Založeno v roce 2005 s podporou MŠMT ČR (projekt 1M0572)

Publikace

Minimum Information Loss Cluster Analysis for Cathegorical Data

Typ:
Článek v odborném periodiku
Autoři publikace:
Grim J., Hora J.
Název periodika:
Lecture Notes in Computer Science
Rok:
2007
Strany:
233-247
ISSN:
0302-9743
Klíčová slova:
Cluster Analysis, Cathegorical Data, EM algorithm
Anotace:
The EM algorithm has been used repeatedly to identify latent classes in categorical data by estimating finite distribution mixtures of produkt components. Unfortunately, the underlying mixtures are not uniquely identifiable and, moreover, the estimated mixture parameters are starting-point dependent. For this reason we use the latent class model only to define a set of ``elementary'' classes by estimating a mixture of a large number components. We propose a hierarchical ``bottom up'' cluster analysis based on unifying the elementary latent classes sequentially. The clustering procedure is controlled by minimum information loss criterion.
 
Copyright 2005 DAR XHTML CSS