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Abstract: Local state estimation approaches for nonliseashastic systems are consid-
ered. The derivative-free unscented transformation isdhiced and used in the design of
a local smoothing algorithm. Its numerical properties dsewssed and improved by the
derivation of the square-root smoothing algorithm. The arioal properties of proposed

algorithms are illustrated in a numerical example.
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1. INTRODUCTION

The problem of recursive state estimation of discrete-tsteehastic dynamic systems from
noisy or incomplete measurement data has been a subjeatsiiecable research interest for
the last several decades.

The general solution of the estimation problem, based orefiayp approach, is given by
the Functional Recursive Relations (FRR’s) for computatd probability density functions
(pdf’s) of the state conditioned by the measurements. ThdEe provide a full description
of the immeasurable state. The FRR’s are known for all thegtspf the estimation problem
which can be distinguished, according to relation betw@ae tnstant of the estimated state
and time instant of the last measurement, to predictioeyifily, and smoothing. It should be
mentioned that the FRR’s for the filtering and the one-stegigtion are known as the Bayesian
Recursive Relations (BRR's).

The closed form solution of the FRR'’s is available only foeafspecial cases (Lewis, 1986;
Simandl, 1996), e.g. for linear Gaussian system, wheredhisn of the filtering problem

is given by the well-known Kalman Filter. As a solution of sotlmng problem, the Rauch-
Tung-Striebel Smoother (RTSS) (Lewis, 198mand| and Kralovec, 2000) can be used. The
alternative approach for smoothing is based on the douldfndpe state dimension and on
the utilisation of common filtering techniques (Sodestr1994:Simandl and Dunik, 2006).
The multi-step prediction can be imagined as a multiply eagibn of the one-step prediction
known from the filtering aIgorithm?(imandI and Kralovec, 200Gimand! and Dunik, 2006).
In other cases it is necessary to apply some approximativieaus.



The local methods are often based on approximation of théingam functions in the state
or measurement equation so that the Kalman technique casduefar the FRR’s solution.
This approach causes that all conditional pdf’s of the statamate are given by the first two
moments, i.e. mean value and covariance matrix. This ropgho&imation of the a posteriori
estimates induces local validity of the state estimatescandequently impossibility to ensure
the convergence of the local filter estimates. Moreoveultieg estimates of the local filters
are suitable mainly for point estimates. On the other harelativantage of the local methods
can be found in the relative simplicity of the FRR’s solution

The standard local nonlinear filtering methods are basederapproximation of nonlinear
functions in the state or the measurement equation with #ytof expansion. The FRR’s
solution based on the Taylor expansion first order appratkandeads to the Extended Kalman
Filter (EKF) or to the Iterated Kalman Filter (Lewis, 198&enerally, the more exact Second
Order Filter (Athant al, 1968; Henriksen, 1982) utilises the Taylor expansion sdayder
approximation. The Taylor expansion first order can be ueetksign the extended Rauch-
Tung-Striebel Smoother and the multi-step predictor a$ @éd!inandl and Kralovec, 2000).

In the last decade the novel approaches to the local filtegulelsased on the polynomial in-
terpolation (Ngrgaardt al., 2000; Ito and Xiong, 2000; van der Merwe and Wan, 2001; Buni
et al,, 2005) or on the unscented transformation (Jwdteal.,, 2000; Ito and Xiong, 2000; Julier
and Uhlmann, 2004; van der Merwe and Wan, 2001; Den#., 2005), have been published.
The approximation of the nonlinear functions by means ofStiding’s polynomial interpola-
tion first or second order leads to the Divide Differencedfdtlst order (DD1) or to the Divided
Difference Filter 2nd order (DD2), respectively, which aiually called as the Divided Dif-
ference Filters (DDF'’s) (Ngrgaast al., 2000). Instead of direct substitution of the nonlinear
functions in the system description an approximation of‘ttieeady approximated” pdf’s rep-
resenting state estimate by a set of deterministically@hosighted points (so calledpoints)
can be utilised as a base for the local filters. This transétion is often called as the unscented
transformation. The Unscented Kalman Filter (UKF) (Juéeal.,, 2000; van der Merwe and
Wan, 2001:Simandl and Dunik, 2005) or the Gauss-Hermite Filter (hd Xiong, 2000) ex-
emplify this approach. The smoothing local methods utifisihe Stirling’s interpolation and
unscented transformation was very briefly outlined in (Wad san der Merwe, 2001) and
properly derived in éimandl and Dunik, 2006). Similarly to the standard loggiraaches the
multi-step prediction is realised by the multiple applioatof the one-step prediction known
from the filtering aIgorithmeSimandI and Dunik, 2006). It is very important to mentioatttine
estimators based on the unscented transformation anditheg3t interpolation have common
features although the basic idea of these estimators com@&®m quite different assumptions
(Ngrgaardet al., 2000; Lefebvreet al., 2002; Duniket al., 2005). Therefore, these local fil-
ters can be called together as the sigma point Kalman estisat the derivative-free Kalman
estimators.

