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Abstract

1 Introduction

Representation and processing of multidimensional probability distributions
were made possible by a succes achieved in the field of graphical Markov models
(see e.g. [5]) during last about twenty years. Here we have in mind not only
ample theoretical background but also thoroughly elaborated algorithmical ap-
paratus, which enabled developing extremely efficient software packages like, for
example, HUGIN [?]. As an alternative to graphical models, we have been elab-
orating (during last about eight years) non-graphical approach of compositional
models, which is based on the idea that multidimensional distributions can be
assembled, composed , from a system of low-dimensional ones.

In the presented paper we propose a solution of one hard problem, which
has not been not solved even in such software systems like HUGIN: the problem
of marginalization of multidimensional distribution. For Bayesian networks a
solution of this problem was proposed by Ross Shachter in [6, 7]. His famous
procedure is based on two rules: node deletion and edge reversal . Roughly
speaking, the effectivity of his appraoch corresponds to the effectivity of the pre-
sented process in case we did not employ the speed-up theoretically supported
by Theorem 3 presented in Section 4 of this paper. This theorem, namely, takes
advantage of the main difference between Bayesian networks [1] and composi-
tional models revealed in [4]. This advantage consists in the fact that composi-
tional models have some marginal distributions, whose computation in Bayesian
network may be computationally expensive, expressed explicitly.
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2 Notation

In this paper we will consider a system of finite-valued random variables with
indices from a non-empty finite set N . All the probability distributions discussed
in the paper will be denoted by Greek letters. For K ⊂ N , π(xK) denotes a
distribution of variables {Xi}i∈K , which is defined on all subset of a Cartesian
product XK

def= ×i∈KXi.
Having a distribution π(xK) and L ⊂ K, we will denote its corresponding

marginal distribution either π(xL), or, using the notation introduced by Glenn
Shafer [8], π↓L. These symbols are used when we want to highlight the variables,
for which the marginal distribution is defined. If we want to specify variables
which are deleted in the process of marginalization, we will use the symbol π−M ,
where M is a set of indices of the variables, which do not appear among the
arguments of the resulting marginal distribution. Thus, in our case, M is any
set, for which K \ M = L.

Most of the time we will consider sequences of distributions. To shorten the
notation, for an integer n, the set of all positive integers lower or equal to n will
be denoted by n̂

def= {1, 2, . . ., n}.
In order to describe how to compose low-dimensional distributions to get

a distribution of a higher dimension we will use the following operator of com-
position.

Definition 1 For arbitrary two distributions π(xK) and κ(xL) their composi-
tion is given by the formula

π(xK) � κ(xL) =

{
π(xK)κ(xL)

κ(xK∩L) when π(xK∩L) � κ(xK∩L),
undefined otherwise,

where the symbol π(xM ) � κ(xM ) denotes that π(xM ) is dominated by κ(xM ),
which means (in the considered finite setting)

∀xM ∈ XM (κ(xM ) = 0 =⇒ π(xM ) = 0).

Since the outcome of the composition is a new distribution, we can itera-
tively repeat the application of this operator composing thus a multidimensional
model. This is why these multidimensional distributions are called compositional
models. To describe such a model it is enough to introduce an ordered system of
low-dimensional distributions π1, π2, . . . , πn, we will refer to it as to a generating
sequence, to which the operator is applied from left to right:

π1 � π2 � π3 � . . . � πn−1 � πn := (. . . ((π1 � π2) � π3) � . . . � πn−1) � πn.

Then we say that a generating sequence defines (or represents) a multidimen-
sional compositional model.

In the process of marginalization we will also need another important oper-
ator.
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Definition 2 For arbitrary two distributions π(xK), κ(xL) and a set of indices
of variables M ⊂ N , by application of an anticipating operator parametrized by
the index set M we understand computation of the following distribution

π©�M κ =
(
κ↓(M\K)∩L π

)
� κ.

3 Basic properties

In the following text we will need two simple lemmata which follow from the
definition of the operator of composition (their proofs can also be found in out
previous papers).

Lemma 1 Consider two distributions π(xK) and κ(xL). If the composition
π � κ is defined then

(π � κ)↓K = π.

