
Data-Based Construction of

Multidimensional Probabilistic

Models with MUDIM
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Abstract

The goal of the paper is to introduce a program system, MUDIM, and to show how it can be
used for multidimensional probabilistic model construction. The system is being developed with
the goal to gain a tool for experimental computations with compositional models which are, in
a way, an alternative to Bayesian networks. These models are based on the idea of composing
a multidimensional distribution from a great number of low-dimensional ones. When considering
knowledge-based systems, this approach quite naturally cope with the difficulty of expressing global
knowledge about a field of practise. We have only to work with a system of pieces of local knowledge
from which the global knowledge must be assembled.
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1 Introduction

In this text we shall deal with a relatively new class of models built within the frame-
work of probability theory to be used for representing multidimensional distributions.
However, it should be stressed that these models can also be developed equally effi-
ciently within possibility theory [18].

When pieces of local knowledge are represented by oligodimensional distributions,
the global knowledge should be represented by a multidimensional probability dis-
tribution. In artificial intelligence, application of the whole class of methods based
on knowledge modelling by multidimensional probability distributions – and here we
have in mind distributions of hundreds rather than tens of variables – was catalyzed
by the success achieved during the last twenty years in the field often called “graphi-
cal Markov modelling [16]. Perhaps the most famous representative of these models
are Bayesian networks [7, 8], but there are several others, such as influence diagrams,
decomposable and graphical models, chain graph models, and others.

The approach presented herein dispenses with the necessity to describe the depen-
dence structure of a modelled distribution in a graph. In contrast to this, the presented
technique of compositional models directly describes how the multidimensional dis-
tribution is computed – composed – from a system of oligodimensional distributions,
and therefore need not represent the dependence structure explicitly. Thus, we start
describing the model with an assumption that there are a (usually great) number of
pieces of local knowledge represented by a system of oligodimensional distributions.
The task we will address in this text resembles a jig-saw puzzle that has a great
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number of parts, each bearing a local piece of a picture, and our goal is to find how
to assemble them in such a way that the global picture makes sense, reflecting all
the individual small parts. In other words, we will look for an ordering of oligodi-
mensional distributions in such a way that, when composed together, the resulting
multidimensional distribution optimally reflects all the local knowledge carried by the
oligodimensional distributions.

To help the reader familiar with Bayesian networks, we include Section 2.4, where
the relationship between compositional models and Bayesian networks is explained
(mainly) by an example. It is shown that, although these two types of models are
fully equivalent in the sense that any distribution representable by one of the models
can be represented also by the other one with (approximately) the same number of
parameters, they also manifest some differences. We will explain how it is possible
that some of the computational procedures are algorithmically simpler for perfect
sequence models than for Bayesian networks.

In this paper we do not present new theoretical results (the reader will always
be referred to original sources). Its goal is to briefly recollect all the notions neces-
sary to introduce the MUDIM program system, which is intended for experimental
computations and construction of compositional models, and which is under develop-
ment in the Institute of Information Theory and Automation, Academy of Sciences
of the Czech Republic. For this reason we will also describe a heuristic approach for
data-based model construction, which will be used to illustrate the system.

2 Compositional Models

2.1 Basic notions and notation

In this text, we will deal with a finite system of finite-valued random variables,
each of which describes one feature, symptom, sign, etc. Let N be an index set,
N = {1, 2, . . . , |N |}. Each variable from {Xi}i∈N is assumed to have a finite (non-
empty) set of values (therefore continuous quantities are supposed to be discretized).
Distributions of these variables will be denoted by Greek letters (usually π, κ); thus
for K ⊂ N , we can consider a distribution π((xi)i∈K), which is defined only for
variables XK = {Xi}i∈K . To make the formulae more lucid, this distribution will
be denoted just by symbol π(xK) (when several distributions will be considered, we
shall distinguish them by indices). For a probability distribution π(xK) and J ⊂ K
we will often consider a marginal distribution π(xJ ).

2.2 Operator of Composition

To be able to compose low-dimensional distributions to get a distribution of a higher
dimension, we will introduce an operator of composition.

To make it clear from the very beginning, let us stress that it is just a generalization
of the idea of computing the 3-dimensional distribution from two 2-dimensional ones
introducing the conditional independence:

π(x1, x2) . κ(x2, x3) =
π(x1, x2)κ(x2, x3)

κ(x2)
= π(x1, x2)κ(x3|x2),
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where κ(x3|x2) is a respective conditional distribution.

Definition 2.1
For two arbitrary distributions π(xK) and κ(xL) their composition is given by the
formula:

π(xK) . κ(xL) =





π(xK)κ(xL)

κ(xK∩L)
if π(xK∩L) ¿ κ(xK∩L),

undefined otherwise,

where π(xK∩L) ¿ κ(xK∩L) means that κ(xK∩L) dominates π(xK∩L). In the finite
case, which is considered in the paper, this simplifies to the condition that for all
xK∩L

κ(xK∩L) = 0 =⇒ π(xK∩L) = 0.

