , � � for 
 d�fc it holds

E 6 � � �	 ��� � 2 ; � E 6 � �	 ��� � �� � 	 ; � E 6 � �	 E � ��� � �� � � 	 ;� E 6 � �	 � 	 ; � �e^ 	 (62)

It follows from (62) and (19) that� �	 ��� � �e\ 	N8�	 � � � * � � � (63)

Similarly,

� � 	 ��� � � 8�	 � � � * � � -�132 � � (64)

Applying (63), (64) and (43)-(45) in (61) gives

) ^	 � �	� �	 ��� 4 
n � � �	 � 	 � � 	 ���
4 
n � 6 � c �	 � � � � 	 ��� � �� � ; ��� � � * � 
 �

�	� �	 � � 4 
n � � � �	 � 	 � � � 	 � �4 
n � � � � 	 ��� � � c �	 � ��� � ��� ��� � * � 
 �
�	� �	 ��� 4 \ 	�� ] 	n � � 	 ��� � � * � � -�132 � (65)

E. Approximation for Q) , V
Note that if Q) ^	9	 � 0 for some 
 , the 
 4 th diagonal

element of the de-mixing matrices Q) - �	9	 and Q)��W�X�	9	 may
have wrong sign, i.e. it might be close to -1 instead of 1. It
corresponds to reversed sign of the 
 4 th estimated indepen-
dent component. In the one-unit version of the algorithm, the
sign can be corrected by replacing the normalization in (10)
by an equivalent formula

Q) - �	 � � ) ^	 �) ^	9	 �
) ^	 �� � \ 	 4 ] 	�� � � * � � +.-�132 � � (66)

Similarly, using Lemma 2 in Appendix B, the asymptotically
equivalent sign corrected expression for the estimated de-
mixing matrix is

Q) �W� �	 � � 8�	 � � ) ^	 � sign � ) ^	9	 � 4 ) ^� 	 sign � ) ^� � �a ) ^	9	 a �Ya ) ^� � a� � * � � +J-�132 � � (67)

For both estimator variants, Q) - � and Q)��W���
we can write� ) ��Q) 4 Nj� � * � � +.-�132 � � (68)

Since

V � Q) Z +J-�132 � � N � � ) � � N 4 
n � Z � � * � � +J- � �
� N � � ) 4 
n � Z � � * � � +J- � � (69)

the gain matrix off-diagonal elements read

V 	 � � Q) 	 � 4 
n � � � 	 ��� � � * � � +J- � (70)

For the one unit variant we get

� -�132 V - �	 � �5� -�132 ) ^	 �� � \ 	 4 ] 	 � 4 
n � -�1�2 � � 	 ��� � � * � 
 �
� � +J-�1�2\ 	 4 ] 	 � � �	X� � 4 \ 	 � � 	 � � ��� � * � 
 � � (71)

Finally we show that (71) can be re-written in terms of � 	 , � �
in an asymptotically equivalent formula

� -�132 V - �	 � � � +.-�132\ 	 4 ] 	 � a � � � 	 � � � 4 \ 	 � � 	 � � � � � * � 
 � � (72)

To see that, note that

� � 	 � � � � � 	 4 � 	78 	 � � � � 4 � �7 8 � � ���	 � � 4 � � 	 � �7 8 	 78 �
� ���	 � � 4 � * � 
 �
 � � * � 
 � � � � 	 � � � � * � � -�132 � � (73)

Similarly it can be shown thata � � � 	 � ��� � a � � � 	 � � � � � * � � -�1�2 � � (74)

(74) concludes the proof of (72). Now, applying the central
limit theorem to (72) implies that the distribution of � -�132 V,- �	 �
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is asymptotic normal with zero mean and variance equal to the
variance of the leading term in (72). Using (62)-(64) gives

` - �	 � � var 1 � +.-�132\ 	 4 ] 	 � a � � � 	 � � � 4 \ 	 � � 	 � � � 5
� � +J-� \ 	 4 ] 	@� 2 var � � a � � � 	 � � � 4 \ 	 � � 	 � � � �
� ^ 	 4 \ 2 	� \ 	 4 ] 	 � 2 (75)

Similarly for symmetric FastICA it holds using (67) that

� -�132 V �W�X�	 � � � -�132 Q) �W���	 � 4 
n � -�132 � � 	 � � � � * � 
 �
� ) ^	 � sign � \ 	 4 ] 	 � 4 ) ^� 	 sign � \ � 4 ] � �� -�1�2 �
a \ 	 4 ] 	 aP�ba \ � 4 ] � a �4 
n � -�1�2 � � 	 � � � � * � 
 � (76)

The variance of the leading term in (76) results, after some
algebra using (63)-(65), in

` �����	 � � ^ 	 4 \.2	 � ^ � 4 \.2� � � \ � 4 ] � � 2��a \ 	 4 ] 	 aP�ba \ � 4 ] � a � 2 (77)

as desired.

