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Introduction.

Monte Carlo integration:estimate by simulation expectations of the form

θ = E[φ(X)] = E[φ(X1, . . . , Xk)],

where
1. φ : (Rk, Bk) −→ (R, B) is measurable.

2. X = (X1, . . . , Xk) is a random variable with dimensionk.

Estimation procedure: Given the simulated sample

X(1) = (X
(1)
1 , . . . , X

(1)
k ), . . . , X(n) = (X

(n)
1 , . . . , X

(n)
k ),

estimator is

θ̂ =
1

n

n∑

i=1

φ(X(i)).
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Introduction.

By applying the Central Limit Theorem, we get

θ̂ ∼ N(µ = θ, σ2 =
τ

n
).

A 95% confidence interval ofθ is

θ̂ ± 1.96

√
τ√
n
.
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Introduction.

Remark:

1. The width of the interval is proportional to1√
n

.

2. To reduce width to the its half, we have multiply the numberof
observations by 4.

3. Variance reduction techniques try to reduce the value ofτ .

4. An adequate design of a simulation experiment can improvethe
precision of estimations for a given computational cost andviceversa.
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Hit or Miss Monte Carlo.

Example: Estimate the integral

∫ 1

0

√
1 − x2 dx.

Note: The target of the presented examples is to analyze the precision of
estimators. For this reason we will consider integrals withknown numerical
value. In this example, numerical value isπ4 .

Integral is the area in the first quadrant of the unity circle.

We generate uniform random points in the unity square(0, 1) × (0, 1).
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Hit or Miss Monte Carlo.

n is the number of generated points.

R is the number of points in the regionA under the curvey =
√

1 − x2

(number of hits).

R/n is the estimation of the probability of hitting the regionA.

π̃ = 4R/n is the estimate ofπ.

V [π̃] = 2.697/n
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General procedure.

Let a < b ∈ R.

Let φ : (a, b) −→ R+ be a measurable function such that0 ≤ φ(x) ≤ c
for all x ∈ (a, b).

We want to estimate

θ =

∫ b

a

φ(x) dx;

this is to say, the area under the curveφ(x).
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General procedure.

Generate pairs(U, V ), whereU ∼ U(a, b) y V ∼ U(0, c).

R is the number of points(U, V ) under the curveφ(x).

n is the number of generated points.

The hit or miss Monte Carlo estimators is

θ̃ = c(b− a)P̂ (V ≤ φ(U)) = c(b− a)
R

n
.

E[θ̃] = θ

V [θ̃] = θ
n
[c(b− a) − θ]
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Monte Carlo method.

Let φ : (Rk,Bk) −→ (R,B) be measurable. Thepure Monte Carlo method
estimates

θ = E[φ(X)] =

∫

Rk
φ(x)f(x) dx

with

θ̂ =
1

n

n∑

i=1

φ(X(i)),

whereX(1), . . . , X(n) is a random sample simulated from
X = (X1, . . . , Xn) ∼ f(·).

Corollary.

E[θ̂] = θ

V [θ̂] = 1
n

∫

Rn
(φ(x) − θ)2f(x) dx
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Monte Carlo method.

Example (I =

∫ 1

0

√
1 − x2 dx, continuation).

∫ 1

0

√
1 − x2 · fU(0,1)(x) · dx = E[

√
1 − U2]

U ∼ U(0, 1).

LetU1, . . . , Un be i.i.d.U(0, 1).

Î =
1

n

n∑

i=1

√
1 − U2

i

V [Î] = 0.0498/n.

π̂ = 4Î

V [π̂] = 0.7968/n.
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Monte Carlo method.

Remark. The same amount of generated random numbersU(0, 1) should be
considered when comparing simulation methods.

V [Hit or Miss Monte Carlo] =
2.697

n

V [Pure Monte Carlo] =
0.7968

2n
=

0.398

n
.

For hit or miss Monte Carlo the estimator variance is approximately 7 times
greater than for pure Monte Carlo.
Proposition. Let φ : (a, b) −→ R+,

0 ≤ φ(·) ≤ c, θ =

∫ b

a

φ(x) dx. Then

V [θ̂] ≤ V [θ̃]; with “ = ” ⇐⇒ φ(·) ≡ c.