Lemma 2 Let for two distributions π(xK) and κ(xL) their composition π � κ
is defined and L ⊆ M ⊆ K ∪ L. Then

π � κ = π � (π � κ)↓M .

Let us emphasize that when describing a generating sequence it was neces-
sary to explain that the operator of composition is always applied from left to
right, since the operator is neither commutative nor associative. So, generally

π1 � π2 � π3 	= π1 � (π2 � π3),
π1 � π2 � π3 	= π1 � π3 � π2.

This was also the reason why we introduced the anticipating operator ©�K .
Namely, this operator allows us to change the ordering of compositions in the
sense described in the following assertion (for its proof see [2]).

Lemma 3 If π1(xK1), π2(xK2) and π3(xK3) are such that the composition π1 �
π2 � π3 is defined then

π1 � π2 � π3 = (π1 � π2) � π3 = π1 � (π2 ©�K1
π3).

4 Marginalization in compositional models

Now we will focus our attention on possibilities of marginalization of distri-
butions given by generating sequences. Let us stress that (in a general case)
marginal distribution of a compositional model is not a distrubution represented
by a sequence of marginalized distributions. The exact meaning of this sentence
will be clear from Theorem 2.

From now on, we will consider generating sequences

π1(xK1) � π2(xK2) � . . .πn(xKn
).
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Therefore whenever we use distribution πj , we assume it is defined for variables
{Xi}i∈Kj

.
First, we will formulate rules, which make it possible to decrease dimension-

ality of compositional models by one. By iterative application of these rules we
may obtain any required marginal. First let us formulate very simple but useful
assertion. Its proof, as well as the proof of Theorem 2 can be found in [2].

Theorem 1 Let π1, π2, . . ., πn be a generating sequence. If � ∈ Ki for some
i ∈ n̂ and � 	∈ Kj for all j ∈ (n̂ \ {i}) then the marginal of the distribution
represented by the generating sequence may be easily got acording to the following
simple formula:

(π1 � π2 � . . . � πn)−{�} = π1 � . . . � πi−1 � π
−{�}
i � πi+1 � . . . � πn.

Hence, when the variable which is to be deleted is contained in an argu-
ment of only one of the distributions, it is sufficient to marginalize only this
one distribution. The others remain unchanged. The reader familiar with the
Shachter’s marginalizing procedure [6, 7] certainly noticed, that Theorem 1 de-
scribes situations when his deletion rule may be applied either directly (the node
is terminal), or when application of the edge reversal rule does not introduce
new edges in the considered Bayesian network.

For general situations when marginalized variable is among arguments of
more than one distribution, the following rather complicated theorem must be
used.

Theorem 2 (Marginalization over one variable) Let π1, π2, . . ., πn be
a generating sequence and

� ∈ Ki1 ∩ Ki2 ∩ . . . ∩ Kim

for a subsequence (i1, i2, . . ., im) of n̂ such that � 	∈ Kj for all j ∈ n̂ \
{i1, i2, . . ., im}. Then

(π1 � π2 � . . . � πn)−{�} = κ1 � κ2 � . . . � κn,

where

κj = πj , ∀j ∈ n̂ \ {i1, i2, . . ., im},
κi1 = π

−{�}
i1

,

κi2 = (πi1 ©�Li2−1
πi2)

−{�},

κi3 = (πi1 ©�Li2−1
πi2 ©�Li3−1

πi3)
−{�},

...
κim

= (πi1 ©�Li2−1
πi2 ©�Li3−1

. . .©�Lim−1
πim

)−{�},

and Lik−1 = (K1 ∪ K2 ∪ . . . ∪ Kik−1) \ {�}.
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Iterative application of this Theorem always leads to the desired marginal
distribution and fully corresponds to the Shachter’s marginalization procedure.
In fact, application of the aniticipating operator somehow corresponds to the
inheritance of parents in his edge reversal rule. So one cannot be surprised that
the computational complexity of this process strongly depends on the number
of occurences of the variable � among the arguments of the distributions in
the considered generating sequence (it can be to some extent controlled by a
proper ordering of deleted variables). Beginning from the second occurence
of this variable we should replace distribution πik

by an expression containing
one or more anticipating operators, and, in addition to it, this expression still
has to be marginalized. Thus it may easilly happen that iterative application
of this theorem becomes computationally intractable due to its enormous time
and memory consumption.

