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Introduction.

» Monte Carlo integrationestimate by simulation expectations of the forn

0 = Elo(X)] = El¢(X1, ..., Xi)],

where
1. ¢:(R", B,) — (R, B) is measurable.
2. X =(Xq,...,Xx)isarandom variable with dimensidn

$» Estimation procedure: Given the simulated sample
xO = (xM o oxMy o xm = (x L x),

estimator Is

;_1 (i)
engx
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Introduction.

$» By applying the Central Limit Theorem, we get

® A 95% confidence interval of is

~ \ﬁ
0+1.96—.
96\/ﬁ
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Introduction.

Remark:

1. The width of the interval is proportional téﬁ

2. Toreduce width to the its half, we have multiply the numder
observations by 4.

3. Variance reduction techniques try to reduce the value of

4. An adequate design of a simulation experiment can impitose
precision of estimations for a given computational cost\andversa.
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Hit or Miss Monte Carlo.

Example: Estimate the integral

1
/ V1 —x?2dzx.
0

Note: The target of the presented examples is to analyze the et
estimators. For this reason we will consider integrals witbwn numerical

value. In this example, numerical valuefs

®» |Integral is the area in the first quadrant of the unity circle.
®» \We generate uniform random points in the unity square) x (0, 1).
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Hit or Miss Monte Carlo.

$» nisthe number of generated points.

$® R isthe number of points in the regiohunder the curvey = v1 — 2
(number of hits).

® R/nisthe estimation of the probability of hitting the regidn
® 71 =4R/nis the estimate of.

® Vin|=2.697/n
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General procedure.

® leta<be R.

® leto: (a,b) — R be a measurable function such that ¢(z) < c
for all z € (a,b).

We want to estimate
b
0 = / o(x) dx;

this is to say, the area under the cunve ).
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General procedure.

® Generate paireU, V), whereU ~ U(a,b)y V ~U(0,c).
$» Risthe number of point§U, V') under the curve(x).
$» nisthe number of generated points.

The hit or miss Monte Carlo estimators is

b =c(b—a)P(V < $(U)) = c(b— a)%.
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Monte Carlo method.

Let : (R", B,) — (R, B) be measurable. Thaure Monte Carlo method
estimates

0 = Elp(X)] () f(z) dx

— k¢
R

with

whereX( ... X() is arandom sample simulated from
X = (X1,..., X)) ~ f(-).

Corollary.
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Monte Carlo method.

1
Example (I = / Vv 1 — 22 dx, continuatior).
0

1
L m . fL{(O,l) (Qj) cdr = E[\/ﬁ]

U~U0,1).
LetUy,...,U, beiid.u(0,1).
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Monte Carlo method.

Remark. The same amount of generated random numizéds1) should be
considered when comparing simulation methods.

. . 2.697
V' [Hit or Miss Monte Carlp =
n
0.7968  0.398
V' [Pure Monte Carlp = = .
2n n

For hit or miss Monte Carlo the estimator variance is appraxaty 7 times
greater than for pure Monte Carlo.

Proposition. Let ¢ : (a,b) — R,

b
0<o()<ec 0= / ¢(x) dx. Then

P ~

Vo] < VI]6]; with “ =7 <= ¢(+)

Conclusion. Hit or miss Monte Carlamever should be used, because its
variance is always greater than the one of pure Monte Carlo.
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Antithetic variates

Problem: estimate

® vi=oxM . xWYy Ly, =ex™ XM

® I=Y=1Y"Y
=1

® EY]=0

s VY] =Y
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Antithetic variates

Target: ReduceV [Y].

ldea: LetY; eY; be identically distributed random variables wihY;| = 6.
Then

oy
o IR 0

L 2 -

Vi 4+ Ys 1 1
1% 1‘; 2l = 5V + 5 Cov(Y1, Ya).

Conclusion: It is preferred that; andY; be negatively correlated than they be
iIndependent.
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Antithetic variates

Definition.
» LetX,, ..., X, beindependent random variables such fKiat- F;.