Conclusion.Hit or miss Monte Carlonevershould be used, because its
variance is always greater than the one of pure Monte Carlo.
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Antithetic variates

Problem: estimate

θ = E[φ(X)] = E[φ(X1, . . . , Xk)];

Basic solution:

Y1 = φ(X
(1)
1 , . . . , X

(1)
k ), . . . , Yn = φ(X

(n)
1 , . . . , X

(n)
k )

θ̂ = Ȳ = 1
n

n∑

i=1

Yi

E[Ȳ ] = θ

V [Ȳ ] = V [Yi]
n
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Antithetic variates

Target: ReduceV [Ȳ ].

Idea: Let Y1 eY2 be identically distributed random variables withE[Yi] = θ.
Then

E

[
Y1 + Y2

2

]
= θ,

V

[
Y1 + Y2

2

]
=

1

2
V [Y1] +

1

2
Cov(Y1, Y2).

Conclusion: It is preferred thatY1 andY2 be negatively correlated than they be
independent.
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Antithetic variates

Definition.

LetX1, . . . , Xn be independent random variables such thatXi ∼ Fi.

Xi = F−1
i (Ui), whereU1, . . . , Uk i.i.d. U(0, 1).

Y1 andY2 areantithetic if and only if

Y1 = φ
(
F−1

1 (U1), . . . , F
−1
k (Uk)

)

Y2 = φ
(
F−1

1 (1 − U1), . . . , F
−1
k (1 − Uk)

)
,

whereφ : (Rk,Bk) −→ (R,B):

measurable

be monotonously increasing (or decreasing) in all its arguments.

Corollary. If Y1 andY2 are antithetic, then they are identically distributed and
dependent.

Proposition. If Y1 andY2 are antithetic, then Cov(Y1, Y2) ≤ 0.
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Antithetic variates

Definition. Theantithetic estimator of θ is

θ̂A =
1

2n

n∑

i=1

(
Y

(1)
i + Y

(2)
i

)
,

Y
(1)
i = φ(F−1

1 (U
(i)
1 ), . . . , F−1

k (U
(i)
k ))

Y
(2)
i = φ(F−1

1 (1 − U
(i)
1 ), . . . , F−1

k (1 − U
(i)
k ))

U
(1)
1 , . . . , U

(1)
k , U

(2)
1 , . . . , U

(2)
k , . . . , U

(n)
1 , . . . , U

(n)
k son v.a.i.i.d.U(0, 1).

Corollary.

E[θ̂A] = θ, V [θ̂A] =
1

2n
V [Y

(1)
i ] +

1

2n
Cov(Y (1)

i , Y
(2)
i ).

Corollary. V [θ̂A] ≤ 1
2V [θ̂].

Remark. The estimator̂θA is preferred tôθ because it has lower variance.
Variance is reduced at least to a half.
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Antithetic variates

Example. θ =

∫ 1

0

√
1 − x2 dx, continuation).

The antithetic estimator ofθ is

θ̂A =
1

2n

n∑

i=1

(√
1 − U2

i +
√

1 − (1 − Ui)2
)
.

E[θ̂A] = θ = π/4, V [θ̂A] =
0.01355

2n
,

Observación.Based onn generated uniform random numbers, we have

V [θ̂] = 0.0498/n, V [θ̂A] = 0.006775/n.

Conclusion: Variance ofθ̂A is approximately7 times lower than variance of̂θ.
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Control variates.

We want to estimateθ = E[φ(X1, . . . , Xk)].

We have a measurable function

ψ : (Rk,Bk) −→ (R,B)

such thatE[ψ(X)] = E[ψ(X1, . . . , Xk)] = µ is known.

We define, for alla ∈ R,

W (X1, . . . , Xk) =

φ(X1, . . . , Xk) − a(ψ(X1, . . . , Xk) − µ).

