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ABSTRACT

The aim of this paper is to combine two recently derived
powerful ICA algorithms to achieve high performance of
blind source separation. The first algorithm, abbreviated
as EFICA, is a sophisticated variant of a popular algo-
rithm FastICA, and is based on minimizing a nonlinear
HOS criterion. That means that the algorithm ignores
the time structure of the separated signals. The second
algorithm is WASOBI, it is a weight-adjusted variant of
popular algorithm SOBI, which utilizes the time struc-
ture of sources for their separation and does not exploit
non-Gaussianity of the sources. For both algorithms it
1s possible to estimate their separation ability and thus
optimally choose the most appropriate separating algo-
rithm. The proposed combination of these algorithms
is tested on separating autoregressive signals that are
driven by i.i.d. random sequences drawn from a general
Gaussian distribution with parameter o, and on sepa-
rating linear instantaneous mirture of speech signals.

1. INTRODUCTION

Blind Source Separation (BSS), which consists in recov-
ering original signals from their mixtures when the mix-
ing process is unknown, has been widely studied prob-
lem in last two decades. Independent Component Anal-
ysis (ICA), a statistical method for the signal separa-
tion, is also well-known issue in the community. Its aim
is to transform the mixed random signals into mutually
independent components as much as possible.

The squared instantaneous linear ICA model (the
number of the mixed signals is the same like the number
of the original ones) of given data is

x = As (1)

where s represents a d x N data matrix, composed of d
rows, so that each row denotes one independent compo-
nent.

The goal of independent component analysis is to
estimate the mixing matrix A or, equivalently, the de-
mixing matrix W = A~! or, equivalently, the original
source signals s. Without any loss of generality we can
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assume that the independent components are centered
(have sample mean equal to zero) and scale normalized
so that their sample mean square is equal to 1. Since
the separation can be done up to the original order and
signs of s we assume, for simplicity, that it was recovered
perfectly. In simulations we use the re-ordering method
proposed in [14].
For an estimate of the de-mixing matrix W
interference-to-signal ratio (ISR) matrix is defined by
G2
ISR, = —gé, (2)
GLe
where G = WA. Total ISR of the k-th estimated signal
is k-th element of a vector isr, where
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At least three possible kinds of the separation criteria
and corresponding algorithms have been proposed in the
literature. The original signals are modeled 1) as non-
Gaussian i.i.d. processes[1, 2, 3, 6], 2) weakly stationary
(WS) random processes driven by Gaussian white noise
[7, 10], and 3) sequences of independent Gaussian vari-
ables with time-varying variances [5]. The aim of this
paper is to develop a method that takes into account
the two former models [9, 18]. A straightforward gener-
alization would be to model the signals as WS processes
driven by arbitrarily distributed white noise. However,
derivation of an efficient algorithm for such model is a
very difficult task. Instead, we focus on a combination of
two recently derived powerful ICA algorithms: EFICA
[6] and WASOBI [10, 11, 17], that are, under several
assumptions, asymptotically efficient within the frame
of the model 1 and 2, respectively. This means that
they attain corresponding Cramér-Rao bounds (CRLB)
[12, 13] when the original signals s match the appropri-
ate model, and the ulterior conditions are fulfilled.

In case of real data processing, the theoretical as-
sumptions are not fulfilled for the most part. For in-
stance, EEG data comprise both time and spatial struc-
ture, therefore, the contradictory models 1 and 2 can be
both used for partial separation at least. It is believed
that a suitable combination of the models may improve
factuality of the separated components [18].



2. EFICA

EFICA is one of ICA algorithms that are based on non-
Gaussianity of the original signals. The underlying as-
sumption is that each row s, £k = 1,...,d contains NV
independent realizations of a random variable &, having
a ?on—Gaussian distribution function Fj(z) = P(§; <

The algorithm EFICA is a sophisticately modified
version of the popular algorithm FastICA [2]. We shall
not present it here in details, only note that the algo-
rithm utilizes adaptive choice of the contrast function.
Let gx(-) be the nonlinear function chosen for k—th sig-
nal, k =1,...,d and let g, (-) be its derivative. Finally,
let “E” stand for the expectation operator, which can
be realized by the sample mean. Then the asymptotic
ISR matrix has as elements
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In the best possible case, i.e., when g equals the score
function ¢y of the corresponding distribution Fj, (if it
exists) for all k = 1,...,d, (4) is equal to the corre-
sponding CRLB [13], which is

Ke

1
CRLB _
ke = N RipkKy — ].

(5)
where ki, = E[¢2(si,)].

