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Abstract: Local state estimation approaches for nonlinearstochastic systems are consid-
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a local smoothing algorithm. Its numerical properties are discussed and improved by the
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1. INTRODUCTION

The problem of recursive state estimation of discrete-timestochastic dynamic systems from
noisy or incomplete measurement data has been a subject of considerable research interest for
the last several decades.

The general solution of the estimation problem, based on Bayesian approach, is given by
the Functional Recursive Relations (FRR’s) for computation of probability density functions
(pdf’s) of the state conditioned by the measurements. Thesepdf’s provide a full description
of the immeasurable state. The FRR’s are known for all three parts of the estimation problem
which can be distinguished, according to relation between time instant of the estimated state
and time instant of the last measurement, to prediction, filtering, and smoothing. It should be
mentioned that the FRR’s for the filtering and the one-step prediction are known as the Bayesian
Recursive Relations (BRR’s).

The closed form solution of the FRR’s is available only for a few special cases (Lewis, 1986;
Šimandl, 1996), e.g. for linear Gaussian system, where the solution of the filtering problem
is given by the well-known Kalman Filter. As a solution of smoothing problem, the Rauch-
Tung-Striebel Smoother (RTSS) (Lewis, 1986;Šimandl and Královec, 2000) can be used. The
alternative approach for smoothing is based on the doublingof the state dimension and on
the utilisation of common filtering techniques (Söderstr¨om, 1994;Šimandl and Dunı́k, 2006).
The multi-step prediction can be imagined as a multiply application of the one-step prediction
known from the filtering algorithm (̌Simandl and Královec, 2000;Šimandl and Dunı́k, 2006).
In other cases it is necessary to apply some approximative methods.



The local methods are often based on approximation of the nonlinear functions in the state
or measurement equation so that the Kalman technique can be used for the FRR’s solution.
This approach causes that all conditional pdf’s of the stateestimate are given by the first two
moments, i.e. mean value and covariance matrix. This rough approximation of the a posteriori
estimates induces local validity of the state estimates andconsequently impossibility to ensure
the convergence of the local filter estimates. Moreover, resulting estimates of the local filters
are suitable mainly for point estimates. On the other hand, the advantage of the local methods
can be found in the relative simplicity of the FRR’s solution.

The standard local nonlinear filtering methods are based on the approximation of nonlinear
functions in the state or the measurement equation with the Taylor expansion. The FRR’s
solution based on the Taylor expansion first order approximation leads to the Extended Kalman
Filter (EKF) or to the Iterated Kalman Filter (Lewis, 1986).Generally, the more exact Second
Order Filter (Athanset al., 1968; Henriksen, 1982) utilises the Taylor expansion second order
approximation. The Taylor expansion first order can be used to design the extended Rauch-
Tung-Striebel Smoother and the multi-step predictor as well (Šimandl and Královec, 2000).

In the last decade the novel approaches to the local filter design, based on the polynomial in-
terpolation (Nørgaardet al., 2000; Ito and Xiong, 2000; van der Merwe and Wan, 2001; Dunı́k
et al., 2005) or on the unscented transformation (Julieret al., 2000; Ito and Xiong, 2000; Julier
and Uhlmann, 2004; van der Merwe and Wan, 2001; Dunı́ket al., 2005), have been published.
The approximation of the nonlinear functions by means of theStirling’s polynomial interpola-
tion first or second order leads to the Divide Difference Filters 1st order (DD1) or to the Divided
Difference Filter 2nd order (DD2), respectively, which areusually called as the Divided Dif-
ference Filters (DDF’s) (Nørgaardet al., 2000). Instead of direct substitution of the nonlinear
functions in the system description an approximation of the“already approximated” pdf’s rep-
resenting state estimate by a set of deterministically chosen weighted points (so calledσ -points)
can be utilised as a base for the local filters. This transformation is often called as the unscented
transformation. The Unscented Kalman Filter (UKF) (Julieret al., 2000; van der Merwe and
Wan, 2001;Šimandl and Dunı́k, 2005) or the Gauss-Hermite Filter (Ito and Xiong, 2000) ex-
emplify this approach. The smoothing local methods utilising the Stirling’s interpolation and
unscented transformation was very briefly outlined in (Wan and van der Merwe, 2001) and
properly derived in (̌Simandl and Dunı́k, 2006). Similarly to the standard local approaches the
multi-step prediction is realised by the multiple application of the one-step prediction known
from the filtering algorithm (̌Simandl and Dunı́k, 2006). It is very important to mention that the
estimators based on the unscented transformation and the Stirling’s interpolation have common
features although the basic idea of these estimators comes out from quite different assumptions
(Nørgaardet al., 2000; Lefebvreet al., 2002; Dunı́ket al., 2005). Therefore, these local fil-
ters can be called together as the sigma point Kalman estimators or the derivative-free Kalman
estimators.

