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Notice

This text has not been subjected to linguistic corrections. Nevertheless, in
view of the author’s intention to improve, complete and extend the text,
he wants to assure all the readers that he will highly appreciate receiving
any kind of comments, proposals and questions that can help him to cor-
rect (both from the linguistic and the mathematical point of view) the text
and also to make it easier to understand. All such comments and proposals
should be sent to radim@utia.cas.cz.
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Foreword

The first version of this text, which summarizes results published mainly
in papers [14] – [20], was assembled as an accompanying material to my
lectures at the summer school REASON PARK held in Foligno (Perugia),
Italy, 26th August - 14th September, 2002. In this context I want to express
my thanks to the organizers for the invitation, since this was an impulse for
starting preparation of this text.

The goal of this text is to coherently explicate the apparatus of proba-
bilistic operators of composition, which is, in a way, an alternative approach
to multidimensional probability distributions representation and process-
ing. When saying “alternative” approach, I mean that it is an alternative
to widely used graphical Markov modelling .

The text consists of two parts. The presented first part is a detailed de-
scription of the basic theoretical properties of operators of composition and,
above all, different types of generating sequences that are models of multidi-
mensional distribution. Since this approach is for most of the readers new,
the concepts and their properties are illustrated by numerous examples. The
second part, which is under preparation, will be devoted to relation of com-
positional models to classical Graphical Markov Models and to some other
advanced issues like reading probability independence relations from gener-
ating sequences, or heuristic approaches to model construction. In future,
the third part could appear describing a program system MUDIM, which is
an open source system determined to be an experimental environment for
compositional model constructions.

Though all the necessary concepts are introduced, the reader is expected
to be familiar with basic notions of (finite) probability theory. With respect
to the facts that a couple of notions of information theory are employed, and
that a relation of the compositional approach to the mostly used graphical
models is explained, knowledge of both information theory and graphical
Markov modelling is advantageous, but not anything like necessary.
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Chapter 1

Introduction

A number of different models for knowledge representation have been de-
veloped. When uncertain knowledge is considered – and in our opinion,
deterministic knowledge applies to very specific situations only – one has to
consider models based on some of the calculi proposed specifically for this
purpose. The oldest one is probability theory; many others appeared in the
second half of the last century, though, from many-valued and fuzzy logics,
through rough sets theory to approaches based on non-additive measures,
e.g., possibility theory.

In this text we shall discuss one class of models built within the frame-
work of probability theory. However, it should be stressed that these models
can also be developed equally efficiently in possibility theory [24, 32]. That
means they can also be applied to situations when the assumption of addi-
tivity is not adequate [8]1. Nevertheless, in this text we shall restrict our
consideration only to probabilistic models.

The basic idea of the approach is the same as that on which expert
systems are based: it is beyond human capabilities to represent or express
global knowledge of an application area - one has always to work only with
pieces of local knowledge. Such a local knowledge can be, within proba-
bility theory, easily represented by an oligodimensional (low-dimensional)
distribution. For example, the statement directors are usually older persons

1For example, in a situation when you consider uncertainty connected with your sub-
jective estimate of a person’s age, using additive measure (probability) could lead you into
troubles. In this case, insisting on additivity could lead to a situation that uncertainty
connected with estimating age of two persons would have to be a sum of uncertainties
connected with the individual persons. This means that the larger group of persons is
observed, the more precise estimates of individual persons would have to be, otherwise
the total uncertainty would have to get above the maximum value – one.

9
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Table 1.1: Distribution representing knowledge: directors are usually older
persons

director of an enterprise

small medium large

age up to 20 up to 150 150 +
employees employees employees

20 - 30 0.032 0.014 0.004

31 - 40 0.061 0.086 0.034

41 - 50 0.102 0.118 0.051

51 + 0.114 0.183 0.201

can be well (and moreover, quite precisely) expressed by a 2-dimensional
distribution from Table 1.1. From this table one can easily get that among
directors there are only 5 percent of persons younger 31 while 27.1 percent
are between 41 and 50 and almost half of them (49.8 %) are older than 50.
Notice, that such a table can yield even more information than that con-
tained in the statement directors are usually older persons. For example,
from this table one can also get that usually the larger enterprize, the older
director .