® X, =F '(U)),whereU,...,Uiid. U(0,1).
Y; andY; areantithetic if and only if

Vio= ¢(FH ()., B (Uk))
Yo = ¢(Fy'(1=U4),...,F ' (1-Uy)),

whereg : (R*, B;,) — (R, B):
$» measurable
$» be monotonously increasing (or decreasing) in all its amguis

Corollary. If Y7 andY; are antithetic, then they are identically distributed and
dependent.

Proposition. If Y; andY; are antithetic, then Cq@v7, Ys) < 0.
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Antithetic variates

Definition. Theantithetic estimator of 9 is

~ 1 &y, 2
a =55 20 (V7 +¥).

1=1
v\Wo= e(F U, FoNOW))
v = o(Fta-Uu,.. . Rt - Uiy

oM, o0 P o o™ U™ sonvaliid (0, 1).
Corollary.
5 > 1 (17, 1 (1) 1(2)
E[04] = = —VI[y, Sl ofs VA A ARAY
[914] 97 V[QA] 2?’LV[ ) ]+ 27l OV( ) )T )
Corollary. V[f4] < 1VI4).

Remark. The estimatof 4 is preferred t@) because it has lower variance.
Variance is reduced at least to a half.
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Antithetic variates

1
Example.§ = / V' 1 — x? dzx, continuatior).
0
The antithetic estimator afis

n

5A:%Z(M+\/1—(1—Ui)2).

1=1

0.01355
on

Observacion.Based om generated uniform random numbers, we have

El04] = 0 = /4, V[0a] =

P

V0] = 0.0498/n,  V[04] = 0.006775/n.

Conclusion: Variance off) 4 is approximatelyr times lower than variance éf
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Control variates.

» We wantto estimaté = E[p(Xq, ..., X)].
» \We have a measurable function

Y (R, By) — (R, B)
such thatE [y (X)] = E[Y (X1, ..., Xk)] = pis known.
We define, for alb € R,

W(X1,..., Xp) =
(X1, .o, Xp) = a((Xy, . Xi) — o).

E[W(X1,...,X1)] = 6
VIW(X1,...,X5)] = VI[p(X)]+a*V[(X)]
—  2aCoVv(¢(X), (X)),
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Control variates.

Corollary. V[W]is minimized in

_ Cov(o(X), ¥(X))

a — 9

V{gp(X)]

and for this value of. we get

CoM((X), ¥(X))*

VIW) = VIp(x)] — =G

Definition. Let
1 1
xO = (xV o xt)

xm=(x" . xim

be a random sample simulated froth= (X1, ..., X%).
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Control variates.

Thecontrol estimator of @ is

N 1 &

Io = — > [o(XD) — a(w(xXD) — )]

n -
1=1

Definition. Given three control variates; , 15 andis such thatk[v,| = uq,
Es] = us and Ey3] = us, thecontrol estimators

- 1 <

Io= -3 [#(XD) — (i (X ) = )

—az(1h2(X W) = piz) — az(¥3(X W) — pg)
Corollary.
1. E[fc] =0,

5 COV(6(X),(X))? 5 5
2. Vifo] = e ZRMELDLIN - Vide] < VD).
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Control variates.

Remark. Optimal value ofa cannot be calculated because Go\X ), (X))
IS unknown.

This problem can be solved as follows:

1. Do previously a pilot simulation to estimate Gev.X ), (X)) and use
the estimated value ot:”.

2. Estimate &" directly from the simulated data.

®» First method has the disadvantage of being more slow.

$» Second method has the disadvantage thiats‘not a constant any more
to became a function of = (X1,..., X%), SO thatf is not unbiased.
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Stratified sampling.

» \We want to estimate by simulation

ezfabqbcc)dx,

where¢ : R — R IS measurable and positive.
$» We want to estimate the area under the curve ¢(z), betweenr = a
andx = b.
Procedure:
1. Divide the intervala, b) in k disjoint subintervals

(Cl{(), a1]7 (ala 042]7 I (ak—la ak)a

with ap = a anda, = b.

2. Variability of ¢(x) within each subinterval is lower than in the interval
(a,b).
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Stratified sampling.

Idea: Estimate by pure Monte Carlo method

0 = /(:1 ¢(x)dz,

k
to obtaing = > 6.

j=1

Monte Carlo method to estimated;

a4 1
93 — (ij — Ozj_l) / ¢(£E)a dx
Q1 J

= (Oéj_Oéj—l)/.j gb(x)fZ/{(aj—l;aj)({E) dx.
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Stratified sampling.