E[W (X1, . . . , Xk)] = θ

V [W (X1, . . . , Xk)] = V [φ(X)] + a2V [ψ(X)]

− 2aCov(φ(X), ψ(X)),

whereX = (X1, . . . , Xk).
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Control variates.

Corollary. V [W ] is minimized in

a =
Cov(φ(X), ψ(X))

V [ψ(X)]
,

and for this value ofa we get

V [W ] = V [φ(X)] − Cov(φ(X), ψ(X))2

V [ψ(X)]
.

Definition. Let

X(1) = (X
(1)
1 , . . . , X

(1)
k )

...

X(n) = (X
(n)
1 , . . . , X

(n
k )

be a random sample simulated fromX = (X1, . . . , Xk).
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Control variates.

Thecontrol estimator of θ is

θ̂C =
1

n

n∑

i=1

[
φ(X(i)) − a(ψ(X(i)) − µ)

]

Definition. Given three control variatesψ1, ψ2 andψ3 such thatE[ψ1] = µ1,
E[ψ2] = µ2 andE[ψ3] = µ3, thecontrol estimatoris

θ̂C =
1

n

n∑

i=1

[
φ(X(i)) − a1(ψ1(X

(i)) − µ1)

−a2(ψ2(X
(i)) − µ2) − a3(ψ3(X

(i)) − µ3)
]

Corollary.

1. E[θ̂C ] = θ,

2. V [θ̂C ] = V [φ(X)]
n

− Cov(φ(X),ψ(X))2

nV [ψ(X)] , V [θ̂C ] ≤ V [θ̂].
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Control variates.

Remark. Optimal value ofa cannot be calculated because Cov(φ(X), ψ(X))
is unknown.

This problem can be solved as follows:

1. Do previously a pilot simulation to estimate Cov(φ(X), ψ(X)) and use
the estimated value of “a".

2. Estimate “a" directly from the simulated data.

First method has the disadvantage of being more slow.

Second method has the disadvantage that “a" is not a constant any more

to became a function ofX = (X1, . . . , Xk), so that̂θC is not unbiased.
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Stratified sampling.

We want to estimate by simulation

θ =

∫ b

a

φ(x) dx,

whereφ : R −→ R is measurable and positive.

We want to estimate the area under the curvey = φ(x), betweenx = a
andx = b.

Procedure:

1. Divide the interval(a, b) in k disjoint subintervals

(α0, α1], (α1, α2], . . . , (αk−1, αk),

with α0 = a andαk = b.

2. Variability ofφ(x) within each subinterval is lower than in the interval
(a, b).

MONTE CARLO METHOD AN VARIANCE REDUCTION TECHNIQUES – p. 22/56



Stratified sampling.

Idea: Estimate by pure Monte Carlo method

θj =

∫ αj

αj−1

φ(x)dx,

to obtainθ =
k∑

j=1

θj .

Monte Carlo method to estimateθj

θj = (αj − αj−1)

∫ αj

αj−1

φ(x)
1

αj − αj−1
dx

= (αj − αj−1)

∫ αj

αj−1

φ(x)fU(αj−1,αj)(x) dx.
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Stratified sampling.

The estimator ofθj is

θ̂j = (αj − αj−1)
1

nj

nj∑

i=1

φ (αj−1 + (αj − αj−1)Uij)

whereUij i.i.d. U(0, 1)

Definition: θ̂E =

k∑

j=1

θ̂j .

E
[
θ̂E

]
=

k∑

j=1

E
[
θ̂j

]
=

k∑

j=1

θj = θ

V
[
θ̂E

]
=

k∑

j=1

V
[
θ̂j

]
=

k∑

j=1

(αj − αj−1)
2

nj
V [φ(Xij)] ,

whreXij ∼ U(αj−1, αj), and because of
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Stratified sampling.

V [φ(Xij)] =
1

αj − αj−1

∫ αj

αj−1

φ2(x)dx

−
(

1

αj − αj−1

∫ αj

αj−1

φ(x)dx

)2

,

it holds

V
[
θ̂E

]
=

k∑

j=1

1

nj

{
(αj − αj−1)

∫ αj

αj−1

φ2(x)dx

−
(∫ αj

αj−1

φ(x)dx

)2




Remark. When using stratified sampling we have to choosek, {αj} and{nj}.
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Stratified sampling.