Analogously, a 3-dimensional distribution (an example of which is in Ta-
ble 1.2) can easily express the knowledge relationship between sex, age and
occurrence of diabetes. A great advantage of this type of local knowledge
representation is the fact that in a majority of situations, low-dimensional
distributions can be obtained from various data sources by classical statis-
tical estimates. What should be stressed, however, is the fact that in such
situations the dimensionality of the estimated distributions is strictly lim-
ited because of the size of available data. Whatever size of data is at our
disposal we can hardly assume to obtain reliable estimates of probabilities
of a 20-dimensional distribution (even for binary variables). Typically, one
can assume that a dimensionality of the considered distributions is 2 – 8.
Therefore, we will call them oligodimensional distributions.

When pieces of local knowledge are represented by oligodimensional dis-
tributions, the global knowledge should be represented by a multidimen-
sional probability distribution. In artificial intelligence, application of the
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Table 1.2: Distribution representing knowledge: relationship between sex,
age and occurrence of diabetes

diabetes

(-) (+)
age

sex

F M F M

20 - 40 0.025 0.024 0.003 0.003

41 - 50 0.075 0.072 0.020 0.018

51 - 60 0.096 0.086 0.048 0.045

61 - 70 0.067 0.052 0.044 0.037

71 + 0.084 0.059 0.086 0.056

whole class of methods based on knowledge modelling by multidimensional
probability distributions – and here we have in mind distributions of hun-
dreds rather than tens of variables – was catalyzed by success, which was
achieved during the last twenty years in the field that is often called graphi-
cal Markov modeling . This term is used as a general term describing any of
the approaches representing multidimensional probability distributions by
means of graphs and systems of quantitative parameters. These parameters
are usually oligodimensional, sometimes conditional, probability distribu-
tions. Therefore, graphical Markov modelling includes influence diagrams,
decomposable and graphical models, chain graph models, and many oth-
ers. What is common to all these models is the capability to represent and
process distributions of very high dimensionality, which cannot be otherwise
handled because of the exponential growth of the number of necessary para-
meters. Perhaps the most famous representative of these models, Bayesian
networks2, represent distributions with special dependence structures which
are described by acyclic directed graphs. Some other models, like decom-
posable models, use for the dependence structure representation undirected
graphs, and special models need even more complicated graphical tools like
chain graphs, hypergraphs, or, annotated graphs.

2We shall discuss Bayesian networks and decomposable models from the point of view
of this text in more detail in Chapter 5.
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The approach presented herein abandons the necessity to describe the
dependence structure of a modelled distribution by a graph. In contrast to
this, the presented technique of compositional models describes directly how
the multidimensional distribution is computed – composed – from a system
of low-dimensional distributions, and therefore need not represent the de-
pendence structure explicitly. Thus, we start describing our model with an
assumption that there is a (usually great) number of pieces of local knowl-
edge represented by a system of low-dimensional distributions. The task we
will address in this text resembles a jig-saw puzzle that has a great number
of parts, each bearing a local piece of a picture, and the goal is to find how to
assemble them in such a way that the global picture makes sense, reflecting
all the individual small parts. The only difference is that, in our case, we
will look for a linear ordering of oligodimensional distributions in the way
that, when composed together, the resulting multidimensional distribution
optimally reflects all the local knowledge carried by the oligodimensional
distributions

>>>>>>>>>> >>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<

>>>>>>>>>> >>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<

Figure 1.1: Ordering of pieces of jig-saw puzzle.



Chapter 2

Notions of probability theory

– notation

In this text, we will deal with a finite system of finite-valued random vari-
ables. Let N be an arbitrary finite index set, N 6= ∅. Each variable from
{Xi}i∈N is assumed to have a finite (non-empty) set of values Xi. Thus, in
Table 1.2 there occur three variables age, diabetes and sex having 5, 2 and
2 values, respectively.

Distributions of these variables will be denoted by Greek letters (usually
π, κ, ν, µ); thus for K ⊆ N , we can consider a distribution π((Xi)i∈K). To
make the formulae more lucid, the following simplified notation will be used.
Symbol π(xK) will denote both a |K|-dimensional distribution and a value
of a probability distribution π (when several distributions will be considered,
we shall distinguish them by indices), which is defined for variables (Xi)i∈K

at a combination of values xK ; xK thus represents a |K|-dimensional vector
of values of variables {Xi}i∈K . Analogously, we shall also denote the set of
all these vectors XK :

XK =×i∈KXi.