The numerical properties of the derivative-free local filters have been discussed in the sev-
eral papers. For example the DDF’s have been directly designed in the square-root form
(Nørgaardet al., 2000) and although the UKF was originally derived in the “nonsquare-root”
form, its square-root versions have been subsequently derived in (van der Merwe and Wan,
2001;Šimandl and Dunı́k, 2005). However, the poor attention has been paid to the numerical
properties of the novel derivative-free smoothers. In (Šimandl and Dunı́k, 2006) only the final
algorithms of the derivative-free smoothers were presented without regular their derivation.

Therefore, in the paper the square-root smoothing algorithm, which is based on the unscented



transformation, will be regularly derived. This modification improves not only numerical prop-
erties of the smoothing algorithms, but it slightly reducestheir computational demands as well.
Mention that the same approach presented in this paper can beeasily used for design of the
smoother based on the both first and second order Stirling’s interpolation.

The rest of the paper is organised as follows. Section 2 is devoted to the system description
and to the Bayesian solution of the estimation problem. Then, the derivative-free smoother
based on the unscented transformation is introduced in Section 3 as well as its square-root
modification. In Section 4 the theoretical results are illustrated in a numerical example. Finally,
some conclusion remarks are given in Section 5.

2. PROBLEM STATEMENT

Consider the discrete-time nonlinear non-Gaussian stochastic system

xk+1 = fk(xk) + wk, k = 0, 1, 2, . . . , (1)

zk = hk(xk) + vk, k = 0, 1, 2, . . . , (2)

where the vectorsxk ∈ R
nx andzk ∈ R

nz represent the immeasurable state of the system and
the measurement at time instantk, respectively, andfk : R

nx → R
nx , hk : R

nx → R
nz are

known vector functions. The variableswk ∈ R
nx , vk ∈ R

nz are the state and the measurement
Gaussian white noises. The pdf’s of both noisespwk(wk) = N {wk : 0nx, Qk}, pvk(vk) =
N {vk : 0nz, Rk} are assumed to be known as well as the pdf of the Gaussian initial state
px0(x0). The noises are mutually independent and independent of theinitial state.

Mention that the system description with non-additive state or measurement noise can be trans-
formed to the previous one (1), (2) by appending noise variableswk, vk to the statexk (Nørgaard
et al., 2000).

The system can be rewritten as a set of the conditional transient pdf’s pxk+1|xk(xk+1|xk) =
pwk(xk+1 − fk(xk)) and the measurement pdf’spzk|xk(zk|xk) = pvk(zk − hk(xk)), ∀k. For the
sake of simplicity all pdf’s will be given by their arguments, i.e. p(xk+1|xk) = pxk+1|xk(xk+1|xk).