Most effective marginalizing procedures are based on the following (unfor-
tunately also rather complex) assertion, which is a generalization of Theorem
11 from [3]. It describes conditions, under which a number of variables may be
deleted in one, computationally simple step.

Theorem 3 Let π1, π2, . . . , πn be a generating sequence and (j1, j2, . . . , jm) be
a subsequence of n̂ such that there exists s ∈ Z = {j1, . . . , jm}, for which

(
⋃
j∈Z

Kj) ∩ (
⋃
j �∈Z

Kj) ⊆ Ks.

Then, denoting L =
⋃

j∈Z

Kj, µ = (π1 � π2 � . . . � πn)↓Ks , and for all j 	∈ Z

L̄j =
⋃

i∈ĵ\Z

Ki,

marginal distribution (π1 � π2 � . . . � πn)↓L can be expressed as a compositional
model

(π1 � π2 � . . . � πn)↓L = κ1 � κ2 � . . . � κn,

where

κj = πj for j ∈ Z,

κj = µ↓L∩L̄j for j 	∈ Z.

Proof Let {�1, �2, . . . , �m} = (K1∪ . . .∪Kn)\L be any ordering of indices to be
eliminated. Let ν1

1 , ν1
2 , . . . , ν1

n be a generating sequence received by application
of Theorem 2 to the sequence π1, π2, . . . , πn and the index �1. What can be said
about the generating sequence ν1

1 , ν1
2 , . . . , ν1

n?

1. (π1 �π2 � . . . � πn)−{�1} = (π1 �π2 � . . . � πn)↓L∪{�2,...,�m} = ν1
1 �ν1

2 � . . . � ν1
n;

2. For all j ∈ Z, ν1
j = πj ;
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3. For each j 	∈ Z, ν1
j is a distribution of variables with indices from Kj and

possibly some other indices from L̄j but not �1. Therefore, the respective
set of indices contains Kj \ {�1} and is contained in L̄j \ {�1}.

Now, iterative application of Theorem 2 to the generating sequences νi
1,

νi
2, . . . ν

i
n and the indices �i+1 yields sequences νi+1

1 , νi+1
2 , . . . , νi+1

n for i = 1, . . . ,
m − 1. Analogous to the first step, we can see that for all of these sequences:

1. (π1�π2�. . .�πn)−{�1,...,�i} = (π1�π2�. . .�πn)↓L∪{�i+1,...,�m} = νi
1�νi

2�. . .�νi
n;

2. For all j ∈ Z, νi
j = πj ;

3. For each j 	∈ Z, νi
j is a distribution of variables XKj\{�1,...,�i} and possibly

some other variables from XL̄j\{�1,...,�i}.

Therefore, (π1 � π2 � . . . � πn)↓L = νm
1 � νm

2 � . . . � νm
n and to finish the

proof we have to show that we can transform the sequence νm
1 , . . . , νm

n into the
required sequence κ1, . . . , κn without changing the generated multidimensional
distribution.

The elements with indices j1, . . . , jn need no change, as

πj = νm
j = κj ,

for all j ∈ Z. Therefore, what has remained to be shown is that substituting
νm

j with κj (for j 	∈ Z) does not change the generated distribution.
Denote by Lj (for all j = 1, 2, . . . , n) the sets of indices of variables for which

the distributions νm
j are defined. Clearly, for j ∈ Z, Lj = Kj . For j 	∈ Z, we

have shown above that

Kj \ {�1, . . . , �m} ⊆ Lj ⊆ L̄j \ {�1, . . . , �m} ⊆ L̄j ∩ L ⊆ Ks,

(the last inclusion follows from the theorem assumptions) and therefore (using
Kj \ {�1, . . . , �m} = Kj ∩ L)

(L1 ∪ L2 ∪ . . . ∪ Lj−1) ∪ Lj ⊇ L̄j ∩ L ∩ Ks ⊇ Lj .