A distribution π(xK) is represented by a |K|-dimensional table contain-
ing numbers from the interval [0, 1], and all the numbers of this distribution
have to sum up to one:

∑

xK∈XK

π(xK) = 1.

An example of such a table/distribution is in Table 1.2. In this case x{1,2,3}

represents a combination of values of the considered variables age, diabetes,
sex . Thus, x{1,2,3} is one of the 20 combinations: (20 − 40, (−), F ), (20 −

13
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40, (+),M), (20− 40, (−), F ), . . ., (71+, (+),M), and, for example

π(61− 70, (+), F ) = 0.044.

For a probability distribution π(xK) and J ⊂ K we will often consider
a marginal distribution π(xJ) of π(xK), which can be computed by

π(xJ) =
∑

xK\J∈XK\J

π(xK) =
∑

xK\J∈XK\J

π(xK\J , xJ).

An example of a marginal distribution for distribution from Table 1.2 is in
Table 2.1.

Table 2.1: A marginal distribution to distribution from Table 1.2

diabetes

(-) (+)

20 - 40 0.049 0.006

41 - 50 0.147 0.038

51 - 60 0.182 0.093

61 - 70 0.119 0.081

71 + 0.143 0.142

In the above simple formula defining a marginal distribution we have
implicitly introduced a notation, which will be used in the sequel. A vector
xK is split into two parts: vectors xK\J and xJ , where xJ is a projection of
xK into XJ , and, analogously xK\J is a projection of xK into XK\J . For
computation of marginal distributions we need not exclude situations when
J = ∅. In accordance with the above introduced formula we get π(x∅) = 1.

In some situations, when we will want to stress that we are dealing with
a marginal distribution of a distribution π, we will use symbol π↓J to denote
the marginal distribution of π for variables (Xi)i∈J ; i.e., for J ⊆ K and a
distribution π(xK)1

π↓J = π(xJ).

1This notation is taken over from G. Shachter and P.P. Shenoy. Their notation will
also enable us to denote variables, which will be deleted during marginalization process.
This special notation will be introduced later.
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Table 2.2: Conditional distribution computed from a distribution from Ta-
ble 1.2

diabetes

(-) (+)
age

sex

F M F M

20 - 40 0.072 0.082 0.015 0.019

41 - 50 0.216 0.246 0.099 0.113

51 - 60 0.277 0.294 0.239 0.283

61 - 70 0.193 0.177 0.219 0.233

71 + 0.242 0.201 0.428 0.352

For a distribution π(xK) and two disjoint subsets L1, L2 ⊆ K we will
often speak about a conditional distribution π(xL1 |xL2), which is, for each
fixed xL2 ∈ XL2 an |L1|-dimensional probability distribution, for which

π(xL1 |xL2)π(xL2) = π(xL1∪L2).

It is important to realize that, if π(xL2) = 0 for some combination(s) of
values xL2 ∈ XL2 , this definition is ambiguous. Nevertheless, the advantage
of this definition is that conditional distribution is always defined. The
reader can immediately see that if L1 = ∅ then

π(xL1 |xL2) = 1,

and if L2 = ∅ then
π(xL1 |xL2) = π(xL1).

An example of a conditional distribution π(age|diabetes, sex) computed
from Table 1.2 is in Table 2.2

2.1 Conditional independence of variables

In this section, we shall introduce one of the most important notions of
this text, a concept of conditional independence that generalizes well-known
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independence of variables. Since this notion does not belong among the
basic subjects notoriously repeated in all textbooks on probability theory,
we shall illustrate the notion by several simple examples. For more examples
the reader is referred to basic textbooks on Bayesian networks like books by
F.V. Jensen [11] and [12].

Definition 2.1.1 Consider a probability distribution π(xK) and three dis-
joint subsets L1, L2, L3 ⊆ K such that L1 6= ∅ 6= L2. We say that groups of
variables XL1 and XL2 are conditionally independent given XL3 (in symbol
XL1 ⊥⊥ XL2 |XL3 [π]) if

π(xL1∪L2∪L3)π(xL3) = π(xL1∪L3)π(xL2∪L3) (2.1)

for all xL1∪L2∪L3 ∈ XL1∪L2∪L3 .