The numerical properties of the derivative-free local fdteave been discussed in the sev-
eral papers. For example the DDF’'s have been directly dedigm the square-root form
(Ngrgaardet al, 2000) and although the UKF was originally derived in therfesquare-root”
form, its square-root versions have been subsequentlyedei (van der Merwe and Wan,
2001;Simand! and Dunik, 2005). However, the poor attention heelpaid to the numerical
properties of the novel derivative-free smoothers.é'rnr(andl and Dunik, 2006) only the final
algorithms of the derivative-free smoothers were presewithout regular their derivation.

Therefore, in the paper the square-root smoothing alguarithhich is based on the unscented



transformation, will be regularly derived. This modifi@atimproves not only numerical prop-
erties of the smoothing algorithms, but it slightly redutiesir computational demands as well.
Mention that the same approach presented in this paper caadilg used for design of the
smoother based on the both first and second order Stirlintgggolation.

The rest of the paper is organised as follows. Section 2 istddvto the system description
and to the Bayesian solution of the estimation problem. THe® derivative-free smoother
based on the unscented transformation is introduced indde8tas well as its square-root
modification. In Section 4 the theoretical results are ifaied in a numerical example. Finally,
some conclusion remarks are given in Section 5.

2. PROBLEM STATEMENT

Consider the discrete-time nonlinear non-Gaussian ssbicheystem

Xke1 = fkXk) + Wk, k=0,1,2,..., (1)
Zk = hg(Xk) + vk, k=10,1,2, ..., (2)

where the vectorsy € R™ andzx € R" represent the immeasurable state of the system and
the measurement at time instdgtrespectively, andk : R™ — R™, hy : R™ — R"z are
known vector functions. The variableg € R"x, vy € R"2 are the state and the measurement
Gaussian white noises. The pdf's of both noiggs(wy) = N{wk : On,, Qk}, Pu (Vk) =
N{vk : 0On,, Rk} are assumed to be known as well as the pdf of the Gaussiaal isitite
Px,(X0). The noises are mutually independent and independent afitred state.

Mention that the system description with non-additiveestatmeasurement noise can be trans-
formed to the previous one (1), (2) by appending noise vhasaty, vi to the state, (Nagrgaard
et al, 2000).

The system can be rewritten as a set of the conditional gahgidf’s py,, , x. (Xk+11Xk) =
Pw Xk+1 — fk(Xk)) and the measurement pdfs, x, (zk|Xk) = Pv(Zk — hk(Xk)), VK. For the
sake of simplicity all pdf’s will be given by their argument®. p(Xk+11Xk) = Pxic,q 1x Xk+11Xk)-

The aim of the state estimation is to find the state estimatiedariorm of the conditional pdf
P(Xm|Z¥) given by the functional recursive relations known for thediction fn > k), the
filtering (m = k) and the smoothingWi < k). The FRR’s are assumed in the following form
for the (m — k)-step prediction

P(Xm|2) = f P(Xm[Xm-1) PXm-112)dXm_1, 3)
wherem > Kk, for the filtering

P(Xk|Z1) p(z«xk)
p(z¢|Z¢1)

wherep(zx|Z™1) = [ p(x|Z¥~1) p(zk|x)dxk, m = k, and for the(k — m)-step smoothing

, (4)

p(xk|Z¥) =

k m p(xm+1|zk)
PXml|Z") = p(Xm|Z™) DX a|Z™ P(Xm+1/Xm)dXm+1, ()
wherem < k andz = [z, ..., z]. The recursive computation of tien — k)-step prediction

(3) may start either from the filtering paf(xi|Z€) or from the predictive pdp(x|z¥), where



m > t > k. The computation of the filtering pdf (4) comes out from the-@tep predictive
pdf p(xx|zZ“~1). Finally, the recursion for the smoothed pdf (5) can beatétil either by the
filtering pdf p(xx|Z¥) or by another smoothed pgi(x; |Z¢), wherem < t < k.

The exact solution of FRR’s (3)—(5) is possible only for a fepecial cases, e.g. for linear
Gaussian systems. In other cases is therefore necessqylycsame approximative method.