The aim of the state estimation is to find the state estimate inthe form of the conditional pdf
p(xm|zk) given by the functional recursive relations known for the prediction (m > k), the
filtering (m = k) and the smoothing (m < k). The FRR’s are assumed in the following form
for the(m − k)-step prediction

p(xm|zk) =
∫

p(xm|xm−1)p(xm−1|zk)dxm−1, (3)

wherem > k, for the filtering

p(xk|zk) = p(xk|zk−1)p(zk|xk)

p(zk|zk−1)
, (4)

wherep(zk|zk−1) =
∫

p(xk|zk−1)p(zk|xk)dxk, m = k, and for the(k − m)-step smoothing

p(xm|zk) = p(xm|zm)

∫

p(xm+1|zk)

p(xm+1|zm)
p(xm+1|xm)dxm+1, (5)

wherem < k andzk = [z0, . . . , zk]. The recursive computation of the(m − k)-step prediction
(3) may start either from the filtering pdfp(xk|zk) or from the predictive pdfp(xt |zk), where



m > t > k. The computation of the filtering pdf (4) comes out from the one-step predictive
pdf p(xk|zk−1). Finally, the recursion for the smoothed pdf (5) can be initiated either by the
filtering pdf p(xk|zk) or by another smoothed pdfp(xt |zk), wherem < t < k.

The exact solution of FRR’s (3)–(5) is possible only for a fewspecial cases, e.g. for linear
Gaussian systems. In other cases is therefore necessary to apply some approximative method.

The local methods based on the Taylor expansion or on the derivative-free alternatives are
known for the prediction, the filtering and the smoothing. While the local predictors and filters
are available in a numerical stable versions, the numericalstable versions of the local smoothers
have not been properly derived yet. Therefore, the aim of this paper is to propose the technique
how to design the numerical stable versions of the smoothers.

3. DESIGN OF DERIVATIVE-FREE SMOOTHERS

The smoothing problem can be generally divided into the three groups, namely fixed-point,
fixed-lag and fixed-interval smoothing (Grewal and Andrews,2001;Šimandl and Dunı́k, 2006),
and the local smoothing algorithms based on the Rauch-Tung-Striebel smoother can be easily
used for the solution of all three smoothing problem. Therefore, in this paper the main stress
is laid on the derivation of numerical stable versions of thelocal RTSS. However, due the
space constrains the stress will be mainly laid on the numerical properties of the derivative-free
unscented RTSS.

The algorithms of the local estimators have the same structure as the estimators for the linear
Gaussian system, where the predictive, filtering and smoothing means and covariance matrices
are computed recursively. The crucial difference between the local estimators can be found in
the particular approximation of the system description which allows to apply the techniques
known from the linear Gaussian systems.

Therefore, in the first part of this section the Rauch-Tung-Striebel smoother, as base for design
of local smoother, will be introduced. Then, the unscented transformation and its application
in the smoother design will be recapitulated. Finally, the square-root modification of the un-
scented smoother will be presented.

3.1 Rauch-Tung-Striebel Smoother

As a main tool for design the unscented smoother, the resultsfrom the area of linear system
smoother design can be used.

Let the linear Gaussian system (1), (2) wherefk(xk) = Fkxk and hk(xk) = Hkxk, ∀k be
considered. For these systems the exact solution of the smoothing problemp(xm|zk), m < k
is given e.g. by the Rauch-Tung-Striebel smoother (RTSS) (Lewis, 1986). The RTSS can be
described by the following relations (Lewis, 1986)

x̂m|k = x̂m|m + Km|k(x̂m+1|m − x̂m+1|k), (6)

Pm|k = Pm|m − Km|k(Pm+1|m − Pm+1|k)K T
m|k, (7)

Km|k = Pxx,m+1|mP−1
m+1|m, (8)

Pxx,m+1|m = E[(xm − x̂m)(xm+1 − x̂m+1|m)T |zm] = Pm|mFT
m, (9)



wherem = k − 1, k − 2, . . ., Pxx,m+1|m is the cross-covariance matrix of the statesxm and
xm+1, x̂m|k = E[xm|zk], Pm|k = cov[xm|zk] are the smoothed mean and covariance matrix.
The filtering mean̂xm|m = E[xm|zm] and covariance matrixPm|m = cov[xm|zm] and the one-
step predictive mean̂xm|m−1 = E[xm|zm−1] and covariance matrixPm|m−1 = cov[xm|zm−1]
are known from the “forward” run of the KF.