The theoretical ISR was shown to approximate the
empirical ISR very well provided that the independent
components are i.i.d., that means that they have no time
structure. If the components are strongly time depen-
dent, the theoretical ISR appears to be biased, in par-
ticular, overly optimistic. Nevertheless, in the proposed
combination of EFICA with WASOBI, in cases where
the time dependence is strong while the spatial struc-
ture is vanishing, WASOBI estimate will likely be used,
and the inaccurate EFICA estimate is not needed et all.

3. WASOBI

WASOBI is one of ICA algorithms that utilize time
structure of the independent components for their sep-
aration from the mixture and use only second-order
statistics. Like SOBI and other second-order blind
source separation methods, the computation proceeds
via pre-selected number of time-shifted correlation ma-
trices

x[T N Z

(assuming N + M — 1 samples are available).
The observations’ correlation matrices take the struc-
ture of

1xT[n + 7] ,M—1 (6)

T=0,...

R.[7] = AR.[7]A” vr (7)

1To be exact, at most one of the independent components is
allowed to have Gaussian distribution

where due to the spatial independence of the
sources, their correlation matrices Rg[r] =
diag[Ri[7], Ro[7], ..., R4[r]]T are diagonal matrices

and Ry[7] is the auto-correlation of six[n] at lag 7.
In WASOBI, the relation (7) is rewritten as

vec{Rx[7]} = (A ® A)A, (8)

where vec{-} is the well known vec operator, ® denotes
the Khatri-Rao product (a column-wise Kronecker prod-
uct), and A, = diag{Rs[7]}. The computation proceeds
by mean square fitting of the sample covariance matrices
(6) by the structure (7) by means of the model param-
eters A and Ag, ..., Ap—1, using theoretically justified
optimum weights. The optimum weights are estimated
using a consistent initial estimate of the de-mixing ma-
trix, provided e.g. by the SOBI algorithm.

The resultant asymptotic ISR matrix is equal to the
corresponding CRLB. It can be shown that if all sources
are AR of order M — 1, then

1 Ore 02 R[0]

ISR, = —
H N 1= Gpecr 02 R [0]

CRLBy, =

(9)

where o7 is the variance of the innovation sequence of

the source,
M-
Z aieajeRy[i — j]

{ai} M5 are AR coefficients of the £—th source with
agg=1for k,0=1,...,d.

It is worth to note that the optimal weights of WA-
SOBI can still be found in the non-Gaussian case, by us-
ing estimates of higher order moments (up to fourth) of
the sources - which may be computationally prohibitive,
but still more convenient in the “efficient WASOBI”
framework.

4. PROPOSED METHODS

The key advantage of the forementioned methods is their
known theoretical performance which can be estimated
via (4) and (9) using consistent estimates of the incor-
porated quantities, i.e., sample means and Yule-Walker
or other AR coeflicients estimates, respectively. This
provides a very fast way how to evaluate relevance of
the estimated components compared to the computa-
tionally demanding bootstrap methods [15]. A common
drawback of both approaches is the fact that there is
no theoretical background if the original signals do not
fully agree with the assumed model (i.i.d. or Gaussian
WS process), therefore (4) and (9) is valid for the given
signal model only. Nevertheless, one can expect that the
bias behavior is not much critical as shown in the simula-
tion examples. Thanks to time-structure model used by
WASOBI and its known performance (9) bootstrap sur-
rogates of time-structured data are not required, which
it is difficult to construct [15].

The next advantage is that both algorithms used
(EFICA and WASOBI) are asymptotically efficient
methods, indeed, for the given model of the original sig-
nals, therefore, good accuracy of their combination may



be expected. This is in spite of the fact that if WASOBI
is optimal, i.e. the model 2 holds, EFICA is totally use-
less and vice versa. Finally, note that the estimated ISR
matrix via (4) or (9) is not symmetric, in general, com-
pared to the Separability matrix proposed in [15] (see
Figure 4).