The estimator of; is

é\J = (o CVj—l)ij Z¢(ay—1 + (o — aj—1)Us)
1=1
whereU;; i.i.d. (0, 1)
k
Definition: 6 = » 6.
j=1
R k R k
E|ls| = ZEM =370, =0

vl = v ) -3 e e

%ﬂ whre X;; ~ U(a;_1,;), and because of
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Stratified sampling.

it holds

VPE] - Zk:;.{(aj@jl) N *(x)dx

Remark. When using stratified sampling we have to chobségx; } and{n; }.
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Stratified sampling.

Problem: Givenn, k and{«, }. Find{n;} such that’ {@E] be minimized.
This is to say
[ minimize 1% [54 =Sk

71=1 n;

Restrictedto ) n; =n
\ J=1

wherea; = (o — aj_1)*V [p(X;;)]-

Solution:

’n]OC—F\/i — Q5 1 \/V

Wherer ~ Z/{(ij_l, Oéj)
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Stratified sampling.

Remark. V' |¢(X;,;)] is unknown; however the conclusion is clear: should
be large if size of stratumislarge or if variability within the stratumis large.

How to proceed:

1. First, select thga; } in such a way that the curue= ¢(x) be
approximately constant in the intervats;_,, «;). This is to say, in such
a way thatV [¢(X;;)] = constant. Second, select proportionally to
the length of the intervala; — a;_1).

2. EstimateV [¢(X ;)| with a pilot simulation. Choose; according to the

formulanj X (Ozj — Oéj_l)\/‘/} [¢(XZJ)]
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Importance sampling.

We want to estimate by simulation

ezfaqux)das,

where¢: R — R is measurable and positive.
Let f(-) be a density function with support in the interyal b), then

9=Lb¢(x)dw=Lb%f(”)dx:E [%l

whereX ~ f(-).

If X;,...,X, is asimulated random sample frof(-), we can estimate
6 by the pure Monte Carlo method. We have

~ 1 9(X)
el_nizzlf(Xi)
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Importance sampling.

1) E|6;] =0
(2) V _1/9\[— =1 /b ¢2(x)da: — 9
L . f(o)
Remarks.

® 1 fla) = %2 =V 0| =0,

fx) = %I(a,b)(x) IS the optimal selection.

As 6 is unknown, we can choogs&z) with a shape similar tg(z).

$» The “importance sampling method” is so called becagt(seis evaluated
more frequently in the places where it is more beneficial.
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Importance sampling.

Remark.

$» Stratified sampling estimation method is a particular cdslee
Importance sampling method, whé¢ns a mixture of uniform
distributions

'Mw

Iia, 1, (x)
e j— Qi 1) (a; )
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Importance sampling.

Example (Estimation of P(N(0,1) < a))

We want to estimate

9:/_; \/12?e—§ dx:/_aoogb(a;)da:.

A probability density function with shape similar ¢g-) is the logistic p.d.f.
with mean 0 and variance 1, this is to say

N
o
SE

o
~~ N\
—_
_l_
® |
Sk
N——
\V)
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Importance sampling.

We can write

[ ko) f@)
9‘/_00 f@) &

wherek € R is such thay(z) = @ Is a p.d.f. in(—oo, a). Therefore

SR
—

“ Te
]{:/ 5 —a -
V3 (14e ) Lte v
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Importance sampling.

Finally, the estimator of is

- (1—|—e ?);

wherez, ..., z, are random numbers from the p.ayf.).
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Importance sampling.

Generation of X ~ g(-).

To generateX we can combine thegection and theinversion methods.

1. We apply the inversion method to generate logistic randambers with
mean 0 and variance 1.

1 T 1 —u
u=F(x) = _—_ & — = —1]o .
() 14+e V3 V3 ° u
Generation formula is
3 1 —
:L’:F_l(u):—ilog iy
T U

2. We apply a rejection criterium to obtain valuesXofwith logistic
distribution truncated at—oco, a).
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Importance sampling.

Algorithm:
1. Generaté/ ~ U(0,1)

2. DoX = —¥3|n 1-u
3. If X >a,goto 1.
4. Output: X
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Conditional Monte Carlo.