However, if the nonlinear system is considered, the covariance matrixPxx,m+1|m (9) cannot
be generally computed. To find the solution some approximative technique, e.g. the UT, has
to be used. Therefore, in the following section the UT will introduced by an example of the
transformation of random variable through nonlinear function.

3.2 Unscented Transformation

Let x ∈ R
nx andy ∈ R

ny be random vector variables related through the known nonlinear
functiony = g(x) = [g1(x), . . . , gny(x)]T . The pdf of the variablex is characterised by the first
two moments, i.e. the meanx̂ and the covariance matrixPx, and the aim is to calculate the mean
ŷ and the covariance matrixPy of y and the cross-covariance matrixPxy. The general solution
of this problem is possible only for linear functiong(·). In other cases some approximative
solution has to be applied.

One of the possible solution of this “transformation problem” is based on the so called un-
scented transformation (UT) (Julieret al., 2000). The UT is grounded on the idea that it could
be easier to approximate a Gaussian distribution that it is to approximate an arbitrary nonlinear
function. Then, the pdf of the random variablex is approximated by a set of deterministically
chosen weightedσ -points{Xi }, where

X0 = x̂,W0 = κ

nx + κ
, (10)

Xi = x̂ +
(

√

(nx + κ)Px

)

i
,Wi = 1

2(nx + κ)
, i = 1, . . . , nx, (11)

X j = x̂ −
(

√

(nx + κ)Px

)

j −nx

,W j = 1

2(nx + κ)
, j = nx + 1, . . . , 2nx. (12)

The term
(√

(nx + κ)Px
)

i representsi -th column1 of the matrix
√

(nx + κ)Px and the variable
κ is introduced to have a possibility to influence the exactness of the UT. The set ofσ -points ex-
actly captures at least the mean and the covariance matrix ofx. Then, each point is transformed
via the nonlinear function

Yi = g(Xi ), ∀i . (13)

And the resulting characteristics are given as

ŷUT
A =

2nx
∑

i=0

WiYi , (14)

PUT
y,A =

2nx
∑

i=0

Wi (Yi − ŷU K F
A )(Yi − ŷU K F

A )T , (15)

PUT
xy,A =

2nx
∑

i=0

Wi (Xi − x̂)(Yi − ŷU K F
A )T . (16)

1The columns are used in the case thatPx is decomposed asPx = SxST
x . If Px = ST

x Sx the rows ofPx have to
be used in theσ -point computation.



The recommended settings of the scaling parameterκ, a tool for adjustment of the UT accuracy,
is κ = 3 − nx for the Gaussian distribution (Julieret al., 2000). The introduced subscriptA
highlights that these results are only approximations of the true mean and the covariance matrix
which cannot be generally computed.

3.3 Unscented Rauch-Tung-Striebel Smoother

By combining of the results presented in the previous two subsection, the Unscented Rauch-
Tung-Striebel Smoother (URTSS) (Šimandl and Dunı́k, 2006) can be designed. The crucial
problem of applying RTSS to the nonlinear system is the impossibility of computation of the
cross-covariance matrixPxx,m+1|m (9). This problem can be now solved by utilising the UT,
especially relations (14) and (16). Thus, the approximative solution ofPxx,m+1|m is given by

Pxx,m+1|m = E[(xm − x̂m|m)(xm+1 − x̂m+1|m)T |zm]

≈
2nx
∑

i=0

Wi (Xi,m|m − x̂m|m)(X s
i,m+1|m − x̂s

m+1|m)T , (17)

whereX s
i,m+1|m = fm(Xi,m|m), ∀i and x̂s

m+1|m =
∑2nx

i=0WiX
s
i,m+1|m (Šimandl and Dunı́k,

2006). Then, the relations (6)–(8) can be used for obtainingthe smoothed characteristics.