This enables us to apply Lemma 2, getting

(νm
1 � νm

2 � . . . � νm
j−1) � νm

j =

= (νm
1 � νm

2 � . . . � νm
j−1) � (νm

1 � . . . � νm
j )↓L∩Ks∩L̄j .

Since both (νm
1 � . . . � νm

j ) and µ are marginal distributions of π1 � . . . � πn,
their common marginals must equal each other:

(νm
1 � . . . � νm

j )↓L∩Ks∩L̄j = µ↓L∩L̄j = κj ,

and therefore

(νm
1 � νm

2 � . . . � νm
j−1) � νm

j = (νm
1 � νm

2 � . . . � νm
j−1) � κj .
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Repeating this considerations for all j 	∈ Z, one can substitute νm
j by κj for all

j 	∈ Z, which finishes the proof.

The last Theorem offers us a possibility to substatially reduce a dimension
of a considered compositional model in one step. Unfortunately, it gives us no
instructions how to find a set of indices Z (along with the index s) meeting the
necessary assumptions required for application of the Theorem. For this, the
following two simple lemmata will be useful. To formulate them in a transparent
way we will use the following auxiliary symbol. Having a set Z ⊂ n̂ and j 	∈ Z
the symbol W (Z, j) denotes the following subset of indices:

W (Z, j) =

{
s ∈ n̂ :

(⋃
i∈Z

Ki

)
∩ Kj ⊆ Ks

}

(the reader will certainly keep in mind that sets W (Z, j) depend not only on Z
and j but also on the considered generating sequence).

Lemma 4 If for Z ⊂ n̂ (∅ 	= Z 	= n̂) there exists s ∈ Z, for which s ∈⋂
j �∈Z

W (Z, j), then s and Z meet all the assuptions of Theorem 3.

Proof. For s meeting the assuption of this Lemma(⋃
i∈Z

Ki

)
∩ Kj ⊆ Ks

for all j 	∈ Z, and therefore

(
⋃
j∈Z

Kj) ∩ (
⋃
j �∈Z

Kj) ⊆ Ks.

Lemma 5 Let nonempty Z ⊂ n̂ be different from n̂. If for some j 	∈ Z,
W (Z, j) = {j} than there does not exists s ∈ Z, such that s and Z meet the
assuptions of Theorem 3.

Proof. W (Z, j) = {j} means that W (Z, j) ∩ Z = ∅. So it also means that(⋃
i∈Z

Ki

)
∩ Kj

is not contained in any Ks for s ∈ Z, and therefore there cannot exist s ∈ Z
containing

(
⋃
i∈Z

Ki) ∩ (
⋃
i�∈Z

Ki),

because j 	∈ Z.
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5 Marginalization algorithm

In this section we will briefly formulate the main ideas of an effective algorithm
for marginalization of compositional models. The algorithm is based on applica-
tion of Lemma 1 and Theorems 1 – 3. Our goal is to minimize use of Theorem 2.
The whole process will be illustrated by an example in the following Section.

1. If applicable, the simplest way of marginalization is a commutative em-
ployment of Lemma 1 and Theorem 1. Therefore, we use it as the first
step of the procedure, and then whenever the assumptions of one of these
assertions are fulfilled. It is important to realize that, due to Lemma 1,
some of the distributions may be deleted after application of Theorem 1,
and therefore their commutative repetition is reasonable.

2. When the idea of step 1 is not applicable, we will try to apply Theorem 3
(this possibility is discussed below in more details). In case of a success
we will continue again with step 1.

3. If neither step 1 nor step 2 is applicable we will marginalize the resulting
generating sequence using iteratively Theorem 2.

From the point of view of effectivity of the marginalizing procedure, the
most influencial is a sofisticated realization of step 2. It is important to realize
that Lemmata 4 and 5 offer us a basis for a much more efficient procedure than
testing all possible subsets Z ⊂ n̂. If such Z exists (along with the corresponding
s ∈ Z) , it can always be found with the help of the process we shall now briefly
describe.