Problem: Givenn, k and{αj}. Find{nj} such thatV
[
θ̂E

]
be minimized.

This is to say 



minimize V
[
θ̂E

]
=
∑k

j=1
aj

nj

Restricted to
k∑

j=1

nj = n

whereaj = (αj − αj−1)
2V [φ(Xij)].

Solution:

nj ∝ +
√
aj = (αj − αj−1)

√
V [φ(Xij)],

whereXj ∼ U(αj−1, αj)
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Stratified sampling.

Remark. V [φ(Xij)] is unknown; however the conclusion is clear:nj should
be large if size of stratum is large or if variability within the stratum is large.

How to proceed:

1. First, select the{αj} in such a way that the curvey = φ(x) be
approximately constant in the intervals(αj−1, αj). This is to say, in such
a way thatV [φ(Xij)] ∼= constant. Second, selectnj proportionally to
the length of the interval(αj − αj−1).

2. EstimateV [φ(Xj)] with a pilot simulation. Choosenj according to the

formulanj ∝ (αj − αj−1)
√
V̂ [φ(Xij)].
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Importance sampling.

We want to estimate by simulation

θ =

∫ b

a

φ(x) dx,

whereφ : R −→ R+ is measurable and positive.

Let f(·) be a density function with support in the interval(a, b), then

θ =

∫ b

a

φ(x)dx =

∫ b

a

φ(x)

f(x)
f(x)dx = E

[
φ(X)

f(X)

]
,

whereX ∼ f(·).
If X1, . . . , Xn is a simulated random sample fromf(·), we can estimate
θ by the pure Monte Carlo method. We have

θ̂I =
1

n

n∑

i=1

φ(Xi)

f(Xi)
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Importance sampling.

(1) E
[
θ̂I

]
= θ

(2) V
[
θ̂I

]
= 1

n

{∫ b

a

φ2(x)

f(x)
dx− θ2

}

Remarks.

If f(x) = φ(x)
θ

⇒ V
[
θ̂I

]
= 0.

f(x) = φ(x)
θ
I(a,b)(x) is the optimal selection.

As θ is unknown, we can choosef(x) with a shape similar toφ(x).

The “importance sampling method” is so called becauseφ(·) is evaluated
more frequently in the places where it is more beneficial.
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Importance sampling.

Remark.

Stratified sampling estimation method is a particular case of the
importance sampling method, whenf is a mixture of uniform
distributions

f(x) =

k∑

j=1

nj
n

1

(αj − αj−1)
I(αj−1,αj)(x)
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Importance sampling.

Example (Estimation ofP (N (0, 1) < a))

We want to estimate

θ =

∫ a

−∞

1√
2π
e−

x2

2 dx =

∫ a

−∞
φ(x) dx.

A probability density function with shape similar toφ(·) is the logistic p.d.f.
with mean 0 and variance 1; this is to say

f(x) =
πe

− πx
√

3

√
3
(
1 + e

− πx
√

3

)2 .
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Importance sampling.

We can write

θ =

∫ a

−∞

kφ(x)

f(x)

f(x)

k
dx,

wherek ∈ R is such thatg(x) = f(x)
k

is a p.d.f. in(−∞, a). Therefore

k =

∫ a

−∞

πe
− πx

√

3

√
3
(
1 + e

− πx
√

3

)2 dx =
1

1 + e
− πa

√

3

.
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Importance sampling.

Finally, the estimator ofθ is

θ̂ =
1

n
(
1 + e

− πx
√

3

)
n∑

i=1

φ(xi)

f(xi)
,

wherex1, . . . , xn are random numbers from the p.d.f.g(·).
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Importance sampling.

Generation ofX ∼ g(·).

To generateX we can combine therejection and theinversion methods.

1. We apply the inversion method to generate logistic randomnumbers with
mean 0 and variance 1.

u = F (x) =
1

1 + e
− πx

√

3

⇔ πx√
3

= − log
1 − u

u
.