Remark 2.1.1 Equality (2.1) certainly holds for all xL1∪L2∪L3 ∈ XL1∪L2∪L3 ,
for which π(xL3) = 0. This is because π(xL1∪L3) ≤ π(xL3) due to the way
how marginal distributions are defined. For those xL1∪L2∪L3 , for which
π(xL3) > 0, we can divide both sides of equality (2.1) by π(xL3), which
gives us

π(xL1∪L2∪L3) = π(xL1∪L3)π(xL2 |xL3). (2.2)

Since equation (2.2) holds true also for all xL1∪L2∪L3 , for which π(xL3) > 0,
we could define conditional independence by requirement that equality (2.2)
holds true for all xL1∪L2∪L3 ∈ XL1∪L2∪L3 . ◦

Remark 2.1.2 Another way how to define conditional independence is to
require that the expression

π(xL1∪L2 |xL3) = π(xL1 |xL3)π(xL2 |xL3)

holds true for all vectors xL1∪L2∪L3 , for which π(xL3) > 0. Moreover, since

π(xL1∪L2 |xL3) = π(xL1 |xL3)π(xL2 |xL1∪L3)

is valid for all x ∈ XL1∪L2∪L3 , for which π(xL3) is positive, and for any dis-
tribution π (regardless it meets the property of conditional independence),
we can see that the conditional independence can also be expressed in the
following way:

XL1 ⊥⊥ XL2 |XL3 [π]

⇐⇒ ∀x ∈ XL1∪L2∪L3 : π(xL3) > 0 (π(xL2 |xL3) = π(xL2 |xL1∪L3)).
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The last formula is often used to explain the concept of conditional
independence. It says that conditional probability of variables XL2 given
variables XL3 is the same as conditional probability of these variables given
variables XL1∪L3 . In other words, if we know values of variables XL3 , the
conditional probability of variables XL2 does not change if we learn also
values of variables XL1 . ◦

Since this notion is of great importance for multidimensional model con-
struction, let us illustrate it on a couple of examples.

Example 2.1.1 From the point of view of this text interesting are those
situations when groups of variables XL1 and XL2 are dependent but con-
ditionally (given variables XL3) independent. We will not be interested
in trivial situations when all variables are mutually independent like, for
example, when considering three independent tosses of a coin: any two
tosses are not only (unconditionally) independent but they are also condi-
tionally independent given the third toss. It holds even if the coin is unfair
(i.e., probability of one side is higher than probability of the other side).
This can easily be proven for any 3-dimensional product distribution, i.e.
π(x1, x2, x3) = π(x1)π(x2)π(x3). ♦

Example 2.1.2 Realize that interesting situations of conditional indepen-
dence are sometimes connected with (non-deterministic) causality. For ex-
ample, consider three variables X1, X2, X3: first reflects effort of a student
to learn a subject (e.g. number of days of learning), second represents result
of a test (number of received points) and X3 is just a binary variable with 0
and 1 corresponding to failure and success in the examination, respectively.
In this case it is quite natural to expect that variables X1 and X3 are de-
pendent (X1 6⊥⊥ X3) but, simultaneously, they are conditionally independent
given X2 (X1 ⊥⊥ X3|X2). This corresponds to the fact that two students
with the same result of a test should be equally treated in spite of how much
time they spent by learning the subject. ♦

Example 2.1.3 Imagine a statistician, discovering by a thorough statistical
analysis a high correlation (i.e. dependence) between daily harvest of honey
and beer consumption. It would be näıve to explain this dependence by
trying to find a way how froth-blowers influence bees or vice versa. The
natural way how to explain this dependence stems from the fact that both
the considered events (load of honey and beer consumption) depend on
weather: the warmer wether, the higher harvest of honey and the higher
beer consumption. So, this natural example explains, in a slightly different
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way, the situation when two variables (beer and honey) are dependent but
turn independent when considering their conditional independence given
weather .

Let us repeat the preceding intuitive considerations using formal prob-
abilistic tools. In the considered situation we assume there is a probability
distribution π(weather) describing how often individual types of weather
occurs (as we assume all the variables are finite-valued, we are allowed to
consider only a finite number of weather classes). Then it is natural to
assume that load of honey is dependent on weather, it means we can de-
scribe it quite reasonably by a distribution κ(honey |weather). Similarly, beer
consumption also changes under different weather conditions, so it may be
described by µ(beer |weather). Our assumption that there is no direct depen-
dence between variables beer and honey reflects in the way how we define the
3-dimensional distribution representing relationships among the considered
variables:

ν(weather , honey , beer) = π(weather)κ(honey |weather)µ(beer |weather).