APPENDIX B - LEMMAS

Lemma 1: Let Z  and Z be positive definite matrices of the
same dimension and

� Z �YZ 4 Z  . Then, for [ � Z [ 	 0
(in any matrix norm) it holds

Z +J-�1�2 � Z +.-�132 � � � � � � [ � Z [ 2 � (78)

where � � � 4
unvec

� 6 N ? Z +J-�132 � Z +J-�1�2 ? N ; +J-> vec � Z +.- � Z)Z +J- ��� (79)

Here, “vec” denotes the operation that reshapes columns of
a matrix in one long column vector, and “unvec” is the
corresponding inverse operation.

In the case that Z  is diagonal, Z  � diag ��� - ��������� � : � is a
diagonal matrix with � 	 � 0 for 
 � 
������������ , then

� � has
elements � � 	 � � 4 � Z 	 �

� ��	 � � � � � �"	�� � � � � (80)

In the case that Z  � N , (80) gives
� � � 4 -2 � Z .

Proof:
The identity

N$�fZ � Z +.-�132 � 2 � � Z  � � Z �9� Z +.-�132 � � � � 2 (81)

leads, after neglecting higher-then first order terms in
� Z and� � , to the relation� � Z +.-�132 � Z +J-�132 � � � 4 Z +J- � Z Z +J- (82)

or equivalently

6 N ?+Z +J-�1�2 � Z +.-�132 ? N ; vec
� �]� 4 vec 6 Z +J- � Z Z +.- ;

The desired solution (79) follows.

Lemma 2: Let ) � )  � � ) (83)

where
)  � diag � - - ���������D- : � is a diagonal matrix, and let- 	 ��0 for 
D� 
��������9�3� . Then, for [ � ) [ 	 0 it holds

� V�WYX� � )R) � � +J-�1�2 ) � N � � � � � � [ � ) [ 2 � (84)

where
� �

has elements� � 	 � � � ) 	 � 4 � ) � 	- 	 � - � (85)

Proof Using Lemma 1 gives

� )R) � � +J-�1�2 � �  � � � � � � [ � ) [ 2 � (86)

where

�  � � )  ) � � +.-�132 � diag � 
- - ��������� 
- : � (87)

and
� � has as elements� � 	 � � 4 � )R) � 4 )  ) � � 	 �- 	 - � � - 	�� - � �

� 4 � )  � ) � � � )R) � � 	 �- 	 - � � - 	�� - � � � � � [ � ) [ 2 �
� 4 - 	 � ) � 	 � � ) 	 � - �- 	 - � � - 	�� - � � � � � [ � ) [ 2 � (88)

Then � � � �  � � � � � � [ � ) [ 2 ��� � )  � � ) �� N � �  � ) � � � )  � � � [ � ) [ 2 � (89)

and hence the leading term
� �

has elements� � 	 � � 
- 	 � ) 	 � � � � 	 � - � � � ) 	 � 4 � ) � 	- 	 � - � �

APPENDIX C - COMPUTING FISHER INFORMATION MATRIX

Applying the fact that � V�W��
	��� U�
 � 7 ! L "�i%$ ) we get from
(32)

� # �� -�243 � � #�� � ) 0 �JaD"�i $ ) a� -�2�3 � � aD"�i $ ) a� -�243 # � � ) 0 �-�
�[aD"�i $ ) a � #�� � ) 0 �� - 2�3 � a#"�i%$ ) a 7 3�2 #�� � ) 0 �-�

� a#"�i%$ ) a :;	  -
A;
	  - U �L� -�<������ < :!  -�<������ < A� � L� 	�� !  	 �

# L ��� ) 0 � L ! � V � # 	K��� ) 0 ��	 	 �� -�243 �

� a#"�i%$ ) a 7 3�2 # � � ) 0 �
�
�[aD"�i $ ) a :;	  -

A;
	  - #�� � ) 0 � �������� # 	K��� ) 0 � 	 	 �# 	���� ) 0 � 	 	 � �
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Next,

� # 	K��� ) 0 � 	 	 �� -�243 � #ec	 ��� ) 0 � 	 	 � � � ) 0 � 	 	� -�243 �
� # c	 ��� ) 0 � 	 	 � :;�  - � - 	 �� -�243 d � 	 �

� # c	 ��� ) 0 � 	 	 � 8�	 2 d 3 	 � # c	 ��� ) 0 � 	 	 � 8�	 2 :;	  - 7 3 	 � 	 	
Returning to the above formula we get

� # 1� -�243 � a#"�i%$ ) a #�� � ) 0 �
>
� 7 3�2 � A;

	  -
:;
	  -

# c2 ��� ) 0 � 2 	 �# 2 ��� ) 0 � 2 	 � 7 3 	 � 	 	 �
From (1) follows that � � & +J- 0 � ) 0 , and consequently,

� # 1� -0243 � aD"�i $ ) a # � � � � � 7 3�2 � A;
	  -

:;
	  -

# c2 � � 2 	 �# 2 � � 2 	 � 7 3 	 � 	 	 �
Using this we can directly compute the &(' -th entry of the
Fisher information matrix.

� .0/ � E 1 � a#"Bi $ ) a +g2# 2 � � # 1� -�243 �
# 1

� - * � 5 � 7 3�2 7 � * �
� 7 � * E � A;

	  -
:;
	  -

# c2 � ��2 	 �# 2 � ��2 	 � 7 3 	 � 	 	 � �
� 7 3�2 E

�� A; L� -
:;!  -

# c* � � * L �# * � � * L � 7 � ! � ! L �� �
� E

�� A; 	  -
A;
L� -

:;
	  -

:;!  -
# c2 � � 2 	 �# 2 � ��2 	 � # c* � � * L �# * � � * L � � 	 	 � ! L 7 3 	 7 � ! ��

The second and the third term are equal to
4 � 7 3�2 7 � * , because

E M ���� ��� � � �� � ��� � � � � 	 	 V � 4 8 	 2 . To simplify the last term, we shall
consider two cases:

1) � d� � , then

A;
	  -

A;
L� -

:;
	  -

:;!  - E 1 # c2 � ��2 	 �# 2 � � 2 	 � # c* � � * L �# * � � * L � � 	 	 � ! L 5� �	� 
� P � � 

� ^ � P�� � 
 � � U �
7 3 	 7 � ! �

� � 2%7 3�2 7 � * � � 7 3 * 7 � 2

2) � � � , then

E

�� A; 	  -
A;
L� -

:;
	  -

:;!  -
# c2 � ��2 	 �# 2 � ��2 	 � # c2 � ��2�L �# 2 � ��2�L � � 	 	 � ! L 7 3 	 7 � ! �� �

� A;
L� -

:;
	  -

:;!  - E

� 1 4 # c2 � � 2 L �# 2 � ��2 L � 5 2 � 	 L � ! L �� ��� 
� P 
�� �����
7 3 	 7 � ! �

� A;
L < 	  -L = 	

:;
	  -

:;!  - E 1 # c2 � � 2 	 �# 2 � ��2 	 � # c2 � � 2�L �# 2 � ��2�L � � 	 	 � ! L 5� �	� 
� P � � 
 � � �����
7 3 	 7 � ! �

� A;
L� - E 1 4 # c2 � � 2 L �# 2 � ��2 L � 5 2� �	� 


E � ���� ��� � �
�
:;!  -! = >2 E 6 � 2! L ;� �	� 


-
7 3 ! 7 � ! �

� 7 3�2 7 � 2 A; L� - E 1 4 # c2 � � 2 L �# 2 � ��2 L � � 2 L 5 2� �	� 

E � ���� ��� � � � �� �

� A;
L < 	  -L = 	 7 3�2 7 � 2 �

� � U E 6 " 22 � " 2 � ; :;!  -! = >2 7 3 ! 7 � ! �
� N E 6 " 22 �#" 2 � " 22 ; � � � 4 
 � O 7 3�2 7 � 2 V

Here, " 2 denotes a random variable with pdf
# 2 , and " 2

denotes its score function, i.e., " 2 �hdJ� � 4 � �� ��� �� � ��� � . After few
simplifications (34) follows.