The local methods based on the Taylor expansion or on theatieg-free alternatives are
known for the prediction, the filtering and the smoothing.i/kthe local predictors and filters
are available in a numerical stable versions, the numesiable versions of the local smoothers
have not been properly derived yet. Therefore, the aim efghper is to propose the technique
how to design the numerical stable versions of the smoathers

3. DESIGN OF DERIVATIVE-FREE SMOOTHERS

The smoothing problem can be generally divided into theetlyups, namely fixed-point,
fixed-lag and fixed-interval smoothing (Grewal and Andre2@$)1;Simandl and Dunik, 2006),
and the local smoothing algorithms based on the Rauch-Bingbel smoother can be easily
used for the solution of all three smoothing problem. Thenefin this paper the main stress
is laid on the derivation of numerical stable versions of liieal RTSS. However, due the
space constrains the stress will be mainly laid on the nwalgproperties of the derivative-free
unscented RTSS.

The algorithms of the local estimators have the same stietsithe estimators for the linear
Gaussian system, where the predictive, filtering and snmogtheans and covariance matrices
are computed recursively. The crucial difference betweerdcal estimators can be found in

the particular approximation of the system descriptionohhallows to apply the techniques

known from the linear Gaussian systems.

Therefore, in the first part of this section the Rauch-TutrieBel smoother, as base for design
of local smoother, will be introduced. Then, the unscentadsformation and its application
in the smoother design will be recapitulated. Finally, thaae-root modification of the un-
scented smoother will be presented.

3.1 Rauch-Tung-Striebel Smoother

As a main tool for design the unscented smoother, the reBalts the area of linear system
smoother design can be used.

Let the linear Gaussian system (1), (2) whété&k) = Fyxx andhg(Xx) = Hgxk, Yk be
considered. For these systems the exact solution of theteinggroblemp(xm|Z), m < k

is given e.g. by the Rauch-Tung-Striebel smoother (RTS8)v{§, 1986). The RTSS can be
described by the following relations (Lewis, 1986)

Kmik = Xmim + Kmk Kmt-1jm — Xm4+-1k), (6)
I:)m|k = I:)m|m - Km|k(|:)m+1|m - Pm+1|k)K-rL|k, (7)
Km|k = Pxx,m+1|mpr:]il|m, (8)

Pxx,m+1im = E[(Xm — Xm) Xm+1 — )A(m+1|m)T|Zm] = Pm|mF-r|r—p 9



wherem = k — 1k — 2,..., Pxxm+1m IS the cross-covariance matrix of the staxgsand
Xm+1, mk = E[Xm|Z¥], Pmk = cov[xm|Z¥] are the smoothed mean and covariance matrix.
The filtering mearkmm = E[xm|z™] and covariance matriRym = cov[Xm|z"] and the one-
step predictive meaRmm-1 = E[xm|z™"!] and covariance matriRmm_1 = cov[xm|z"}]

are known from the “forward” run of the KF.

However, if the nonlinear system is considered, the comagamatrixPyx m+1m (9) cannot
be generally computed. To find the solution some approximaéchnique, e.g. the UT, has
to be used. Therefore, in the following section the UT wilraduced by an example of the
transformation of random variable through nonlinear fiorct

3.2 Unscented Transformation

Let x € R™ andy € R"™ be random vector variables related through the known neatin
functiony = g(x) = [01(X), ..., gny(x)]T. The pdf of the variabl& is characterised by the first
two moments, i.e. the me&mand the covariance matri¥, and the aim is to calculate the mean
y and the covariance matrR, of y and the cross-covariance matRyy. The general solution
of this problem is possible only for linear functi@g-). In other cases some approximative
solution has to be applied.

One of the possible solution of this “transformation prollds based on the so called un-

scented transformation (UT) (Juliet al, 2000). The UT is grounded on the idea that it could
be easier to approximate a Gaussian distribution thatdta&pproximate an arbitrary nonlinear

function. Then, the pdf of the random variallés approximated by a set of deterministically
chosen weighted-points{Aj }, where

Xo=X, Wo = , 10
0=XWo= (10)
1 .
X = (\/(nx‘l—K)Px) Wi = m»' =1,...,ny, (11)
X
. 1 ,
Xj=%— (,/(nX+K)PX>j_nX,W,~ = =ML (12)

The term(«/(nx + K)Px)i represents-th columrt of the matrixy/(Ny + k)Px and the variable
k is introduced to have a possibility to influence the exacioéthe UT. The set af -points ex-
actly captures at least the mean and the covariance matixXidfen, each point is transformed
via the nonlinear function

Vi = g(X), vi. (13)
And the resulting characteristics are given as
2Ny
AUT Z Wi, (14)
2nX
Pﬂ—ZW.O?. IR —9R*DT, (15)
2nx
PoA= D> Wi =001 — 935D (16)
i=0

1The columns are used in the case tats decomposed &3 = SXS)T( If Py = S)T(SX the rows ofPx have to
be used in the-point computation.