Problem: estimate

0 = E|Y] = E|¢(X)] = E[p(X1,..., Xi)],
where¢ : (R*, B;) — (R, B) is measurable

Basic solution:

o xO=(xWM  x o xm=x" . x")isarandom
sample fromX.

» Monte Carlo Estimator

n

;_ 1 _ 1 (i)
- nz:: ZY .

izl
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Conditional Monte Carlo.

AN

Target: Reducel’[0].
ldea: Conditioning.

E
b

E
\4

Y /2,
Y /Zl|+VIEY /) Z]],

Let Z(1), ..., Z(™ pe random variables such thafy (*) / Z()] can be easily
calculated. Then:

E

EY® /z0]

ElY® /70

EIY®

— 0,

V:y(i): _E [V[y(’i) /Z(i)ﬂ

VY@,
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Conditional Monte Carlo.

The conditional Monte Carlo estimator of 4 is:
- 1 <& . .
0, == E[Y® /z0)]
7= 2B/ 20

For the conditional estimator, it holds

AN AN

Vidz] < V|d].
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Conditional Monte Carlo.

Example 8.1.

W ~ Po(\) andX ~ Be(W, W2 +1).

The algorithm to calculate thieonte Carlo estimator 1s:
1. Generaten pairs (W, X@) i =1,... n;

W~ Po(A), XD ~ Be(WH w2 4 1),

2. Calculate § = %ZX("').

1=1
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Conditional Monte Carlo.

Conditional Monte Carlo method:

w
EX = =
X/ W=wl=—g
—)\)\w
H—ZEX/W—UJ] ”

w=0

The algorithm to calculate theonditional Monte Carlo estimator is:
1. Generate: values W ~ Po(\).

W (@)
+ WO +1

2. Calculate fyy = %Z TROF
1=1
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Conditional Monte Carlo.

Another case:
®» Forj=1,2,..., there exist random variabl%”, o Z](.”) such that
E[Y®) /Zj(f")] be calculable.

® Letpy, py,...besuchthap; >0,) p;=1.

j=1
® Theconditional Monte Carlo estimator of @ is:

p,Z—ij ZE z)/Z(Z

Proposition.

E Y piEly/ 2| = EY), VY piEly/Z]| <VIY)
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Conditional Monte Carlo.

Example 8.2.Let X, X5 ... be independent exponential random variables
with parameters\, Ao, . .. respectively. Estimate

where

p

k
1 if X, <t
Y = ¢(X1,..., Xp) =] Z; £

0 otherwise

\

Solution: Let the random sample
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Conditional Monte Carlo.

Pure Monte Carlo estimator is:

n

0, = %ZW(@) = %ZY;-
1 =1

1=1

number of samples such that~ X, < ¢
/=1

n

We are interested in finding thdonte Carlo estimator conditioned to

Ej(X) = (Xl, e 7Xj—17Xj—|—17 . ,Xk)
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Conditional Monte Carlo.

Solution:

where
Fi(s) =1—exp{—A;s}, s>0.

Theconditional Monte Carlo estimatas:

R 1 n k k i
QQZEZZPJ'FJ' t—ZXé)
1=1 5=1 b#£y5

k
wherep; >0,57=1,....ky Y p; =1.
%ﬂ J J:Zl J

MONTE CARLO METHOD AN VARIANCE REDUCTION TECHNIQUES — p. 44



Number of replications.

® Generateri.i.d. random variablesy (" ... Y (") with mean and
variances>.

® UseY, =21 (YW 4. . +Y™)to estimateu.
» The precision of the estimator can be measure with its vegian

— o

VIVal = B (Y - w)?) = =

Problem: Find the sample size such that/|Y,,] be sufficiently small.

Solution: If random variabled () are normal, the problem can be solved with
a95% confidence interval fou

Yn n 1.960.
NG

“find n such that!

960 "
n < e.
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Number of replications.

Procedure:
As o2 is unknown, simulate initiallyn variablesy (), ... Y (™) where
m > 30 (in order to make the Central Limit Theorem applicable) astiheate

o2 with

m

1 : —\2
~2 () )
- Y Y. ) .
Om m—lg(

If £ the desired precision level, then

1.96%52,

n

1.968m>2.