Remark 2.2
Notice that we do not impose any conditions on the relationship of the two sets of
variables: XK and XL. Nevertheless, if these sets are not disjoint, it may happen that
the composition π . κ remains undefined (in this case the formula need not define a
probability distribution). It may happen only when for some xK∩L, π(xK∩L) > 0 and
simultaneously κ(xK∩L) = 0. This situation is rather interesting from a theoretical
point of view. Since we do not go into theoretical details in this paper, we assume
that whenever a composition of two (or more) distributions is mentioned, the result
will always be defined. Moreover, when the oligodimensional distributions in question
are received as estimations from one data file then, as a rule, all these distributions
are pairwise consistent, i.e. π(xK∩L) = κ(xK∩L). In this case, if for any xK∩L

π(xK∩L) = 0 (and therefore also κ(xK∩L) = 0) then there is a product of two zeros
in the numerator and we take, quite naturally,

0 · 0
0

= 0.

If K and L are disjoint then we put κ(xK∩L) = 1 and the formula π .κ degenerates
to a simple product π · κ.

The following simple assertion, which summarizes two lemmata proven in [9], an-
swers the question: what is the result of composition of two distributions?

Theorem 2.3
If π(xK) .κ(xL) is defined then it is a probability distribution of variables XK∪L and
its marginal distribution for variables XK equals π:

(π . κ)(xK) = π(xK).

Moreover, if π and κ are consistent (i.e., π(xK∩L) = κ(xK∩L)) then π . κ = κ . π and
this composition is the maximum entropy extension of π and κ:

π . κ = arg max
ν∈Π(K∪L)(π,κ)

H(ν),

where

Π(K∪L)(π, κ) = {ν(xK∪L) : ν(xK) = π(xK) & ν(xL) = κ(xL)}.
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Remark 2.4
Since in this paper we are mainly interested in practical applications of operators of
composition, it is sufficient just to remember that composing two distributions we re-
ceive a distribution whose dimension is larger than the dimensionality of either input
distributions. In addition to this, π is always a marginal distribution of π . κ. The
second part of the theorem says that if they are consistent then π . κ comprises all
the information contained in π and κ. Moreover, the composition achieves the maxi-
mum entropy among all the distributions having this property. Such a distribution is
considered by many authors to be the best representative of knowledge contained in
π and κ [1, 2].

2.3 Generating Sequences

The main significance of the operator of composition is in the fact that it can, when
applied iteratively, form multidimensional distributions from a system of oligodimen-
sional ones.

It is important to point out that the operator . is neither commutative nor asso-
ciative. For example, generally

π1 . π2 . π3 6= π2 . π1 . π3,

π1 . π2 . π3 6= π1 . π3 . π2.

Therefore, let us stress that, unless specified otherwise by brackets, operator . is
always applied from left to right. This means that

π1 . π2 . . . . . πn−1 . πn = (. . . (π1 . π2) . . . . . πn−1) . πn.

Thus, in order to construct a multidimensional distribution it is sufficient to deter-
mine a sequence – we will call it a generating sequence – of oligodimensional distrib-
utions; the resulting distribution is received by applying the operator of composition
in the corresponding ordering. However, not all generating sequences are equally ef-
ficient in their representation of multidimensional distributions. Among them, the
so-called perfect sequences hold an important position.

Definition 2.5
A generating sequence of probability distributions is called perfect if

(π1 . . . . . πk−1) . πk = πk . (π1 . . . . . πk−1)

holds for all k = 2, . . . , n.

From this definition one can hardly see the importance of perfect sequences. This
importance becomes clearer from the following characterization theorem (proven in
[11]).

Theorem 2.6
A sequence of distributions π1, π2, . . . , πn is perfect iff all the distributions from this
sequence are marginals of the distribution π1 . π2 . . . . . πn.

The above-presented theorem claims that a model defined by a generating sequence
preserves all the given marginals only when the model is defined by a perfect sequence.
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In addition to this, it is not difficult to show that for a perfect sequence π1, π2, . . . , πn

distribution π1.π2.. . ..πn is the maximum entropy extension of all the distributions1

π1, π2, . . . , πn. If the considered generating sequence is not perfect then some of the
marginal distributions computed from the resulting model differ from the given ones.
It is possible to show that a non-perfect generating sequence need not preserve even
one-dimensional marginal distributions.

All in all, this is the main message conveyed by the above-presented characterization
theorem: Considering that oligodimensional distributions from a perfect sequence are
carriers of local information, the constructed multidimensional distribution π1.. . ..πn

represents global information, faithfully reflecting all of the local input. This is why
we will be so interested in perfect sequence models.

Remark 2.7
At this point the reader can realize one of the differences between Bayesian net-
works and perfect sequence representation of multidimensional probability distribu-
tions. When defining a Bayesian network, one can take an acyclic directed graph
(which determines the structure of the model) and any respective system of condi-
tional distributions. When defining these distributions, one need not care about their
consistency, because any system of distributions (corresponding to the graph) defines
a multidimensional distribution.