Marginalizing this expression we get

ν(weather , honey) = π(weather)κ(honey |weather),

and therefore

ν(beer |weather , honey) = µ(beer |weather).

This means that ν(beer |weather , honey) does not depend on variable honey ,
and therefore, due to Remark 2.1.2, variables honey and beer are condition-
ally independent given weather . ♦

Example 2.1.4 It should be stressed, however, that conditional indepen-
dence need not be connected with causality. In some situations it can be
just a coincidence. Let us present a (slightly modified) example taken over
from [21].

Consider a family with two children: a son and a daughter. Define three
variables:

Xs – son goes to visit grandmother,
Xd – daughter goes to visit grandmother,
Xf – father goes to visit grandmother,

and assume the situation is described by the 3-dimensional distribution from
Table 2.3. To verify conditional independence Xs ⊥⊥ Xd|Xf we have to show
that
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Table 2.3: Distribution π(xs, xd, xf ) from Example 2.1.4

Xd

yes no

Xs

yes no yes no

yes 4
18

2
18

2
18

1
18

Xf
no 1

18
2
18

2
18

4
18

π(xs, xd, xf )π(xf ) = π(xs, xf )π(xd, xf )

holds true for all eight possible combinations. In case that all three variables
achieve value “yes” we are getting:

π(Xs = yes,Xd = yes,Xf = yes) = 4
18 ,

π(Xs = yes,Xf = yes) = 6
18 ,

π(Xd = yes,Xf = yes) = 6
18 ,

π(Xf = yes) = 9
18 ,

and since
4

18

9

18
=

6

18

6

18

we see that the required equality is met for this combination of values.
When the reader shows that the equality holds also for the remaining 7
combinations of values, the conditional independence Xs ⊥⊥ Xd|Xf will be
verified. Simultaneously, any effort to introduce a causality in this example
would be rather artificial. ♦

Example 2.1.5 Up to now, all the examples illustrating conditional in-
dependence described situations when two variables were dependent but
conditionally independent given the third variable:

X1 6⊥⊥ X2 & X1 ⊥⊥ X2|X3.

Here we present an example of an opposite situation. Consider three vari-
ables X1, X2, X3 corresponding to three coins with 0 and 1 on their sides.
Two of them are randomly tossed, the third one is laid on the table so that
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Table 2.4: Distribution describing example with 3 coins

X1

0 1

κ(x1, x2, x3)
X2

0 1 0 1

0 0 1
4

1
4 0

X3
1 1

4 0 0 1
4

each experiment results with even number of 0s. The reader can easily check
that the situation is well described by the distribution in Table 2.4.

It is clear that variables X1 and X2 are independent. In fact, it is really
trivial to show that any pair Xi, Xj (i 6= j) of variables are independent.
Now, let us consider a definition of conditional independence

κ(x1, x2, x3)κ(x3) = κ(x1, x3)κ(x2, x3),

for example for (x1, x2, x3) = (0, 0, 0). Marginalizing distribution from Ta-
ble 2.4 one gets that any 2-dimensional distribution is uniform, equals 1

4 for
any combinations of values of variables. Therefore κ(x1 = 0, x3 = 0)κ(x2 =
0, x3 = 0) = 1

16 , but κ(x1 = 0, x2 = 0, x3 = 0)κ(x3 = 0) = 0, which contra-
dicts the definition of conditional independence. Therefore, in this example

X1 ⊥⊥ X2 & X1 6⊥⊥ X2|X3. ♦

Remark 2.1.3 The reader certainly noticed that, since the definition of
conditional independence is symmetric with respect to groups of variables
XL1 and XL2 , also the following three conditions are equivalent

• XL1 ⊥⊥ XL2 |XL3 [π],

• ∀x ∈ XL1∪L2∪L3π(xL1∪L2∪L3) = π(xL2∪L3)π(xL1 |xL3),

• ∀x ∈ XL1∪L2∪L3 : π(xL3) > 0π(xL1 |xL3) = π(xL1 |xL2∪L3). ◦

Let us conclude this section by presenting three lemmata expressing
important results regarding conditional independence of variables. They
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can be found in several books on probabilistic multidimensional models like
for example in [28]. The proofs presented here are taken over from [21]. The
purpose of presenting the proofs of famous assertions is to offer the reader
some exercise in computations with probability distributions.

The first assertion is often called factorization rule or factorization lemma.