The algorithm of the URTSS can be summarised by the followingequations

x̂m|k = x̂m|m + Km|k(x̂m+1|k − x̂m+1|m), (18)

Pm|k = Pm|m − Km|k(Pm+1|m − Pm+1|k)K T
m|k, (19)

Km|k = Pxx,m+1|mP−1
m+1|m, (20)

Pxx,m+1|m =
2nx
∑

i=0

Wi (Xi,m|m − x̂m|m)(X s
i,m+1|m − x̂s

m+1|m)T . (21)

It is very important to note, that the square-root of the smoothing covariance matrixPm|k have
to be computed at each time instant to find the appropriate setof theσ -points. Therefore, it
could be advantageous to directly compute the square-root of the smoothing covariance matrix.
The second, and more important property of the direct computation of the covariance matrix
factor, is the significant improvement of the URTSS numerical properties. The square-root
URTSS will be proposed in the following part.

Note that in the URTSS design the basic UT was used which suffers from some disadvantages.
However for design the URTSS all other improved types of the UT, namely Gauss-Hermite
quadrature, scaled UT etc., can be used as well (Ito and Xiong, 2000; Julier and Uhlmann,
2004; Dunı́ket al., 2005).

3.4 Square-Root Unscented Rauch-Tung-Striebel Smoother

To design the square-root form of the URTSS, it is advantageous to define two auxiliary matri-
ces

M x,m|m = [
√

(W0)(X0,m|m − x̂m|m), . . . ,
√

(W2nx)(X2nx,m|m − x̂m|m)], (22)

Ms
x,m+1|m = [

√

(W0)(X
s
0,m+1|m − x̂s

m+1|m), . . . ,
√

(W2nx)(X
s
2nx,m+1|m − x̂s

m+1|m)], (23)



which facilitate the square-root URTSS design.

Then, the smoothing gain, with respect to (20) and (17), can be written in the form

Km|k = M x,m|m(Ms
x,m+1|m)T (Pm+1|m)−1 = M x,m|m(Ms

x,m+1|m)T (Sm+1|mST
m+1|m)−1, (24)

whereSm+1|m is the square-root of the predictive covariance matrixPm+1|m. Then, the smooth-
ing covariance matrix (19) can be extended by the following way:

Pm|k = Pm|m − Km|kPm+1|mK T
m|k − Km|kPm+1|mK T

m|k+
+ Km|kPm+1|mK T

m|k + Km|kPm+1|kK T
m|k, (25)

where the termKm|kPm+1|mK T
m|k can be expressed as

Km|kPm+1|mK T
m|k = M x,m|m(Ms

x,m+1|m)TK T
m|k, (26)

= Km|kMs
x,m+1|mM T

x,m|m, (27)

= Km|kMs
x,m+1|m(Ms

x,m+1|m)TK T
m|k + Km|kSQ,mST

Q,mK T
m|k, (28)

andSQ,m is the square-root of the state noise covariance matrixQm.

The substitution of (26)–(28) into (25) lead to

Pm|k = M x,m|mM T
x,m|m − M x,m|m(Ms

x,m+1|m)TK T
m|k − Km|kMs

x,m+1|mM T
x,m|m+

+ Km|kMs
x,m+1|m(Ms

x,m+1|m)TK T
m|k + Km|kSQ,mST

Q,mK T
m|k+

+ Km|kSm+1|kST
m+1|kK T

m|k = [M x,m|m − Km|kMs
x,m+1|m, Km|kSQ,m, Km|kSm+1|k]×

× [M x,m|m − Km|kMs
x,m+1|m, Km|kSQ,m, Km|kSm+1|k]T . (29)

Now, the square-root form of the smoothing covariance matrix is given as

S̃m|k = [M x,m|m − Km|kMs
x,m+1|m, Km|kSQ,m, Km|kSm+1|k]. (30)

However, this matrix is rectangular. To compute the set ofσ -point the square matrix is de-
sired. Therefore, the Householder triangularization is employed (Grewal and Andrews, 2001;
Nørgaardet al., 2000) to transform a known rectangular matrixM ∈ R

m×n to a square matrix
N ∈ R

n×n so that the equalityMM T = NNT is accomplished. The Householder triangulariza-
tion can be written asN = ht(M).