However, defining a perfect sequence model is more difficult. After selecting a struc-
ture of the model (it is defined by the selected sets of variables – more precisely their
indices – for which the distributions are to be defined: K1, . . . ,Kn) one cannot take an
arbitrary system of distributions π1(xK1), . . . , πn(xKn); it has to meet a rather strong
condition of Definition 2.5. Though it seems to be just a complication in comparison
with Bayesian network construction, it brings the following two advantages:

1. Generally, the more conditions on model construction, the higher chance that the
resulting distribution manifests the required properties.

2. As it will be shown in Section 2.4, there are (explicitly expressed) probabilities in a
perfect sequence model, which can be computed from the corresponding Bayesian
network; however, such computation may appear to be computationally expensive.

Example 2.8
Consider the generating sequence

π1(x1, x2), π2(x1, x3), π3(x2, x4), π4(x3, x4, x5),

with values given in Table 1. To check that this sequence is perfect we reformulate
the condition of Definition 2.5 into an equivalent one (the equivalence will be obvious
from Theorem 2.9): a generating sequence π1(xK1), . . . , πn(xKn) is perfect if and only
if

πi(xKi∩(K1∪...∪Ki−1)) = (π1 . . . . . πi−1)(xKi∩(K1∪...∪Ki−1))

1It follows from the fact that due to the definition of perfect sequence

π1 . π2 . π3 . . . . . πn = πn . (πn−1 . . . . . (π3 . (π2 . π1)) . . .),

which is exactly the distribution computed by application of the Iterative Proportional Fitting Procedure to

π1, π2, . . . , πn starting with the uniform distribution.



6 Data-Based Construction of Multidimensional Probabilistic Models with MUDIM

Table 1. Distributions π1, π2, π3, π4

x4

π1 x1 π2 x1 π3 x4

π4
x5 x5

1
2

1
4

3
8

1
8

3
8

3
8

1
4 0 0 1

4
x2

0 1
4

x3
1
8

3
8

x2
1
8

1
8

x3

0 1
4

1
4 0

Table 2. Distribution π1 . π2

x1
π1 . π2

x3 x3

3
8

1
8

1
16

3
16

3
4

x2

0 0 1
16

3
16

1
4

for all i = 2, . . . , n. Using this criterion it is not difficult to check that this sequence
is perfect. We have just to show that

π1(x1) = π2(x1), (2.1)
(π1 . π2)(x2) = π3(x2), (2.2)
(π1 . π2 . π3)(x3, x4) = π4(x3, x4). (2.3)

Equality (2.1) is trivial: both distributions π1(x1) and π2(x1) are uniform. Applying
the formula from Definition 2.1 to π1 and π2 we get distribution π1 . π2, which is in
Table 2. From this, one immediately sees that distributions (π1 . π2)(x2) and π3(x2)
are equivalent, too. So it remains to show that equivalence (2.3) also holds true.

First, using Definition 2.1 compute2

(π1 . π2 . π3)(x2, x3, x4) = (π1 . π2)(x2, x3) . π3(x2, x4),

which is recorded in Table 3. Now, we immediately see that although neither of the
distributions π1 . π2 . π3 and π4 is uniform, their marginals (π1 . π2 . π3)(x3, x4)
and π4(x3, x4) are uniform. Thus, as all equations (2.1), (2.2) and (2.3) hold true,
π1, π2, π3, π4 form a perfect sequence.

Since π1 and π2 are consistent, we see immediately from Theorem 2.6 that the
sequence

π2(x1, x3), π1(x1, x2), π3(x2, x4), π4(x3, x4, x5)

2Here we are also using the following assertion, which was proved in [11]

Lemma

Consider π(xK) and κ(xL) for which π . κ is defined. If K ∩ L ⊆ M ⊆ K ∪ L then

(π . κ)(xM ) = π(xK∩M ) . κ(xL∩M ).
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Table 3. Distribution (π1 . π2 . π3)(x2, x3, x4)

x3
π1 . π2 . π3

x4 x4

7
32

7
32

5
32

5
32

x2
1
32

1
32

3
32

3
32

is also perfect. We leave to the reader to show that sequences π1, π3, π2, π4 and
π3, π1, π2, π4 are perfect, too, and that all these sequences define the same distribution
(hint: realize that all of them are maximum entropy extensions of the same system
of distributions). Notice, however, that neither from the remaining 20 permutations
of the considered distributions is a perfect sequence. Let us show it, for example, for

π2(x1, x3), π3(x2, x4), π1(x1, x2), π4(x3, x4, x5).

Since both π2 and π3 are strictly positive, it is an immediate consequence of the
formula from Definition 2.1 that π2 . π3 must also be strictly positive, which is not
true for π1. (In addition to this,

(π2 . π3)(x1, x2, x3, x4) = π2(x1, x3) · π3(x2, x4)

and therefore X1 and X2 are independent under distribution π2 . π3, which is also in
contradiction with distribution π1.)

The following assertion shows that each generating sequence can be transformed
into a perfect sequence (see [9, 10]). This property (among others) is of great impor-
tance for the model construction process presented below.