Lemma 2.1.1 Let K,L ⊂ N be such that K \ L 6= ∅ 6= L \ K. Then for
any probability distribution π(xK∪L)

XK\L ⊥⊥ XL\K |XK∩L[π]

if and only if there exists functions

ψ1 :×i∈KXi −→ [0,+∞)

ψ2 :×i∈LXi −→ [0,+∞)

such that
π(xK∪L) = ψ1(xK)ψ2(xL).

Proof. To make this proof (and the following two ones) transparent, we will
keep the notation as simple as possible. Therefore within this proof x will
always be an element of XK\L, y ∈ XK∩L and z ∈ XL\K . Therefore, for
example, computation of π(xK∩L) from π(xK) is presented in this notation
simply as

π(y) =
∑

x

π(x, y).

IfXK\L ⊥⊥ XL\K |XK∩L[π] then, due to expression (2.2) from Remark 2.1.1,
it is possible to define

ψ1(x, y) = π(x, y)

ψ2(y, z) = π(z|y).

Therefore, to prove the assertion it is enough to show that the existence of
the functions ψ1 and ψ2 guarantees the respective conditional independence.

In the definition of the conditional independenceXK\L ⊥⊥ XL\K |XK∩L[π],
three marginal distributions of π(xK∪L) = π(x, y, z) occur; namely: π(y),
π(x, y) and π(y, z). Let us compute them.

π(y) =
∑

x

∑

z

π(x, y, z) =
∑

x

∑

z

ψ1(x, y)ψ2(y, z)

=
∑

x

ψ1(x, y)
∑

z

ψ2(y, z) =

(

∑

x

ψ1(x, y)

)(

∑

z

ψ2(y, z)

)

.
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Analogously

π(x, y) =
∑

z

π(x, y, z) =
∑

z

ψ1(x, y)ψ2(y, z) = ψ1(x, y)
∑

z

ψ2(y, z),

and

π(y, z) =
∑

x

π(x, y, z) =
∑

x

ψ1(x, y)ψ2(y, z) = ψ2(y, z)
∑

x

ψ1(x, y).

Therefore

π(x, y, z)π(y) = ψ1(x, y)ψ2(y, z)

(

∑

x

ψ1(x, y)

)(

∑

z

ψ2(y, z)

)

=

(

ψ1(x, y)
∑

z

ψ2(y, z)

)(

ψ2(y, z)
∑

x

ψ1(x, y)

)

= π(x, y)π(y, z),

which is exactly the definition of the required conditional independence. �

Remark 2.1.4 Let us stress that the preceding assertion holds even for
XK∩L = ∅. In this case, namely, π(y) = 1 and π(x, y) = π(x), π(y, z) = π(z),
and, analogously ψ1(x, y) = ψ1(x), ψ2(y, z) = ψ2(z). ◦

The following property is usually called block independence lemma.

Lemma 2.1.2 Let L1, L2, L3, L4 ⊂ N be disjoint and L1 6= ∅, L2 6= ∅,
L3 6= ∅. Then for any probability distribution π(xL1∪L2∪L3∪L4) the following
two expressions are equivalent

(A) XL1 ⊥⊥ XL2∪L3 |XL4 [π],

(B) XL1 ⊥⊥ XL3 |XL4 [π] and XL1 ⊥⊥ XL2 |XL3∪L4 [π].

Proof. In analogy to the previous proof, here we will consider x to be an
element of XL1 , y ∈ XL2 , z ∈ XL3 and w ∈ XL4 . Therefore, we are proving
equivalence of the expressions

(A) π(x, y, z, w)π(w) = π(x,w)π(y, z, w),
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(B) π(x, z, w)π(w) = π(x,w)π(z, w) &
π(x, y, z, w)π(z, w) = π(x, z, w)π(y, z, w).

(A) ⇒ (B) - Let us compute π(x, z, w)π(w) under the assumption that
independence (A) holds, i.e. that

π(x, y, z, w)π(w) = π(x,w)π(y, z, w).

Using simple marginalization we get

π(x, z, w)π(w) =

(

∑

y

π(x, y, z, w)

)

π(w)

=
∑

y

π(x, y, z, w)π(w) =
∑

y

π(x,w)π(y, z, w)

= π(x,w)
∑

y

π(y, z, w) = π(x,w)π(z, w) ,

which corresponds to XL1 ⊥⊥ XL3 |XL4 .

