Založeno v roce 2005 s podporou MŠMT ČR (projekt 1M0572)

Publikace

Improving Sequential Feature Selection Methods Performance by Means of Hybridization

Typ:
Konferenční příspěvek
Autoři publikace:
Název sborniku:
Proc. 6th IASTED Int. Conf. on Advances in Computer Science and Engineering
Nakladatel:
ACTA Press
Místo vydání:
Calgary
Rok:
2010
ISBN:
978-0-88986-830-4
Klíčová slova:
Feature selection, sequential search, hybrid methods, classi
Anotace:
In this paper we propose the general scheme of defining hybrid feature selection algorithms based on standard sequential search with the aim to improve feature selection performance, especially on high-dimensional or large-sample data. We show experimentally that “hybridization” has not only the potential to dramatically reduce FS search time, but in some cases also to actually improve classifier generalization, i.e., its classification performance on previously unknown data.
 
Copyright 2005 DAR XHTML CSS