The recommended settings of the scaling paramet&tool for adjustment of the UT accuracy,
is k = 3 — nyk for the Gaussian distribution (Juliet al., 2000). The introduced subscript
highlights that these results are only approximations etthe mean and the covariance matrix
which cannot be generally computed.

3.3 Unscented Rauch-Tung-Striebel Smoother

By combining of the results presented in the previous twesation, the Unscented Rauch-
Tung-Striebel Smoother (URTSS$itmandl and Dunik, 2006) can be designed. The crucial
problem of applying RTSS to the nonlinear system is the irsjnilgy of computation of the
cross-covariance matriRyy mt+1m (9). This problem can be now solved by utilising the UT,
especially relations (14) and (16). Thus, the approxineegniution ofPyx m+1m IS given by

. . T,om
Pxx.m+1m = E[(Xm — Xmjm) Xm+1 — Xm+1m) * 127]

2Ny
~ ZWI (‘)(I ,mm — Xmlm)( i,m+1m Xm+1|m)T’ (17)
i=0
where X8 1 = fm(Ximm). Vi and &,y = WX S m (Simand! and Dunik,

2006). Then the relations (6)—(8) can be used for obtalﬂnag;moothed characteristics.

The algorithm of the URTSS can be summarised by the followimgations

Kmik = Xmim + Kmik Kmt+1k — Xm4+1/m), (18)
I:)m|k = I:)m|m - Km|k(Pm—|—1|m - Pm+1|k)K1n-1|k, (19)
Km|k = Pxx,m+1|mpail|m, (20)
2Ny
Pxx,m+1m = Z Wi (X mm — Xmlm)( i,m+1m Xm+1|m)T- (21)

i=0

It is very important to note, that the square-root of the sthnimg covariance matrifm have
to be computed at each time instant to find the appropriatefdbe o-points. Therefore, it
could be advantageous to directly compute the square-folo¢ moothing covariance matrix.
The second, and more important property of the direct coatjaut of the covariance matrix
factor, is the significant improvement of the URTSS numénraperties. The square-root
URTSS will be proposed in the following part.

Note that in the URTSS design the basic UT was used whichrsuffam some disadvantages.
However for design the URTSS all other improved types of tfie mamely Gauss-Hermite

guadrature, scaled UT etc., can be used as well (Ito and X@0@0; Julier and Uhlmann,

2004; Duniket al., 2005).

3.4 Square-Root Unscented Rauch-Tung-Striebel Smoother

To design the square-root form of the URTSS, it is advantagigmdefine two auxiliary matri-
ces

I\/lx mim = [\/ (XO mim — )A(m|m) \/ 2nx (XZnX mm — )A(mlm)] (22)
x .m+im — =[vW (XO m+1m — Xm+1|m) , v Wan, (Xan m+1jm — m+1|m)] (23)



which facilitate the square-root URTSS design.
Then, the smoothing gain, with respect to (20) and (17), eawiitten in the form
Km|k =M x,m|m(|\/I )S(,m+1|m)T (F)m-l—1|m)_l =M x,m|m(|\/I )S(,m+1|m)T(Sm+1|mS;rn+1|m)_l» (24)

whereSqy;1m is the square-root of the predictive covariance madx 1m. Then, the smooth-
ing covariance matrix (19) can be extended by the followirag w

I:)m|k = I:)m|m - Km|kPm+1|mK-r;|k - Km|kPm+l|mK;|k+
+ Km|kPm+1|mK-r£]|k + Km|kPm+1|kK-r£]|k, (25)

where the ternkK m|kPm+1|mKI1|k can be expressed as

KmkPmsmK m = MycmimM3, iy am) K e (26)
= KmlkM)s(,m+l|mM;l(—,m|mv (27)