§52<:>n2(
g

[
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Number of replications.

Finally,
® If n > m, then generate — m new random variable¥ (*).

® If n < m, then do not generate new random variaf}és.

Example.

Estimate by simulation the parameter
0 =P(N(0,1)<1),

whose value Is known to b= 0.8413.
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Example.

Example 10.1.
0= [ o@ fvion(@)is,

whereg(z) = I(_o,1)(T).
In this case, Monte Carlo estimator is

~ 1 & Nam. deX; < 1
o=~ o(Xi) = ,
1 =1

n

whereX,,..., X, arei.i.d. N (0,1). We have

~ 0,1335
Ve ==

n
To obtain a precision of0—3 with a 95% confidence we need

n = [(1.96)%0.1335 - 10°] + 1 = 512854 simulated random variables.
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Example.

Example 10.2.

0=1- 5P(NO.DI> D= [ 6 fxon (@)da,
Whereqb(:r;) =1- %I(—oo,—l)u(l,oo) (x)

In this case, Monte Carlo estimator is

~ 1 < 1 Ry
— Z :1___7
02 n;¢($) 5

where ther; are random numbers fromM (0, 1) pd.f. andRs is the number of
x; such thatx;| > 1. We have

~ 0.05416
v %

n
To obtain a precision of0—3 with a 95% confidence we need

n = [(1.96)%0.05416 - 10°] + 1 = 208062 simulated random variables.
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Example.

Example 10.3. 6 =1 +1,

T=PO<NOD <= [ 6 o

whereg(x) = I 1)(z).
In this case, Monte Carlo estimatorfs = % - fg where

- i R
® 3= %;M%) =
® o,...,z,areN(0,1) random numbers.
® Rjisthe number of; € (0,1).
We have
v [53} . 0.2248
n

To obtain a precision of0~3 with a 95% confidence we need
n = [(1.96)%0.2248 - 10°] + 1 = 863647 simulated random variables.
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Example.

Example 10.4. 6 =1 +1,

[=PO<NOD <D= [ oa)fios(a)da

— OO

where fyo,1)(x) = Lo,1)(x) Y ¢(x) = \/%e_gx :
Monte Carlo estimator of is

where

andUy,...,U, arei.i.d.t/(0,1).
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Example.

We get

0.00238931
-

V[04]

To obtain a precision of0—3 with a 95% confidence we need
n = [(1.96)%0.0023893 - 10°] + 1 = 9179 simulated random variables.

Note: In Examples 10.5 and 10.6 estimaﬁarhas been improved.
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Example.

Example 10.5. 6 =1 +1,

I=PO<NO1) <D= [ 6@)fuoy@)de

where

andU,...,U, arei.i.d.u(0,1).
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Example.

Variance of estimator iIs

e 3U” e%<1U>2> ~0.0001278
n

1
+—Cov :
2n ( \/ 27 2T

To obtain a precision of0—3 with a 95% confidence we need
n = [(1.96)%0.0001278 - 10°] + 1 = 491 random variables simulated from a
U (0, 1) distribution.
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Example.

Example 10.6.Antithetic estimator in Example 9.5 can be improved by using
control variates.
Observe that

2 )2
_x _(1 x) 2
e 2 te 2 = +:E+§,

In a neighborhood of the origin.
Let

® (z) = —x* + z be a control function
® o(x) = ¢1(z) + ¢a2(x)

® fi(r)= i

P 1 _(Q-=)?
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Example.

The Control antithetic estimator is

s = 5+ SO — a(b(U) - )},

where
® U,...,U,areiid.u(0,1)
® = E[Y(U;)]

We have
1 |
p=FE[y] = —E[UQ]—I—E[U]:—/O u2du+/0 udu:%
=1 VI[g] Cov(g,4)” 0.0000244
A T

To obtain a precision of0~2 with a 95% confidence we need
n = [(1.96)20.0000244 - 10°] + 1 = 94 random variables simulated from a

Z/{ (07 ]‘) d IStrI bUtlon ' MONTE CARLO METHOD AN VARIANCE REDUCTION TECHNIQUES —p. 5€
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