A straightforward approach how to combine EFICA
and WASOBI would be a simple decision-based method:
to decide between signals estimated via EFICA and WA-
SOBI by comparing (4) and (9). However, this gives sat-
isfactory result only when all signals are well estimable
by both algorithms and, thus, improves the accuracy of
the estimates only. Here, we propose two alternative ap-
proaches intended for reliable and accurate independent
components estimation.

4.1 Algorithm EFWS

The first method, called EFWS, proceeds in two main
steps:

1. (a) Apply algorithm EFICA on the mixed data x; let
sPF be the estimated source signals,
(b) estimate the achieved ISR matrix ISR®” via (4)
and the corresponding vector isr?, and
(c) compute a hypothetically achieved ISR matrix by
WASOBI ISR" of the estimated signals s&¥
through (9) and the corresponding vector isr'’' 4.
2. For each k£ = 1,...,d accept the estimated signal
sEF iff isrf T > isr)’ “. Let the accepted and the
rejected signals be denoted by u and v, respectively.
Then, apply algorithm WASOBI either on
(a) orthogonal complement of u in the subspace
spanned by the rows of x (orthogonal approach)
or
(b) subspace of the rejected
orthogonal approach).
The orthogonal complement can be found using the well
known Gram-Schmidt process. Note that since both
EFICA and WASOBI do not use the orthogonality con-
straint, the results obtained by the orthogonal and no-
orthogonal approaches are different, in general.

signals v (non-

4.2 Algorithm COMBI

The second method, abbreviated as COMBI, is more so-
phisticated method than EFWS at the expense of higher
computational demand. It proceeds in following steps:

1. Let z=x

2. Apply both algorithms EFICA and WASOBI on z;
let the estimated source signals be sZ¥ and sW4,
respectively. Similarly, the estimated ISR matrix are
ISRZF and ISR, and the corresponding vectors
isrPF and isr"V4.

3. Let E = miny isry " and W = min, ierVA

4. fE<W,

(a) accept those signals s for which isr?? < W
and redefine z either as
i. orthogonal complement of the selected signals
sPF in the subspace spanned by the rows of
z (orthogonal approach) or

s0F
—+* EFICA
-2 WASOBI
— EFWS
—— COMBI
= JADE

‘% TICA

ol
S,
O 30%
n \
Z sf
= A
w F o BN N
= L ! vy 1
| 3
st/ A
] . %
w00, ®
sLAR1 sfAR2 | S&‘GG(G)‘ 5’/Gauss‘
0 05 10 05 10 0.5 10 0.5 1
P P P P

Figure 1: Average SIR achieved in separation of four
signals AR1, AR2, GG(«), and Gauss for @« = 1 and
p€[0,1).

ii. rejected signals of s®F (non-orthogonal ap-
proach)

else,

(b) accept those signals s"4 for which isr)’* < E
and redefine z either as
i. orthogonal complement of the selected signals
s"4 in the subspace spanned by the rows of
the previous z (orthogonal approach) or

ii. rejected signals of sW4 (non-orthogonal ap-
proach).
5. If there are more than one rejected signals, go to (2).
Otherwise, if any, accept the rejected signal.

Both algorithms are proposed in two variants: the or-
thogonal and the non-orthogonal approach. They differ
in the choice of the subspace of the to-be further im-
proved signals. The non-orthogonal approach chooses
the subspace of the rejected signals while the orthog-
onal one takes orthogonal complement of the accepted
signals. The former assumes “good” estimate of the
rejected subspace and may be more accurate since it
relaxes the orthogonality constraint [4]. On the other
hand, the latter approach should be used when reliabil-
ity of the rejected signal subspace is questionable. We
believe that the approach may be useful, e.g. in case
of EEG data processing, which is the subject of further
research. For the present, we use the non-orthogonal
approach only.

5. SIMULATIONS

An illustrative comparison with known ICA algorithms
[1,2,3,9, 10] has been conducted to demonstrate the fa-
cilities of the proposed methods. Four signals of length
N = 1000 were mixed with a random matrix: two
AR processes generated from white noise with gener-
alized Gaussian distribution with parameter o (GG(a)
- for definition see, e.g., Appendix B in [6]) with AR
parameters (1,p) (in the picture designated by AR1)
and (1,—p) (AR2), respectively, an i.i.d. process with
GG(a) distribution (GG(a)), and a Gaussian white
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Figure 2: Average SIR achieved in separation for p = 0.7
and a € [0.1,10].

noise (Gauss). The experiment was repeated in 100
independent trials for each setup of parameters o and
p taken from a € [0.1,10] and p € [0,1). The mean
achieved SIRs of the estimated signals are shown in fig-
ures 1 and 2, respectively, for a fixed o = 1 and a fixed
p=0.7.