Theorem 2.9
For an arbitrary generating sequence π1(xK1), . . . , πn(xKn), the sequence κ1, . . . , κn

computed by the following process

κ1(xK1) = π1(xK1)
κ2(xK2) = κ1(xK2∩K1) . π2(xK2)
κ3(xK3) = (κ1 . κ2)(xK3∩(K1∪K2)) . π3(xK3)

...
κn(xKn) = (κ1 . . . . . κn−1)(xKn∩(K1∪...∪Kn−1)) . πn(xKn),

is perfect and
κ1 . κ2 . . . . . κn = π1 . π2 . . . . . πn.

This result gives us not only the instructions for testing whether a generating
sequence is perfect or not, but from this we can see that the perfectness is not a
structural property of a sequence (it does not depend only on the system of sets,
which form arguments of individual distributions) but a property speaking about all
individual probabilities. As a trivial example, let us realize that any sequence of
uniform distributions form a perfect sequence.
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2.4 Relation to Bayesian networks

Before we start discussing the process of compositional model construction, let us an-
swer an important question: what type of distributions can be represented by perfect
sequences? It is not too difficult to prove that these are exactly the distributions rep-
resentable by Bayesian networks. In fact, the class of Bayesian networks is equivalent
to the class of perfect sequence models in the following sense:

1. If π1(xK1), π2(xK2), . . . , πn(xKn) is perfect, then there exists a Bayesian network
with an acyclic directed graph G = (N, E), such that the distribution π1 . π2 .
. . . . πn is a distribution represented by the Bayesian network, and for each node
i ∈ N of graph G with parents pa(i) there exists (at least one) k ∈ N such that
{i}∪pa(i) ⊆ Kk. (This means that each conditional distribution appearing in the
definition of the Bayesian network can be computed directly from the distribution
πk.)

2. For each Bayesian network representing a distribution κ one can construct a perfect
sequence π1(xK1), π2(xK2), . . . , πn(xKn

), such that κ = π1.π2.. . ..πn and for each
distribution πk(xKk

) set Kk consists of a node and its parents from the graph of
the considered Bayesian network; i.e., there is i ∈ Kk, for which Kk = {i}∪ pa(i).

Yet there is a rather important difference between these two types of multidimen-
sional distribution representations, which comes to light when one starts considering
the processes transforming these models into each other. Let us illustrate it using a
simple example.

Example 2.10
Consider the perfect sequence from Example 2.8

π1(x1, x2), π2(x1, x3), π3(x2, x4).π4(x3, x4, x5).

It represents the distribution

ρ(x1, x2, x3, x4, x5) = π1(x1, x2) . π2(x1, x3) . π3(x2, x4) . π4(x3, x4, x5)
= π1(x1, x2)π2(x3|x1)π3(x4|x2), π4(x5|x3, x4).

Thus, we immediately see that this distribution is also represented by a Bayesian
network with a graph in Figure 1 and the corresponding system of conditional distri-
butions

ν1(x1) = π1(x1), ν2(x2|x1) = π1(x2|x1),
ν3(x3|x1) = π2(x3|x1), ν4(x4|x2) = π3(x4|x2),

ν5(x5|x3, x4) = π4(x5|x3, x4).

Notice that the distributions νi are easily computed from the respective (uncondi-
tional) distributions πi in a local way; one does not need any auxiliary memory and
the computational time depends linearly on the size of the distributions πi.

Let us turn our attention to the opposite task. Consider the Bayesian network with
graph from Figure 1 and with the corresponding 5 conditional distributions ν1, . . . , ν5.
It represents the distribution

ρ(x1, x2, x3, x4, x5) = ν1(x1)ν2(x2|x1)ν3(x3|x1)ν4(x4|x2), ν5(x5|x3, x4).
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Fig. 1. Acyclic graph of a Bayesian network

Our goal is now to get the corresponding perfect sequence model. We know that any
generating sequence µ1, . . . , µ5 for which

µ1(x1) = ν1(x1), µ2(x2|x1) = ν2(x2|x1),
µ3(x3|x1) = ν3(x3|x1), µ4(x4|x2) = ν4(x4|x2),

µ5(x5|x3, x4) = ν5(x5|x3, x4)

defines the required 5-dimensional distribution ρ (providing that µ1.. . ..µ5 is defined).
Such a sequence can easily be obtained in many ways. For example, taking a uniform
distribution λ, distributions µi computed according to the formulae

µ1(x1) = ν1(x1), µ2(x1, x2) = λ(x1)ν2(x2|x1),
µ3(x3|x1) = λ(x1)ν3(x3|x1), µ4(x4|x2) = λ(x2)ν4(x4|x2),

µ5(x5|x3, x4) = λ(x3, x4)ν5(x5|x3, x4)

form a generating sequence defining the same 5-dimensional distribution as the initial
Bayesian network. Notice that these computations can again be performed locally.
This sequence, however, is not perfect unless the Bayesian network is to some ex-
tent degenerated (its 4-dimensional marginal distribution ρ(x1, x2, x3, x4) is uniform),
which is not the case for the distributions ν1, . . . , ν5 computed from the considered
distributions π1, . . . , π4. Nevertheless, let us recall that, due to Theorem 2.9, this
sequence can be transformed into a perfect sequence

κ1(x1) = µ1(x1)
κ2(x1, x2) = κ1(x1) . µ2(x1, x2)
κ3(x1, x3) = (κ1 . κ2)(x1) . µ3(x1, x3)
κ4(x2, x4) = (κ1 . κ2 . κ3)(x2) . µ4(x2, x4)
κ5(x3, x4, x5) = (κ1 . κ2 . κ3 . κ4)(x3, x4) . µ5(x3, x4, x5).

