Anotation:
The problem of state estimation of nonlinear stochastic dynamic systems with nonlinear inequality constraints is treated. The paper focuses on a particle filtering approach, which provides an estimate of the state in the form of a probability density function. A new computationally efficient particle filter for the constrained estimation problem is proposed. The importance function of the particle filter is generated by the unscented Kalman filter that is supplemented with a designed truncation technique to accommodate the constraint. The proposed filter is illustrated in a numerical example.