Note that for p “small” the signals have no time
structure while the spatial structure grows with a be-
ing far from 2. Here, EFICA gains, but WASOBI lacks
the time-information. By contrast, for p — 1 the time
structure of the two AR processes is significant while
their spatial structure vanishes due to the Central Limit
Theorem. In that cases, WASOBI outperforms EFICA.
This is demonstrated in figure 3, where overall achieved
SIR (of all signals together) from the experiments (fixed
a =1 and fixed p = 0.7) is shown. As can be seen,
both the proposed methods COMBI and EFWS benefit
from partly contradictory advantages of the algorithms
EFICA and WASOBI. Moreover, they are able to esti-
mate the Gaussian i.i.d. signal, which has neither the
temporal nor the spatial structure, thus, in case of WA-
SOBI and EFICA, cannot be estimated unless all the
other signals are estimable.

The performance of the ISR estimators (4) and (9)
are presented in figure 4. The empirical ISR matrix
achieved by EFICA and WASOBI when separating the
four signals from the previous experiment (for « = 1 and
p = 0.7) is shown together with the average estimated
one from 100 independent trials. An estimated ISR ma-
trix in one (the first) trial is presented also to see the
agreement with the mean empirical SIR and the aver-
aged estimate from all trials. This points at good usabil-
ity of the estimators. For comparison, the Separability
matrix, introduced by Meinecke et al. in [15], computed
by the bootstrap method proposed ibidem is included
also. The average empirical ISR matrices achieved by
the novel methods EFWS and COMBI in the same ex-
periment are shown in figure 5.

To demonstrate the performance of the algorithm
on real data, 10 speech signals of length N = 5000 were

a=1 p=0.7
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Figure 3: Sum of achieved SIRs of all signals for a fixed
a =1 and a fixed p = 0.7, respectively.
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Figure 4: Mean empirical, average estimated and first
estimated ISR matrix together with the Separability
matrix [15] acquired when separating four signals: ARI,
AR2, GG(«), and Gauss with @ = 1 and p = 0.7. Note
that elements of the Separability matrix are defined in
different units than those of the ISR matrix.

randomly selected from a database of isolated words?
containing about 200 samples. After centering and nor-
malization, the data were mixed with a random ma-
trix, and consequently separated. Mean and median
SIR obtained in 100 independent trials are summarized
in Table 1.

The achieved accuracy of the novel methods is only
slightly higher in this case. This is caused by the opti-
mistic bias in ISR estimate (4) mainly. The order of AR
modeling in WASOBI, consequently in (9), was chosen
equal to 10. For illustration, a method making an ideal
decision between EFICA and WASOBI estimates, i.e. a
decision using empirical SIR of each estimated signal,
would achieve mean SIR at 36.82 dB and median SIR
at 31.78 dB. It should be noted that although nonpara-
metric NPICA algorithm was very accurate, it has the
drawback of being computationally much more inten-
sive [6] than EFWS and COMBI, especially for high-
dimensional datasets.

2http:/ /noel.feld.cvut.cz/vyu/dzr /cislovky/OBRACENE_BYTY/
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Figure 5: Average empirical ISR matrix achieved by the
proposed algorithms EFWS and COMBI.

6. CONCLUSIONS

In this paper we have proposed novel ICA algorithms
that effectively combine two powerful ICA methods
EFICA and WASOBI, thus, allow separation of signals
that are either i.i.d. non-Gaussian sequences or station-
ary Gaussian processes. Their wider applicability and
superior accuracy were demonstrated by computer simu-
lations by separation of stationary processes drawn from
a general Gaussian distribution.

Table 1: Achieved mean and median SIR of 10 separated
speech signals averaged over 100 independent trials.

Algorithm MEAN [dB] MEDIAN [dB]
EFICA 35.86 27.84
WASOBI 31.85 28.73
EFWS 35.86 27.88
COMBI 35.87 27.89
NPICA 35.80 30.40
FastICA 27.36 25.03
JADE 24.21 21.77
SOBI 23.95 20.67
ThinICA 23.98 21.43
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