And it is the very computation of

(κ1 . κ2 . κ3 . κ4)(x3, x4)

that cannot be performed locally. We will not analyse its computational complex-
ity in detail but it depends, in a way, on the size of the 4-dimensional space of all
combinations of values x1, x2, x3, x4. (This does not mean that we have to compute
(κ1 . κ2 . κ3 . κ4)(x3, x4) by summing up over 4-dimensional space. We can, for
example, compute first (κ1 . κ2 . κ3)(x2, x3) and then compute the required distribu-
tion marginalizing from 3-dimensional distribution (κ1 . κ2 . κ3)(x2, x3) . κ4(x2, x4).
So it means that we can get the required distribution by marginalizing twice over
3-dimensional space.)
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From what has been said in the previous example we see a difference in represen-
tation of multidimensional distributions by Bayesian networks and perfect sequence
models. Though both types of models represent the same probability distributions,
in perfect sequence models some of the marginal distributions are directly expressed.
These can be computed from the Bayesian network too; however, their computation
may be rather computationally expensive. This fact also explains how it is possi-
ble that some of computational procedures (especially those requiring enumeration of
marginal distributions) for perfect sequence models are simpler (i.e., more computa-
tionally efficient) than the respective procedures for Bayesian networks.

3 Data-Based Process for Model Construction

The reader interested in other theoretical issues concerning the operator of composi-
tion and perfect sequence models is referred to [14] and the papers cited there. At
this point, we want to briefly introduce a possible way to create a perfect sequence
model from a data file – see Figure 2. This scheme describes an expert-driven process
whose individual steps can be realized with the help of MUDIM; nevertheless, all the
decisions within the process are made by an expert:

1. Selection of oligodimensional distributions at the beginning of the whole process.
2. Decision which type of “refinement” procedure should be chosen (detailed expla-

nation is given below).
3. Stopping rule.

Definition of
oligodimens.

distributions

Construction of
generating

sequence

Perfectization

Computation of
K-L

divergences

VERIFICATION REFINEMENT

?

?

?
6 6

Definition
of new

distributions

IPFP

¾

Fig. 2. Process of model construction
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As it can be seen from the diagram, the process is initiated with definition of a sys-
tem of oligodimensional distributions. Regarding the fact that the process cyclically
employs steps of verification and refinement , during which this initial system is grad-
ually changed, the result is fairly independent of the initial selection. For example,
starting with all 2-dimensional distributions may be quite reasonable (another possi-
bility is used in Example 3.3). Generally, we propose to select distributions carrying
a greater amount of information. This idea is supported by the following theorem,
proved in [14] (Corollary 1.). It claims that the higher information content of a
perfect sequence, the better approximation of the unknown distribution. Before pre-
senting the respective assertion we have to introduce two concepts: Kullback-Leibler
divergence (also called cross-entropy, or relative entropy) and information content.

Definition 3.1
Klullback-Leibler divergence of distributions π(xN ) and κ(xN ) is given by the following
formula

Div(π‖κ) =

{ ∑
xN

π(xN ) log π(xN )
κ(xN ) if π ¿ κ,

+∞ otherwise.

Information content of a distribution π(x) is the Kullback-Leibler divergence of π
and a product distribution of its 1-dimensional marginal distributions:

I(π) = Div(π‖
∏

i∈N

π(xi)) =
∑
xN

π(xN ) log
π(xN )∏

i∈N

π(xi)
.

Let us recall that the information content is just a natural generalization of a
Shannon mutual information, which will be used in the algorithm further in this text,
and which is for 2-dimensional distribution π(x1, x2) defined

MIπ(x1;x2) =
∑

(x1,x2)

π(x1, x2) log
π(x1, x2)

π(x1)π(x2)
,

and in a general case of π(xN ) and two disjoint (nonempty) K1,K2 ⊂ N it is expressed
by an analogous formula

MIπ(xK1 ; xK2) =
∑

xK1∪K2

π(xK1∪K2) log
π(xK1∪K2)

π(xK1)π(xK2)
.

The reader most likely noticed that, since π is always dominated by the product
distribution

∏
i∈N π(xi), the information content is always finite. Moreover, recall

that it is always nonnegative and equals 0 if and only if π is a product distribution.
Now, we are able to present the previously-announced assertion, which provides

crucial theoretical support of the algorithm for generating sequence construction.