Generation formula is

x = F−1(u) = −
√

3

π
log

1 − u

u
.

2. We apply a rejection criterium to obtain values ofX with logistic
distribution truncated at(−∞, a).

MONTE CARLO METHOD AN VARIANCE REDUCTION TECHNIQUES – p. 34/56



Importance sampling.

Algorithm:

1. GenerateU ∼ U(0, 1)

2. DoX = −
√

3
π

ln 1−u
u

3. If X > a, go to 1.

4. Output:X
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Conditional Monte Carlo.

Problem: estimate

θ = E[Y ] = E[φ(X)] = E[φ(X1, . . . , Xk)],

whereφ : (Rk, Bk) −→ (R, B) is measurable

Basic solution:

X(1) = (X
(1)
1 , . . . , X

(1)
k ), . . . , X(n) = (X

(n)
1 , . . . , X

(n)
k ) is a random

sample fromX.

Monte Carlo Estimator

θ̂ =
1

n

n∑

i=1

φ(X(i)) =
1

n

n∑

i=1

Y (i).
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Conditional Monte Carlo.

Target: ReduceV [θ̂].

Idea: Conditioning.

E[Y ] = E [E[Y /Z]] ,

V [Y ] = E [V [Y /Z]] + V [E[Y /Z]] ,

LetZ(1), . . . , Z(n) be random variables such thatE[Y (i) /Z(i)] can be easily
calculated. Then:

E
[
E[Y (i) /Z(i)]

]
= E[Y (i)] = θ,

V
[
E[Y (i) /Z(i)]

]
= V [Y (i)] − E

[
V [Y (i) /Z(i)]

]

≤ V [Y (i)].
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Conditional Monte Carlo.

Theconditional Monte Carlo estimator of θ is:

θ̂Z =
1

n

n∑

i=1

E[Y (i) /Z(i)].

For the conditional estimator, it holds

V [θ̂Z ] ≤ V [θ̂].
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Conditional Monte Carlo.

Example 8.1.

W ∼ Po(λ) andX ∼ Be(W,W 2 + 1).

The algorithm to calculate theMonte Carlo estimator is:

1. Generaten pairs (W (i), X(i)), i = 1, . . . , n;

W (i) ∼ Po(λ), X(i) ∼ Be(W (i),W (i)2 + 1).

2. Calculate θ̂ = 1
n

n∑

i=1

X(i).
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Conditional Monte Carlo.

Conditional Monte Carlo method:

E[X /W = w] =
w

w2 + w + 1

θ =

∞∑

w=0

E[X /W = w]
e−λλw

w!
.

The algorithm to calculate theconditional Monte Carlo estimator is:

1. Generaten values W (i) ∼ Po(λ).

2. Calculate θ̂W = 1
n

n∑

i=1

W (i)

W (i)2 +W (i) + 1
.
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Conditional Monte Carlo.

Another case:

For j = 1, 2, . . ., there exist random variablesZ(1)
j , . . . , Z

(n)
j such that

E[Y (i) /Z
(i)
j ] be calculable.

Let p1, p2, . . . be such thatpj ≥ 0,
∞∑

j=1

pj = 1.

Theconditional Monte Carlo estimator of θ is:

θ̂p,Z =

∞∑

j=1

pj
1

n

n∑

i=1

E[Y (i) /Z
(i)
j ]

Proposition.

E




∞∑

j=1

pjE[y /Zj ]


 = E[Y ], V




∞∑

j=1

pjE[y /Zj ]


 ≤ V [Y ].
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Conditional Monte Carlo.

Example 8.2.LetX1, X2 . . . be independent exponential random variables
with parametersλ1, λ2, . . . respectively. Estimate

θ = P (X1 + . . .+Xk ≤ t) = E[φ(X1, . . . , Xk)],

where

Y = φ(X1, . . . , Xk) =





1 if
k∑

ℓ=1

Xℓ ≤ t

0 otherwise

Solution: Let the random sample

X(1) = (X
(1)
1 , . . . , X

(1)
k )

...