Consider a situation when we are to compute

(π1 � π2 � . . . � πn)↓M ,

and let

Z = {j ∈ n̂ : Kj ∩ M 	= ∅} .

We start with computing W (Z, j) for all j 	∈ Z. As a rule, we cannot expect
that there would be

s ∈ Z ∩

⋂

j �∈Z

W (Z, j)




(in such a case we would have got, due to Lemma 4, a required solution).
First we have to add to Z (due to Lemma 5) all the indices j 	∈ Z, for which
W (Z, j) = {j}. With the new Z we should proceed as before: compute W (Z, j)
for all j 	∈ Z and add those j 	∈ Z to Z, for which W (Z, j) = {j}.

When there does not exists j 	∈ Z, for which W (Z, j) = {j} we start looking
for s ∈ Z, for which Theorem 3 could be applied. Now, we can again ask



Effective algorithm of marginalization in multidimensional compositional models 9

whether there exists

s ∈ Z ∩

⋂

j �∈Z

W (Z, j)


 .

In positive case we found a way, how to apply Theorem 3. In opposite case Z
will be be increased. We take s 	∈ Z (preferably such that1 Ks ∩L is the largest
possible), add it to Z and find new W (Z, j) sets. Then add to Z all j 	∈ Z, for
which s 	∈ W (Z, j). Repeating incremental enlargening of Z (not changing s)
will finish either with a couple s and Z, for which Theorem 3 is applicable, or,
geting Z = n̂ we learn that s must be added to Z. This step may be repeated
with the original Z increased by the previous s and a new s ∈ Z.

6 Example

Let us consider distributions π1, π2, . . ., π13 with corresponding sets of variables
(as shown in Figure 6)

K1 = {12, 13}, K2 = {10, 12}, K3 = {11, 13}, K4 = {8, 9, 10, 11},
K5 = {4, 8}, K6 = {1, 2, 3, 4}, K7 = {3, 14, 15}, K8 = {15, 16, 18},
K9 = {16, 17}, K10 = {18, 19}, K11 = {6, 19}, K12 = {2, 5, 6, 7},
K13 = {7, 20}.

They define a generating sequence

π1 � π2 � . . . � π13.

Our goal is to compute

(π1 � . . . � π13)↓{2,3,5}.

First, deletion of distribution π13 is enabled by Lemma 1. Now, all the
variables appearing only in one distribution may be marginalized out using
Theorem 1. So,

(π1 � . . . � π13)−{1,7,9,14,17,20}

= π1 � π2 � π3 � π
−{9}
4 � π5 � π

−{1}
6 � π

−{14}
7 � π8 � π

−{17}
9 � π10 � π11 � π

−{7}
12 .

Looking at this distribution we immediately see that distribution π
−{17}
9 =

π
↓{19}
9 may be ommitted because of Lemma 1. In fact, we actually do not need

to calculate marginal π
−{17}
9 and may just leave π9 out.

After this simplification we can see that also variable X16 appears among
the arguments of only one distribution and Lemma 1 may be used once more

(π1 � . . . � π13)−{1,7,9,14,16,17,20}

= π1 � π2 � π3 � π
−{9}
4 � π5 � π

−{1}
6 � π

−{14}
7 � π

−{16}
8 � π10 � π11 � π

−{7}
12 .
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Figure 1: Sets of variables, for which distributions π1, π2, . . ., π13 are defined
.

Now, we start applying ideas from step 2 to find out whether Theorem 3
may be applied. This process is summarized in Table 1. We start with Z =
{6, 12}. All W (Z, j) 	= {j}, and therefore we do not apply Lemma 5. Since⋂
j �∈Z

W (Z, j) = ∅, Theorem 3 cannot be applied to Z. It means that we have

to start enlarging this set, i.e. we start considering s 	∈ Z. For the first choise
3 indices come into consideration: 5, 7, 11. Let us choose 7. Therefore, we
start considering Z = {6, 7, 12}. Then we have to add to Z also all j 	∈ Z, for
which s 	∈ W (Z, j). In the first step it means that we have to add {5, 11} to
Z, in the second step {4, 10} and so on. After 4 steps Z contains indices of
all the distributions, which means that 7 does not come into consideration for
application of Theorem 3. It results in necessity to add 7 to Z and we have