TiT T T
= KmkM3 migmM3 migm) Kmik + KmikSo.mSg mK miks (28)

andSq m is the square-root of the state noise covariance m@t#ix

The substitution of (26)—(28) into (25) lead to
T TiT T
Pmik = MxmmMy mim = MxmimM3 miam) Kmik = KmikM$ migimMx mim+
+ KmkM3 my 1jm(M >S<,m+1|m)TK-rI1-1|k + KmlkSQ,mS-(l';),mK-r;|k+
+ Km|kSm+l|kS;|T-1+1|kK-r;|k = [M x,mm — Km|kM)S(,m+1|my KmkSo,m, Km|kSm+l|k]><
X [Mx mim — KmkM§ m 1m> KmikSQ.m, KmikSm1k] - (29)

Now, the square-root form of the smoothing covariance margiven as

Sk = [Mx.mm — KmkM3 m1im» KmikSQ.m» KmikSmajk]- (30)

However, this matrix is rectangular. To compute the sef-gfoint the square matrix is de-
sired. Therefore, the Householder triangularization ipleyed (Grewal and Andrews, 2001;
Ngrgaarcet al., 2000) to transform a known rectangular matixe R™*" to a square matrix

N e R™" so that the equalitfyM T = NNT is accomplished. The Householder triangulariza-
tion can be written abl = ht(M).

Now, the “square” square-root form of the smoothing covargamatrixSm can be easily
determined, i.e.

Sm|k = ht([M x,mm — Km|kM)s(’m+1|m, Km|kSQ,m, Km|kSm+1|k])- (31)

Then, the algorithm of the square-root URTSS is given by dtlewing equations

Kmik = Xmim + Kmk Km+1k — Xm+1/m), (32)
S'n“( = ht([M X’m|m - Km|kM)s(’m+1|m, Km|kSQ,m, Km|ksm+1|m]), (33)
Km|k = Pxx,m+1|m(Sm+1|mS;|~;1+1|m)_1, (34)

/

IDxx,k+l = MX,mlm(Mi,m—f—um)T' (35)



| Algorithm || MSE of fixed-lag smoothing| Time [s] |

ERTSS 1.36x 1073 1514
URTSS 1.25x 1073 3.274
sURTSS 1.25x 1073 27674

Table 1. MSE of fixed-lag smoothing and computational dersand

For the design of the square-root derivative-free smodttee$tirling’s interpolation (Ngrgaard
et al, 2000;Simand| and Dunik, 2006) can be used as well. Due to the conpraperties of
Stirling’s interpolation and the UT the resultant relagoare quite similar to the above pre-
sented.

4. NUMERICAL ILLUSTRATION

Let the one-dimensional non-linear Gaussian system (kioxong, 2000:Simandl and Dunik,
2006) be considered

Xk11 = Xk + BAtX(1 — XZ) + w, (36)
7 = At(x¢ — 0.05) + vy, (37)

wherek = 0,1,...,400, system initial conditionxg = 1.2, wx ~ N{wk : 0, 0.25At},
vk ~ N{wk : 0,0.01At} and At = 0.01. Initial condition of the estimators is considered
asp(Xolz™t) = N{xo: 2.2, 2}.

The aim is to find the two-step fixed-lag smoothing estimaies_»|z¥) by means of the stan-

dard local RTSS based on the Taylor expansion 1st orderrfH&teRTSS - ERTSS), the novel
Unscented RTSS and the square-root URTSS (SURTSS). Theireepeal results are sum-

marised in Table 1 where the Mean Square Error (MSE the fixed-lag smoothed estimate
and the computational time per one smoother run are given.

The improvement of estimation performance of URTSS towéndsExtended RTSS is pro-
portional to the improvement of the UKF towards the EKF. Ma@mtthat the improvement
becomes significant especially for the “highly” nonlinegstems. Naturally, the estimation
performance is the same for both URTSS. The square-root SR¥Fiags the smaller compu-
tational demands especially for the low dimensional systdi#owever, the main advantage of
the square-root smoother can be found in the improved nealesiability where the smoothed
covariance matrix can not be negative-definite.

5. CONCLUSION

The derivative-free smoothing methods were discussed. ufiseented transformation, as a
derivative-free approximation technique, was briefly de&sed and used in the design of the
Unscented Rauch-Tung-Striebel Smoother. The squaresemsion of the Unscented Rauch-
Tung-Striebel Smoother was derived to improve the numigsicgerties of that algorithm. The
proposed method for design square-root smoothers can iy wsexd for other smoothers that
are based on different approximation techniques, e.glirfgfs interpolation, Gauss-Hermite
guadrature, scaled unscented transformation. The prdgoseother was demonstrated on the
numerical example.

MSE= ( ilzog ﬁg%(x,i( — XL’E)Z)/(401>< 100), Wherexli( orXL’E is the true or estimated state, respectively,
in thei-th repetition andN is the time instant of the last possible estimate.
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