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Summary

Objectives: In this paper we study the quantitative relations between the amounts of available information and the achievable quality of decisions, namely the achievable Bayes decision errors in clinical decision making and achievable Receiver Operating Characteristics (the ROC curves) in testing clinical hypotheses.

Methods: The emphasis of this paper is on the research of methods. We use two classical concepts of information theory, namely the Shannon entropy and information, and the Kullback discrimination information, and their extensions called power entropies and informations and power divergences. These concepts are applied in the situations, admitting mathematical models with the possibility of rigorous description of decision procedures and evaluation of decision errors. Simple concrete examples of clinical decisions with formalized structure are introduced and used to illustrate the general considerations.

Results: Our results demonstrate applicability of the proposed methods. We present concrete numerical values of the maximal and minimal Bayes errors achieved under various levels of the power information and investigate the accuracy of these error bounds. For the ROC curves we present similar upper and lower bounds achieved under various levels of the power discrimination information (power divergence). The accuracy of the obtained bounds is shown to depend on the order of used power information and power divergence.

Conclusions: The proposed methods and results are applicable and concrete applications deserve further attention and effort. An interesting open research problem is presented too, connected with the fact that the accuracies of the obtained information bounds depend on the orders of the power informations and divergences. The problem is to find the orders providing the most accurate estimates of the Bayes error and the ROC curve.
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1. Introduction

Gremy (1989) declared informatics as the discipline dealing with information. The role of information was emphasized in the subsequent literature on the informatics in biomedicine e.g. by Haux (1997) and Zvárová (1997). Methods of evaluation, transfer and processing of information have been systematically studied by information theory since in was founded by Shannon (1948). 

This is partly tutorial and partly research paper. It introduces two types of classical concepts of information and their non-classical extensions which are recently studied and widely applied in the statistical estimation, testing and decision making. Most of these concepts are interpreted in a new manner and some of them are new. We investigate concrete quantitative relations between the level of available information and the corresponding level of Bayes decision error in clinical decision situations, as well as between the information and the corresponding level of operating characteristics in the testing of medical hypotheses. Again, most of these bounds are either new or they are applied in an entirely new manner in situations not considered before. The following topics are presented in the paper.

     1. Clinical decision models with formalized structure and quantitative evaluation of decision error. Optimal Bayes error.

     2. Information as measure of uncertainty of a state. Information in observed data and residual information. Classical and non-classical approaches: Shannon information and power informations of positive orders. Adjoint power informations.

     3. Information as a measure of discrimination (divergence) between hypothetical and empirical distribution. Classical and non-classical approaches: Kullback divergence and power divergences of positive orders. Adjoint power divergences.

     4. Bayes error and information. Power information bounds for the Bayes error. Adjoint power information bounds for the Bayes error. Optimality of the quadratic information and the adjoint quadratic information for specification of the Bayes error observed in special situations.

     5. Receiver Operating Characteristic (the ROC curve) as a global characteristic of statistical testing scene. The ROC curve and information. Power divergence bounds for the ROC curve. Optimality of power divergences for specification of the ROC curve.

2. Methods

We are interested in the clinical decision models. Such models admit rigorous description of decision procedures and quantitative evaluation their quality. Consequently they allow to specify the optimal decision schemes achieving the highest quality, e.g. minimizing decision errors. Models with formalized structure are usually described by the quadruplets 
[image: image1.wmf]X

F

M

,

p

,

,

Q

=

 where



[image: image2.wmf]{

}

n

,

,

2

,

1

K

=

Q

  is the space of decision states,



[image: image3.wmf](

)

n

p

p

p

p

,

,

,

2

1

K

=

 is probability distribution on 
[image: image4.wmf]Q

,



[image: image5.wmf]{

}

n

f

f

f

,

,

,

2

1

K

=

F

 are probability distributions on 
[image: image6.wmf]X

. 

More precisely, the elements of 
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 indicate clinical states of a patient or an organ (briefly, diseases) and the probability distribution 
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 describes frequencies of states from 
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 in the catchment area of the clinic. Therefore
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Further, 
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 represents the space of the observations (clinical data) used to decide about the patient's disease (briefly, symptoms). They are random, denoted by 
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The collection 
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2a. Bayes error. The model 
[image: image21.wmf]X

F

M

,

p

,

,

Q

=

 allows to represent the clinical decision procedures by the functions


  
[image: image22.wmf]Q

®

X

:

d

  (decision functions) 

leading to the conditional probabilities of errors
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Optimal clinical decision procedure is represented by the so-called Bayes decision function
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which leads to the optimal decision error 
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Data 
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 depending on data 
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so that the Bayes decision function is given for every 
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Example: Road accident survival. Clinical treatment of the patients with brain injury can be partially modelled by
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where the state 
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Roughly speaking, this means that the probability of expiration of a patient with brain injury within 24 hours is 
[image: image48.wmf]1