1For meaning of L see Theorem 3.
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Table 1: Finding whether Theorem 3 may be applied

Z s j 	∈ Z : s 	∈ W (Z, j)
6, 12 7 5, 11

4, 10
2, 3, 8
1

6, 7, 12 5 8, 11
10

6, 7, 12 8
......

to choose another s. Also at this moment 3 indices come into consideration:
5, 8, 11. Choosing 5 this time we get after two steps Z = {5, 6, 7, 8, 10, 11, 12},
which with s = 7 meet the assumptions of Theorem 3. According to this
Theorem we get

(π1 � . . . � π13)−{1,7,9,10,11,12,13,14,16,17,20} = (π1 � . . . � π13)↓{2,3,4,5,6,8,15,18,19}

= µ↓∅ � µ↓∅ � µ↓∅ � µ↓{8} � π5 � π
−{1}
6 � π

−{14}
7 � π

−{16}
8 � π10 � π11 � π

−{7}
12

= µ↓{8} � π5 � π
−{1}
6 � π

−{14}
7 � π

−{16}
8 � π10 � π11 � π

−{7}
12

= µ↓{8} � π5 � π
↓{2,3,4}
6 � π

↓{3,15}
7 � π

↓{15,18}
8 � π10 � π11 � π

↓{2,5,6}
12 ,

where

µ↓{8} = (π1 � . . . � π4)↓{8}.

After this step, all the other attempts to find Z and s, for which Theorem 3
could be applied, fail. So we have to start applying Theorem 2.

Now, we have a 9-dimensional distribution and our goal is to get 3-
dimensional one – distribution of variables X2,X3,X5. So, we have to marginal-
ize 6 variables out with indices 4, 6, 8, 15, 18, 19. This situation is demonstrated
in Figure 6. Let us apply Theorem 2 to delete variable X8:

(π1 � . . . � π13)↓{2,3,4,5,6,15,18,19}

= µ↓{∅} � (µ↓{8}©�∅π5)−{8} � π
↓{2,3,4}
6 � π

↓{3,15}
7 � π

↓{15,18}
8 � π10 � π11

�π
↓{2,5,6}
12 .

Let us denote

κ1(x4) = (µ↓{8}©�∅π5)−{8} =

(
µ↓{8}π5

π
↓{8}
5

)↓{4}
=
∑

x8∈X8

µ(x8)π5(x4, x8)
π5(x8)

.
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Figure 2: Modified sets of variables corresponding to 9-dimensional model.

Then we get

(π1 � . . . � π13)↓{2,3,4,5,6,15,18,19}

= κ1 � π
↓{2,3,4}
6 � π

↓{3,15}
7 � π

↓{15,18}
8 � π10 � π11 � π

↓{2,5,6}
12 ,

and can start marginalizing variable X4 out. Analogously to the preceding step
we get

(π1 � . . . � π13)↓{2,3,5,6,15,18,19}

= κ2 � π
↓{3,15}
7 � π

↓{15,18}
8 � π10 � π11 � π

↓{2,5,6}
12 ,

where

κ2(x2, x3) = (κ1©�∅ � π
↓{2,3,4}
6 )−{4} =

∑
x4∈X4

κ1(x4)π6(x2, x3, x4)
π6(x4)

.

Let us show how to marginalize, for example, X18. The rest will be left to
the reader.

(π1 � . . . � π13)↓{2,3,5,6,15,19}

= κ2 � π
↓{3,15}
7 � π

↓{15}
8 �

(
π
↓{15,18}
8 ©�{2,3,15,18}π10

)−{18}
� π11 � π

↓{2,5,6}
12

= κ2 � π
↓{3,15}
7 � κ3 � π11 � π

↓{2,5,6}
12 ,

where

κ3(x15,19) =
(
π
↓{15,18}
8 ©�{2,3,15,18}π10

)−{18}
=
(
π
↓{15,18}
8 � π10

)−{18}
.

Let us still mention that we could delete π
↓{15}
8 from the generating sequence

because of Lemma 1.
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