X(n) = (X
(n)
1 , . . . , X

(n)
k )

simulated fromX = (X1, . . . , Xk).
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Conditional Monte Carlo.

Pure Monte Carlo estimator is:

θ̂1 =
1

n

n∑

i=1

φ(X(i)) =
1

n

n∑

i=1

Yi

=

number of samples such that
n∑

ℓ=1

Xℓ ≤ t

n

We are interested in finding theMonte Carlo estimator conditioned to

εj(X) = (X1, . . . , Xj−1, Xj+1, . . . , Xk)
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Conditional Monte Carlo.

Solution:

E[Y / εj(X)] = P

(
k∑

ℓ=1

Xℓ ≤ t / εj(X)

)

= Fj


t−

k∑

ℓ6=j
Xℓ


 ,

where
Fj(s) = 1 − exp{−λjs}, s > 0.

Theconditional Monte Carlo estimatoris:

θ̂2 =
1

n

n∑

i=1

k∑

j=1

pjFj


t−

k∑

ℓ6=j
X

(i)
ℓ




wherepj ≥ 0, j = 1, . . . , k y
k∑

j=1

pj = 1.
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Number of replications.

Generaten i.i.d. random variables,Y (1), . . . , Y (n), with meanµ and
varianceσ2.

UseȲn = 1
n

(
Y (1) + . . .+ Y (n)

)
to estimateµ.

The precision of the estimator can be measure with its variance

V [Ȳn] = E
[
(Ȳn − µ)2

]
=
σ2

n
.

Problem: Find the sample sizen such thatV [Ȳn] be sufficiently small.

Solution: If random variablesY (i) are normal, the problem can be solved with
a95% confidence interval forµ

Ȳn ± 1.96σ√
n
.

“find n such that1.96σ√
n

≤ ε".
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Number of replications.

Procedure:
As σ2 is unknown, simulate initiallym variablesY (1), . . . , Y (m), where
m ≥ 30 (in order to make the Central Limit Theorem applicable) and estimate
σ2 with

σ̂2
m =

1

m− 1

m∑

i=1

(
Y (i) − Ȳm

)2

.

If ε the desired precision level, then

1.962σ̂2
m

n
≤ ε2 ⇐⇒ n ≥

(
1.96σ̂m

ε

)2

;

this is to say,

n =

[(
1.96σ̂m

ε

)2
]

+ 1.
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Number of replications.

Finally,

If n > m, then generaten−m new random variablesY (i).

If n ≤ m, then do not generate new random variablesY (i).

Example.

Estimate by simulation the parameter

θ = P (N (0, 1) < 1) ,

whose value is known to beθ = 0.8413.
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Example.

Example 10.1.

θ =

∫ ∞

−∞
φ(x)fN (0,1)(x)dx,

whereφ(x) = I(−∞,1)(x).
In this case, Monte Carlo estimator is

θ̂1 =
1

n

n∑

i=1

φ(Xi) =
Núm. deXi < 1

n
,

whereX1, . . . , Xn are i.i.d.N (0, 1). We have

V
[
θ̂1

]
=

0, 1335

n
.

To obtain a precision of10−3 with a 95% confidence we need
n =

[
(1.96)20.1335 · 106

]
+ 1 = 512854 simulated random variables.
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Example.

Example 10.2.

θ = 1 − 1

2
P (|N (0, 1)| > 1) =

∫ ∞

−∞
φ(x)fN (0,1)(x)dx,

whereφ(x) = 1 − 1
2I(−∞,−1)∪(1,∞)(x).

In this case, Monte Carlo estimator is

θ̂2 =
1

n

n∑

i=1

φ(xi) = 1 − 1

2

R2

n
,

where thexi are random numbers from aN (0, 1) pd.f. andR2 is the number of
xi such that|xi| > 1. We have

V
[
θ̂2

]
=

0.05416

n

To obtain a precision of10−3 with a 95% confidence we need
n =

[
(1.96)20.05416 · 106

]
+ 1 = 208062 simulated random variables.