0

<

<

p

. Further, let 
[image: image49.wmf]i

f

 be histograms of the indices 
[image: image50.wmf]K

,

0

,

0

)

(

)

(

>

>

i

b

i

a

x

x

 of brain activity of the previous patients 
[image: image51.wmf]K

,

,

b

a

 from the category 
[image: image52.wmf]{

}

4

,

3

,

2

,

1

Î

i

 measured at their reception as they were mined from the clinical database. Finally, let the clinical decision 
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The concrete specification 
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and to very concrete criteria for selection of the optimal Bayes decisions 
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This condition means that the index of brain activity 
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.  Note that a broader context of the decision situation of this exmple can be found in Zvárová et al. (2009). 

2b: ROC curve. Consider the testing of statistical hypothesis that a clinical state leads to the data governed by a given hypothetical distribution. Such hypothesis is usually tested on the basis of empirically collected evidence represented by an alternative empirical distribution. Therefore clinical testing is the clinical decision which can formally be characterized by the binary decision model 
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The tests reject the hypothesis 
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 if the observation 
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The ROC curve is an aggregated operative characteristic of quality of tests, defined as the sensitivity achieved for the given specificity varying between 
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Example: Testing hypotonicity. Consider the hypothesis that the patient is hypotonic with the alternative that he is hypertonic. Let us assume for simplicity that the hypothetical and alternative distributions of the diastolic blood pressure in the ensemble of patients under consideration can be approximates by the normals
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Here
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This curve is shown in Figure 1 which demonstrates also three different levels of critical value. We see that the specificity and sensitivity are antitonic characteristics of the quality of test decision in the sense that the increase of one of them is compensated by the decrease of the other. The choice of the critical value depends on the compromise preferred in the given situation by the decision maker. If the prior probabilities 
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i.e. achieves the optimal Bayes probability of wrong decision.

[image: image96.emf]
Figure 1  The ROC curve for testing the hypotonicity

2c: Information as reduction of uncertainty. Uncertainty of a state 
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Shannon [7] proposed to measure the amount of information obtained by correct identification of the state 
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 by the entropy 
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where 
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 is the distribution which characterizes the least uncertain state when all probabilities are 
[image: image109.wmf]0

 except one which is 
[image: image110.wmf]1

 while 
[image: image111.wmf]Unif

p

 is the uniform distribution 
[image: image112.wmf])

/

1

,

,

/

1

(

n

n

K

 which characterizes the most uncertain state. 

If 
[image: image113.wmf]t

t

t

log

)

(

-

=

f

 is replaced by 
[image: image114.wmf])

1

/(

)

1

(

)

(

1

-

-

=

-

a

f

a

a

t

t

t

 with the power index 
[image: image115.wmf]0

>

a

 then we get the power entropies



[image: image116.wmf]å

å

÷

ø

ö

ç

è

æ

-

-

=

=

i

i

i

i

p

p

p

H

a

a

a

a

f

1

1

1

)

(

)

(

   where 
[image: image117.wmf]0

>

a

.     


        
(3)

Since 
[image: image118.wmf]t

t

t

t

log

)

(

)

(

lim

1

-

=

=

®

f

f

a

a

, we put 
[image: image119.wmf]t

t

t

log

)

(

1

-

=

f

 and 
[image: image120.wmf])

(

)

(

1

p

H

p

H

=

 in (3) so that the power entropies generalize the classical Shannon entropy. The power entropies were introduced in the 1960's as measures of uncertainty one-one related to the logarithmic power entropies
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of Rényi (1961).

All power functions 
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and can thus be used as generalized measures of information called power informations of orders 
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It is easy to verify that the power informations are averages of the local informations 
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appearing in the classical Shannon information (1). 

Let us point out that the power functions
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adjoint to 
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of the type (5). Therefore they define the adjoint power informations
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where 
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Adjoint power informations (entropies) seem not to be introduced in the previous literature.

Data 
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define the adjoint power informations
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where the conditions for equalities are the same as in (9).

2d: Information as divergence of distributions. Consider the testing of the statistical hypothesis that a clinical state leads to the data governed by a given hypothetical distribution 
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replaced by the sum
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with the power indices 
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of Rényi (1961).