Now, the “square” square-root form of the smoothing covariance matrixSm|k can be easily
determined, i.e.

Sm|k = ht([M x,m|m − Km|kMs
x,m+1|m, Km|kSQ,m, Km|kSm+1|k]). (31)

Then, the algorithm of the square-root URTSS is given by the following equations

x̂m|k = x̂m|m + Km|k(x̂m+1|k − x̂m+1|m), (32)

Sm|k = ht([M x,m|m − Km|kMs
x,m+1|m, Km|kSQ,m, Km|kSm+1|m]), (33)

Km|k = Pxx,m+1|m(Sm+1|mST
m+1|m)−1, (34)

P
′
xx,k+1 = M x,m|m(Ms

x,m+1|m)T . (35)



Algorithm MSE of fixed-lag smoothing Time [s]

ERTSS 1.36× 10−3 1.51−4

URTSS 1.25× 10−3 3.27−4

sURTSS 1.25× 10−3 2.76−4

Table 1: MSE of fixed-lag smoothing and computational demands.

For the design of the square-root derivative-free smootherthe Stirling’s interpolation (Nørgaard
et al., 2000;Šimandl and Dunı́k, 2006) can be used as well. Due to the common properties of
Stirling’s interpolation and the UT the resultant relations are quite similar to the above pre-
sented.

4. NUMERICAL ILLUSTRATION

Let the one-dimensional non-linear Gaussian system (Ito and Xiong, 2000;̌Simandl and Dunı́k,
2006) be considered

xk+1 = xk + 51t xk(1 − x2
k) + wk, (36)

zk = 1t (xk − 0.05)2 + vk, (37)

wherek = 0, 1, . . . , 400, system initial conditionx0 = 1.2, wk ∼ N {wk : 0, 0.251t},
vk ∼ N {wk : 0, 0.011t} and1t = 0.01. Initial condition of the estimators is considered
as p(x0|z−1) = N {x0 : 2.2, 2}.

The aim is to find the two-step fixed-lag smoothing estimatesp(xk−2|zk) by means of the stan-
dard local RTSS based on the Taylor expansion 1st order (Extended RTSS - ERTSS), the novel
Unscented RTSS and the square-root URTSS (sURTSS). The experimental results are sum-
marised in Table 1 where the Mean Square Error (MSE)2 of the fixed-lag smoothed estimate
and the computational time per one smoother run are given.

The improvement of estimation performance of URTSS towardsthe Extended RTSS is pro-
portional to the improvement of the UKF towards the EKF. Mention that the improvement
becomes significant especially for the “highly” nonlinear systems. Naturally, the estimation
performance is the same for both URTSS. The square-root URTSS brings the smaller compu-
tational demands especially for the low dimensional systems. However, the main advantage of
the square-root smoother can be found in the improved numerical stability where the smoothed
covariance matrix can not be negative-definite.

5. CONCLUSION

The derivative-free smoothing methods were discussed. Theunscented transformation, as a
derivative-free approximation technique, was briefly discussed and used in the design of the
Unscented Rauch-Tung-Striebel Smoother. The square-rootversion of the Unscented Rauch-
Tung-Striebel Smoother was derived to improve the numerical properties of that algorithm. The
proposed method for design square-root smoothers can be easily used for other smoothers that
are based on different approximation techniques, e.g. Stirling’s interpolation, Gauss-Hermite
quadrature, scaled unscented transformation. The proposed smoother was demonstrated on the
numerical example.

2MSE =
(
∑100

i=1
∑400

k=0(x
i
k − x̂i,E

k )2
)

/(401× 100), wherexi
k or x̂i,E

k is the true or estimated state, respectively,
in the i -th repetition andN is the time instant of the last possible estimate.
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