Theorem 3.2
If for a distribution κ a generating sequence of its marginals
κ(xK1), κ(xK2), . . . , κ(xKn) is perfect, then

Div(κ‖κ(xK1) . . . . . κ(xKn)) = I(κ)− I(κ(xK1) . . . . . κ(xKn)).
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Therefore, if we want to construct a perfect sequence model approximating an un-
known distribution κ, we have to aim at getting the model with the highest possible
information content (under the assumption that the oligodimensional distributions,
which the perfect sequence consists of, are marginals of the approximated distri-
bution). In [14] we have published the following heuristic algorithm producing a
sub-optimal generating sequence from a system of oligodimensional distributions.

Algorithm

Input: System of low-dimensional distributions π1(xK1), . . . πn(xKn
).

Initialization: Select a variable Xm and a distribution πj such that
m ∈ Kj . Set κ1 := πj(xm), L := {m} and k := 1.

Computational Cycle: While K1 ∪ . . . ∪ Kn \ L 6= ∅ perform the following
3 steps:
1. for all j = 1, . . . , n and all m ∈ Kj \ L compute the mutual information

MIπj (Xm; XKj∩L).

2. Fix j and m for which MIπj (Xm;XKj∩L) achieved its maximal value.
3. Increase k by 1. Set κk := πj(x(Kj∩L)∪{m}) and L := L ∪ {m}.

Output: Generating sequence κ1, κ2, . . . , κk.

What can be said about the resulting generating sequence κ1, κ2, . . . , κk? Distribu-
tion ρ = κ1 .κ2 . . . . .κk is a probability distribution of variables XK1∪K2∪...∪Kn . The
algorithm realizes a greedy (therefore very efficient) process, which seeks to find a se-
quence utilizing the information content of individual oligodimensional distributions
in a maximal possible way. The result is a generating sequence which, unfortunately,
need not be perfect. It means that some of the input distributions are not marginals of
the resulting multidimensional model. As a rule, the expert (the model constructor)
has to accept some deviations of the model marginals from the input oligodimen-
sional distributions. To decide whether the obtained deviations are acceptable, i.e.,
whether the whole model construction process depicted in Figure 2 should be ter-
minated, the expert must be provided with some additional information. To get it,
the process employs the perfectization procedure described in Theorem 2.9. Then it
is possible to compare original oligodimensional distributions with the correspond-
ing marginals defined by the model. The comparison may be done with the help
of Kullback-Leibler divergence; as already said above, its value equals 0 iff π = κ,
otherwise it is always positive. Therefore, the lower this value, the closer κ to π.
The goal of this step is to find all the marginal distributions which are unacceptably
distorted by the model. If there is no such a marginal distribution, the process is
terminated. In the opposite case, the expert proposes to perform another cycle of
the whole process with a modified system of oligodimensional distributions. The de-
scribed process then proceeds so that several original distributions are substituted
with one a-little-bit-more-dimensional one in the refinement step.

As the reader can see from Figure 2, there are two possibilities to get these new
distributions. If it is possible (i.e., the data file is large enough) the expert can decide
to get them as estimations from the given data file (going along the left branch of the
refinement box in Figure 2). However, if the data file is too small to get reliable esti-
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mations (which may happen easily if one needs to substitute several distributions with
a distribution whose dimensionality is high – let us say, 6 or more), then one can take
advantage of the well-known Iterative Proportional Fitting Procedure (IPFP) (see
[4]; for its effective implementation, which makes it possible to compute distributions
of pretty high dimensions, see e.g. [6]). This is a procedure computing a maximum
entropy distribution with given marginals. Using the operator of composition, this
procedure consists in iterative computation of distributions

κj = πi . κj−1,

where κ0 is a uniform distribution, i = ((j − 1) mod s) + 1 and π1, . . . , πs are the
selected marginal distributions. It is known (for the proof see [3]) that, if there exists
a distribution for which all π1, . . . , πs are marginals, then the sequence κ0, κ1, κ2, . . .
converges and its limit distribution lim

j→∞
κj maximizes Shannon entropy among all

the distributions with the given marginals.
In this way, when all the desired substitutions are realized, a new system of oligodi-

mensional distributions is set up, to which the heuristic algorithm for generating
sequence construction is again applied. The described cycle is repeated until the ex-
pert decides that a suitable multidimensional model representing (approximating) all
the required oligodimensional distributions has been achieved.

Let us stress that the process shown in Figure 2 is fully controlled by the expert.
The more cycles of the process are performed, the higher dimensions of the input
distributions are considered. If the expert had continued ad absurdum, the process
would have, in fact, finished with an application of IPFP to all of the initial oligodi-
mensional distributions (which is, as a rule, computationally intractable in practical
situations).

Example 3.3
Let us illustrate the behaviour of the above-described process when applied to a
small medical data file. The goal was to find a model corresponding to a probability
distribution describing relationships among the 11 cardiological risk factors (variables)
listed in Table 4.

From the data file we computed all 165 3-dimensional distributions and selected
those whose informational content IC ≥ 0.025. Thus we got 10 (oligodimensional)
distributions π1, . . . , π10 presented in Table 5.

