Založeno v roce 2005 s podporou MŠMT ČR (projekt 1M0572)

Publikace

Decomposition of Probability Tables Representing Boolean Functions

Typ:
Konferenční příspěvek
Autoři publikace:
Název sborniku:
Proceedings of the 8th Czech-Japan Seminar on Data Analysis and Decision Making under Uncertainty.
Nakladatel:
Oeconomica
Místo vydání:
Praha
Rok:
2005
Strany:
159-166
Anotace:
We apply tensor rank-one decomposition (Savicky and Vomlel, 2005) to conditional probability tables representing Boolean functions. We present a numerical algorithm that can be used to find a minimal tensor rank-one decomposition together with the results of the experiments performed using the proposed algorithm.
We will pay special attention to a family of Boolean functions that are common in probabilistic models from practice - monotone and symmetric Boolean functions. We will show that these functions can be better decomposed than general Boolean functions, specifically, rank of their corresponding tensor is lower than average rank of a general Boolean function.
 
Copyright 2005 DAR XHTML CSS