APPENDIX D - COMPUTING MATRIX INVERSION OF
�TA

Definition (36) can be rewritten as
�TA � � � 4 
 � 2 � - �� ��� ����� , where &(' -th element of

� - , � and � are 8 ! L 8 3�2 ,8 ! 2 8 3 L , and 8 ! L 8 3�2 8 3 L � � L 4 % L 4 nE��� 8 L�2 8 3 ! % L , respectively, for& � � U 4 
 � � � ) and ' � ��� 4 
 � � � + . Note that
� - is a

rank-one matrix,
� - ����� � , where ��� vec � N � . Applying the

matrix inversion lemma gives� A +J- � 
� 1 ��� � ��� +.- 4 �!� � ��� +J-	���K� ��� � ��� +.-� � � 4 
 � +e2 � � � �!� � ��� +J- � 5
To compute the inversion ��� �"��� +.- note that � is diagonal,

� � diag � � - 4 n � % - �������9� % -� �	� 
: � % 2 � � 2 4 n � % 2 �������9� % 2� �	� 
: ������� � �
(90)

and � is a special permutation matrix such that � vec � � � �
vec � � � � for any �m� � matrix � . Moreover, � obeys �#� � N ,
and for any diagonal matrix 0 � diag ��$ � it holds that

� 0 � 0 c � �
where 0 c � diag �!�#$b� � � 0 � . These facts can be used to
show that the inversion of � �%� can be written in the form0 - � 0 2 � for suitable diagonal matrices 0 - and 0 2 . The
equality ��� �&��� � 0 - � 0 2 � � � N
is fulfilled for � 0 - � 0 c2 � N and 0 c - �&� 0 2 �(' . Hence

0 - � �)� c � 4 N � +.- � c and 0 2 � 4 � +J- 0 c -
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where � c � � � � and 0 c - � � 0 - � . Finally, it can be
shown that � �TA +J- � .0. � � +J- � 0 - � .0. for & � � U 4 
 � � �() ,U d� ) . (38) easily follows.

APPENDIX E - PROOF THAT
% ) 


Assume that
#

is a positive probability density function of a
random variable with zero mean and variance 1, such that % in
(24) exists. Then, integration per partes and Cauchy-Schwartz
inequality gives


 � &4' # �hde� � d � 4 &4' d # c ��de� � d �
�
� &4' d 2 # �hdJ� � d

� &(' � # c ��de�# �hdJ� � 2 # �hdJ� � d � 
 > � % �
(91)

The equality in (91) is attained if
# c < # is proportional to d ,

what necessarily means that that the distribution is Gaussian.

APPENDIX F - THE GENERALIZED GAUSSIAN

DISTRIBUTION FAMILY

Consider the generalized Gaussian density function with
parameter � , zero mean and variance one, as [19]#

� �hdJ� � ��^ �n�� � 
 < � � i9k�l � 4 � ^ � a d�a � � � (92)

where � � 0 is a positive parameter that controls the
distribution’s exponential rate of decay, � � > � is the Gamma
function, and

^ � �
� � � 2 < � �� � 
 < � � (93)

This generalized Gaussian family encompasses the ordinary
standard normal distribution for � � n , the Laplacean distri-
bution for �*� 
 , and the uniform distribution in the limit� 	�� .

The 
 4 th absolute moment for the distribution is

E �
� a dGa 	 � � & �

� a dGa 	 # � �hdJ� � d � 
^ 	�
� N 	 ^ -� O� N -� O (94)

The score function of the distribution is

" � �hde� � 4 � ��� ��� �� �#
� �hdJ� �

a dGa � +J- sign ��de�
E � 6 a d�a � ; (95)

Then, simple computations give

%
� � E � 6 " 2� �hdJ� ; � E � 6 a d�a 2 � +e2 ;�

E � 6 a dGa � ; � 2 �
� �� �	� � 2�+ R� � � ��
� �6 � � - ^ R� � ; � for ����
 <�n

� � otherwise.
(96)
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Petr Tichavský is author and co-author of research papers in the area of
sinusoidal frequency/frequency-rate estimation, adaptive filtering and tracking
of time varying signal parameters, algorithm-independent bounds on achiev-
able performance, sensor array processing, independent component analysis
and blind signal separation.

PLACE
PHOTO
HERE
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