When initialized with variable L and distribution π1, the algorithm produced the
sequence

π1(L,W, Y ), π2(T, W, Y ), π4(C,W, Y ), π7(C, H, Y ), π5(H, S, Y ),
π3(E, H, S), π8(D,H, Y ), π10(A,D,H), π9(A,B, D). (3.1)

This sequence was perfect and therefore we did not need to perform the process of
perfectization. Nevertheless, because distribution π6(A,B, H) was not included in
the model, we computed the respective Kullback-Leibler divergence, getting

Div(π6(A,B, H)‖κ(A,B, H)) = 0.023,

for
κ = π1 . π2 . π4 . π7 . π5 . π3 . π8 . π10 . π9.
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Table 4. List of risk factors - variables

variable denotation n. of values
age A 4
BMI B 4
cholesterol C 4
diabetes D 3
beer consumption E 4
hypertension H 3
liquor consumpt. L 4
smoking S 4
triglycerides T 4
wine consumption W 4
hyperlipidemia Y 3

Table 5. Triplets of variables ordered by IC values

n. of distrib. variables IC
1 LWY 0.726
2 TWY 0.102
3 EHS 0.088
4 CWY 0.080
5 HSY 0.059
6 ABH 0.046
7 CHY 0.045
8 DHY 0.040
9 ABD 0.030

10 ADH 0.029

At this stage we had to decide, based on the value of Div(π6(A,B,H)‖κ(A,B,H)),
whether to employ the step of refinement , or to finish the process. We decided to
continue.

The refinement process led to substituting three distributions π6(A,B, H),
π9(A,B, D) and π10(A,D, H) by a 4-dimensional distribution π11(A,B, D, H). Since
the number of cases in the data file at our disposal did not enable us to compute
estimates of 4-dimensional distributions (we only had 530 cases) we chose the other
possibility: we computed distribution π11 from π6, π9, π10 by application of IPFP.

The second step of the process, when the heuristic algorithm was applied to distri-
butions π1, π2, π3, π4, π5, π7, π8, π11, eventually yielded a perfect sequence

π1(L,W, Y ), π2(T, W, Y ), π4(C,W, Y ), π7(C, H, Y ), π5(H, S, Y ),
π3(E,H, S), π8(D, H, Y ), π11(A,B, D, H).



Data-Based Construction of Multidimensional Probabilistic Models with MUDIM 15

4 MUDIM system

Let us conclude the paper with a brief demonstration of how the heuristic algorithm
introduced in the previous section can be realized in the MUDIM system 3. Naturally,
no computational system can be described on a few pages, so the reader is kindly asked
to take this section rather as a MUDIM advertisement.

The system, which is still under development, is built in the environment of R
language ([19]) and is intended to help experimentalists to build models describing
collected data as well as researchers to analyse properties of the compositional models.
In agreement with the philosophy of R language, MUDIM is available in source code;
it is free software and comes with absolutely no warranty. Everybody is welcome
to extend it by her/his own statements and redistribute it under certain conditions
(those given by the group developing R language).

The first version of MUDIM, which is currently available4, realizes only a rather
limited number of special MUDIM statements, but a vast abundance of original R
functions makes it possible that the user can code rather complex computational
algorithms, such as those for automatic model construction, even at the current stage
of MUDIM development.

All computations with the MUDIM system are performed within the framework of
a “problem”. This is (usually) specified by one data file, system of variables, each of
which is given by its name and a (finite) list of its values. Thus each session must start
either with problem definition or by loading a problem saved in previous sessions. So,
for example, if one needs recollection of the active problem description, it is enough
just to type

mudim.get.info(ProblemA)

where ProblemA is either a name or a handle of the processed problem.
It is the philosophy of R language that all subjects can be identified either by their

names (as the name ProblemA used in previous statement) or by their “handles”,
unique numbers assigned to all objects by R. This, as it will be seen from the next
MUDIM statements, makes processing of lists of objects easier. For example, the fol-
lowing statement assigns handles of all variables into the object named Handlevars.

Handlevars <- mudim.get.all.variables(ProblemA)

In the previous section, we mentioned that it is not a bad idea to start the heuristic
method of model construction with all the 2-dimensional marginal distributions. To
get them from a data file representing a distribution with the name Datadistrib,
one can use the following statements (handles of the resulting 2-dimensional marginal
distributions are placed into Handledistrib2)5:

Handledistrib2 <- NULL
for (i in Handlevars)

{for (j in Handlevars) if (j > i)
Handledistrib2 <- c(Handledistrib2,

3MUDIM stands for MUltiDImensional Models. The presented examples are taken from [15].
4The system is currently available from <http://mtr.utia.cas.cz/mudim>.
5c(... , ...) is a standard function for concatenation in R language.
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mudim.marginalize(ProblemA, Datadistrib)
}

Now, it is easy to compute informational content of all these 2-dimensional mar-
ginal distributions and to order them according to these values:

Informs <- NULL
for (i in Handledistrib2)

Informs <- c(Informs, mudim.get.informationvalue(i))
Ordering <- order(Informs,decreasing=TRUE)

In practical situations, processing of all 2-dimensional distributions may be rather
time consuming. So it may be advantageous to find out how many out of these
2-dimensional distributions (respecting the ordering according to their informational
content) are necessary to build a model (distribution), which is defined for all the
variables. In other words, assuming that πi1 , πi2 , . . . , πin

is a permutation of all the
considered 2-dimensional distributions for which IC(πi1) ≥ IC(πi2) ≥ . . . ≥ IC(πin),
we want to find the smallest m such that

πi1 . πi2 . . . . . πim

is a distribution of all the variables appearing in the problem in question. It means
that we are looking for the smallest m such that Ki1 ∪Ki2 ∪ . . .∪Kim = N . This can
be realized by the following statements.