The formula
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defines a class of convex power functions adjoint to the power functions 
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of orders 
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The concept of adjoint power divergences seems to be introduced for the first time here. It is useful in the sense that the adjoint divergences represent the standard power divergences with the reversed order of arguments,
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Statistical applications of some of the power divergences are well known. For example, the second order divergence 
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 is the famous likelihood ratio goodness of fit test statistic. Different applications will be investigated in the next section.

3. Results

We are interested in relations between the information available to the decision maker and the quality of decisions achievable by him. Our problem is specification of domains of the quality characteristics such as the Bayes error and the Receiver Operating Characteristic (the ROC curve) corresponding to various amounts of information in the observed data.

3a. Power informations and Bayes error. By intuition, and in accordance with definitions of the Bayes error 
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as the information 
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for the residual power informations 
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for the residual power informations 
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In this paper we present the upper bounds
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and the lower bounds given by the formulas
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and by the products 
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Note that similarly as above, by the bounds for the power 
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 we mean the limits for the nonzero powers 
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obtained in this manner is the well known Fano bound, see Cover and Thomas (1991). The special quadratic information bounds
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were found by Vajda [9] (the proof was finalized by Salichov (1974)). The general upper bounds (19) were rigorously evaluated in Vajda and Zvárová (2007). The lower bounds (21), (22) are new. The upper bounds (20) and the lower bounds (23) were found by Vajda and Morales (2009). 

Figures 2 and 3 present the bounds (19) - (23) for the models with 
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Figure 2  Power information bounds for selected powers: Maximal and minimal residual information under given Bayes error in the case of 5 states.
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Figure 3  Alternative power information bounds for selected powers: Maximal and minimal residual information under given Bayes error in the case of 5 states.
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but also with the order parameters 
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. Table I presents the average inaccuracies
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          Table I  Average inaccuracies for selected information orders 
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We see from Table I that the minimum inaccuracy, i.e. the maximum accuracy is achieved by the power information of order 
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 (quadratic information). The corresponding quadratic information bounds were given in (24) above. These were probably the first Bayes error bounds obtained by means of a non-Shannon information. In the context of these bounds the quadratic entropy and information were introduced for the first time non-axiomatically, on purely pragmatic grounds, in Vajda (1968). At the same time Table I tells us that even more accurate estimates are given by the new alternative power information bounds (20) and (22), with the best result achieved also in this class by the quadratic alternative information. 

3b. Discrimination information and ROC curve. We have seen in Subsection 2d that in each clinical hypotheses testing, the sensitivity is an antitone of specificity in the sense that ii increases from 
[image: image278.wmf]0

 to 
[image: image279.wmf]1

 when specificity decreases from 
[image: image280.wmf]1

 to 
[image: image281.wmf]0

. Nevertheless, for each value of specificity between 
[image: image282.wmf]0

 and 
[image: image283.wmf]1

 the value of sensitivity denoted above as 
[image: image284.wmf])

(

spec

ROC

 may be small or large, depending on the actual distributions 
[image: image285.wmf]A

H

f

f

,

. The challenging problem is to find the maximal and minimal vales 
[image: image286.wmf])

(

spec

ROC

+

 and 
[image: image287.wmf])

(

spec

ROC

-

 of the sensitivity 
[image: image288.wmf])

(

spec

ROC

 achieved under given value of a given power divergence 
[image: image289.wmf])

,

(

A

H

f

f

D

a

 or adjoint power divergence 
[image: image290.wmf])

,

(

~

A

H

f

f

D

a

 .

We solve this problem by applying the bounds of Kraft and Plachky (1970) (cf. also Proposition 2.42 of Liese and Vajda (1987)). We deduced from these bounds for arbitrary parameters 
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and
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Example: Testing hypotonicity revisited. Consider the problem of testing the clinical hypothesis of hypotonicity in the ensemble of patients described by the normal model 
[image: image306.wmf])

20

,

110

(

),

20

,

70

(

N

f

N

f

M

A

H

º

º

=

 studied in the example of Subsection 2b. By formula (2.25) in Liese and Vajda (1987),
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which means that the ROC bounds are
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and
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Figure 4 presents the curve 
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Figure 4  The bounds (27), (28) for the ROC curve in testing hypotonicity.

4. Conclusions

The general results of the paper as well as the particular results of Figures 1 - 4 and Table I demonstrate that the measures of information introduced and studied in the paper are numerically very closely related to the best possible decision performances in clinical situation admitting adequate mathematical models, and can be used to evaluate these performances without the need to specify their actual algorithms or to perform them practically. The paper at the same time demonstrates that the accuracies of the information bounds for the Bayes error and the ROC curve depend on the powers of the used measures of information and divergence. This leads to an interesting problem for a further research, namely which powers of the power informations and power divergences provide the most accurate estimates of the Bayes error and the ROC curve.
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