MONTE CARLO METHOD AN VARIANCE REDUCTION TECHNIQUES – p. 49/56



Example.

Example 10.3. θ = 1
2 + I,

I = P (0 < N (0, 1) < 1) =

∫ ∞

−∞
φ(x)fN (0,1)(x)dx

whereφ(x) = I(0,1)(x).

In this case, Monte Carlo estimator iŝθ3 = 1
2 + Î3, where

Î3 = 1
n

n∑

i=1

φ(xi) =
R3

n

x1, . . . , xn areN (0, 1) random numbers.

R3 is the number ofxi ∈ (0, 1).

We have

V
[
θ̂3

]
=

0.2248

n

To obtain a precision of10−3 with a 95% confidence we need
n =

[
(1.96)20.2248 · 106

]
+ 1 = 863647 simulated random variables.
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Example.

Example 10.4. θ = 1
2 + I,

I = P (0 < N (0, 1) < 1) =

∫ ∞

−∞
φ(x)fU(0,1)(x)dx

wherefU(0,1)(x) = I(0,1)(x) y φ(x) = 1√
2π
e−

1
2x

2

.

Monte Carlo estimator ofθ is

θ̂4 =
1

2
+ Î4

where

Î4 =
1

n
√

2π

n∑

i=1

e−
1
2U

2
i

andU1, . . . , Un are i.i.d.U(0, 1).

MONTE CARLO METHOD AN VARIANCE REDUCTION TECHNIQUES – p. 51/56



Example.

We get

V [θ̂4] =
0.00238931

n
.

To obtain a precision of10−3 with a 95% confidence we need
n =

[
(1.96)20.0023893 · 106

]
+ 1 = 9179 simulated random variables.

Note: In Examples 10.5 and 10.6 estimatorθ̂4 has been improved.
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Example.

Example 10.5. θ = 1
2 + I,

I = P (0 < N (0, 1) < 1) =

∫ ∞

−∞
φ(x)fU(0,1)(x)dx

wherefU(0,1)(x) = I(0,1)(x) y φ(x) = 1√
2π
e−

1
2x

2

.

Antithetic estimator ofθ is

θ̂5 =
1

2
+ Î5

where

Î5 =
1

2n
√

2π

n∑

i=1

{
e−

1
2U

2
i + e−

1
2 (1−Ui)

2
}

andU1, . . . , Un are i.i.d.U(0, 1).
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Example.

Variance of estimator is

V [θ̂5] = V [Î5] =
1

2
V [Î]

+
1

2n
Cov

(
e−

1
2U

2

√
2π

,
e−

1
2 (1−U)2

√
2π

)
=

0.0001278

n

To obtain a precision of10−3 with a 95% confidence we need
n =

[
(1.96)20.0001278 · 106

]
+ 1 = 491 random variables simulated from a

U(0, 1) distribution.
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Example.

Example 10.6.Antithetic estimator in Example 9.5 can be improved by using
control variates.
Observe that

e−
x2

2 + e−
(1−x)2

2 ≈ −x2 + x+
3

2
,

in a neighborhood of the origin.
Let

ψ(x) = −x2 + x be a control function

φ(x) = φ1(x) + φ2(x)

φ1(x) = 1
2
√

2π
e−

x2

2

φ2(x) = 1
2
√

2π
e−

(1−x)2

2
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Example.

The Control antithetic estimator is

θ̂6 =
1

2
+

1

n

n∑

i=1

{φ(Ui) − a(ψ(Ui) − µ)} ,

where

U1, . . . , Un are i.i.d.U(0, 1)

µ = E[ψ(Ui)].

We have

µ = E [ψ] = −E
[
U2
]
+ E [U ] = −

∫ 1

0

u2 du+

∫ 1

0

u du =
1

6

V
[
θ̂6

]
=

V [φ]

n
− Cov (φ, ψ)

2

V [ψ]
=

0.0000244

n
,

To obtain a precision of10−3 with a 95% confidence we need
n =

[
(1.96)20.0000244 · 106

]
+ 1 = 94 random variables simulated from a
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