Numvariables <- length(mudim.get.all.variables(ProblemA))
Nummarginals <-length(Handledistrib2)
Numselectmarginals <- 0; Selectedvariables <- NULL
for (i in 1:Nummarginals)

{ if (length(Selectvariables) < Numvariables)
{ Selectvariables <- union(Selectvariables,

mudim.get.all.variables(Handledistrib2[Ordering[i]]))
Numselectmarginals <- Numselectmarginals + 1

}
}

The required number m is in Numselectmarginals.
In conclusion of these examples, let us present commented R-code of a function

realizing the heuristic algorithm for model construction introduced in the previous
section.

##############################################
# #
# HEURISTIC ALGORITHM FOR MODEL CONSTRUCTION #
# #
##############################################

# Description of parameters:
# 1. aListofDistribution - list of handles of distributions
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# 2. StartingVariable - handle of a selected variable

mudim.algorithm <- function(aListofDistribution,StartingVariable)
{ selectvariables <- StartingVariable

selectdistributions <- NULL; allvariables <- NULL
for(dist in aListofDistribution)
allvariables <- union(allvariables,mudim.get.all.variables(dist))

# end of INITIALIZATION step
# ’allvariables’ contains handles of all the variables, for which
# the model should be constructed

# beginning of COMPUTATIONAL CYCLE
# here ’setdiff’ (difference of sets) and ’length’ are standard R
# functions
# the following cycle is performed until the sets
# ’selectvariable’ and ’allvariables’ are the same

while(length(setdiff(allvariables,selectvariables)))
{ infmemory <- -1

for (dist in aListofDistribution)
{ variables <- mudim.get.all.variables(dist)

# to speed up the cycle, the following tests exclude computation of
# mutual information between groups of variables from which at least
# one is empty

if (length(intersect(selectvariables,variables)) > 0
& length(setdiff(variables,selectvariables)) > 0)

# mutual information is here computed as a difference of two values
# of informational content

{ infselect <- mudim.get.informationvalue(
mudim.marginal(,dist,selectvariables))

for (v in setdiff(variables,selectvariables))
{ x <- c(selectvariables, v)

inf <- (mudim.get.informationvalue(
mudim.marginal(,dist,v)) + infselect
- mudim.get.informationvalue(
mudim.marginal(,dist,x)))

if (inf > infmemory)
{ infmemory <- inf; varmemory <- v

distmemory <- dist
}

}
}

}
selectvariables <- c(selectvariables,varmemory)
selectdistributions <- c(selectdistributions,distmemory)

} # end of COMPUTATIONAL CYCLE
return(selectdistributions)

}
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Let us conclude this section by summarizing what are the most important special
MUDIM statements realized in its first version. Not speaking about the basic state-
ments necessary for problem definition and data organization, most important are
those defining oligodimensional distributions, computing their marginals and creat-
ing compositional models from generating sequences of (oligodimensional) distribu-
tions. Model construction processes are supported by functions computing entropy
and information content of distributions. To be able to evaluate different models, we
can use a function initiating computation of the Kullback-Leibler divergence of two
distributions.

5 Conclusions

In this paper we presented a minimum of theory of compositional models neces-
sary to comprehend that this approach is an advantageous alternative to Bayesian
networks. Advantages of compositional models are mainly manifested when the re-
spective computational procedures are considered, especially procedures computing
marginal distributions.

The last part of the paper was devoted to an (necessarily brief and informal) in-
troduction to the system MUDIM, which is intended for experimental computations
with the introduced multidimensional models. The design of the system, which has
been developed under R language, enables all users to enlarge the scope of its applica-
tions according to their requirements. The author’s intention is to develop the system
along the following two lines. First, new MUDIM statements extending the applica-
tion scope of this system will be introduced. The most urgent are those introducing
computational procedures: marginalization, computation of conditional probabilities
from multidimensional models, and effective implementation of IPFP. Model verifica-
tion will be supported by possibility to display a persegram of a model ([12]), which
enables detection of all conditional independence relations holding true for the model.

The other line of the system development can be aimed at generalization of all the
procedures in such a way that the system would also be able to construct and process
possibilistic multidimensional models, which would be parameterized by a selected
t-norm (defining a t-independence in possibility theory). Let us stress, however, that
we do not intend to develop a user-friendly software system to enable a lay user to
construct probabilistic models just by clicking the mouse.
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[18] Vejnarová, J.: Possibilistic independence and operators of composition of possibility measures.
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