To prove the second part of (B), we have to show that

π(x, y, z, w)π(z, w) = π(x, z, w)π(y, z, w).

Since this equality holds for all

(x, y, z, w) ∈ XL1∪L2∪L3∪L4

for which

π(w) = 0

(in this case both sides of the equality are equal to 0), it is enough to show
that the required equality holds also for the other (x, y, z, w), for which it is
equivalent to

π(x, y, z, w)π(z, w)π(w) = π(x, z, w)π(y, z, w)π(w).

To prove this, we need only to apply first the assumed independence
XL1 ⊥⊥ XL2∪L3 |XL4 and then the just proven independenceXL1 ⊥⊥ XL3 |XL4 ,
so that we obtain

π(x, y, z, w)π(z, w)π(w) = π(x,w)π(y, z, w)π(z, w)

= π(x, z, w)π(y, z, w)π(w) .
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(B) ⇒ (A) - Now, our goal is to show that under the conditional inde-
pendence relations from (B) the equality

π(x, y, z, w)π(w) = π(x,w)π(y, z, w)

holds true for all quadruples

(x, y, z, w) ∈ XL1∪L2∪L3∪L4 .

For those quadruples (x, y, z, w) for which

π(z, w) = 0

this equality holds because both sides are equal to 0, therefore we can prove
the equality only for the remaining combinations of values (x, y, z, w). For
them, it is equivalent to

π(x, y, z, w)π(w)π(z, w) = π(x,w)π(y, z, w)π(z, w) .

In fact, assuming (B) amounts to assume the following two equalities:

π(x, z, w)π(w) = π(x,w)π(z, w)

π(x, y, z, w)π(z, w) = π(x, z, w)π(y, z, w) ,

from which it follows

π(x, y, z, w)π(w)π(z, w) = π(x, z, w)π(y, z, w)π(w)

= π(x,w)π(z, w)π(y, z, w) . �

The following assertion is an analogy of the previous one but it holds
only for strictly positive distributions. Therefore it is sometimes called ei-
ther symmetric block independence lemma, or, block independence lemma
for positive distributions.

Lemma 2.1.3 Let L1, L2, L3, L4 ⊂ N be disjoint and L1 6= ∅, L2 6= ∅, L3 6=
∅. Then for any strictly positive probability distribution π(xL1∪L2∪L3∪L4) the
following two expressions are equivalent

(A) XL1 ⊥⊥ XL2∪L3 |XL4 [π],

(B) XL1 ⊥⊥ XL3 |XL2∪L4 [π] and XL1 ⊥⊥ XL2 |XL3∪L4 [π].
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Proof. As in the previous proof we will again consider x to be an element of
XL1 , y ∈ XL2 , z ∈ XL3 and w ∈ XL4 . Therefore, we are proving equivalence
of the expressions

(A) π(x, y, z, w)π(w) = π(x,w)π(y, z, w),

(B) π(x, y, z, w)π(y, w) = π(x, y, w)π(y, z, w) &
π(x, y, z, w)π(z, w) = π(x, z, w)π(y, z, w).

The first half of the proof - (A) ⇒ (B) - follows immediately from
Lemma 2.1.2. Let us remark that for this part of the assertion the strict
positivity of the distribution is not necessary.

(B)⇒ (A) - Due to Factorization rule (Lemma 2.1.1), the independence
relations from (B) entail the existence of functions ψ1, ψ2, ψ3, ψ4 such that

π(x, y, z, w) = ψ1(x, y, w)ψ2(y, z, w) , (2.3)

π(x, y, z, w) = ψ3(x, z, w)ψ4(y, z, w) ,

and therefore also

π(y, z, w) = ψ2(y, z, w)
∑

x

ψ1(x, y, w),

π(y, z, w) = ψ4(y, z, w)
∑

x

ψ3(x, z, w).

Since the distribution π is assumed to be strictly positive, all functions
ψ1, ψ2, ψ3 and ψ4 are also strictly positive and π(x|y, z, w) can be expressed
in the form of a ratio π(x, y, z, w)/π(y, z, w) and therefore

π(x|y, z, w) =
ψ1(x, y, w)ψ2(y, z, w)

ψ2(y, z, w)
∑

x ψ1(x, y, w)
=

ψ1(x, y, w)
∑

x ψ1(x, y, w)
=
ψ1(x, y, w)

ϕ1(y, w)
,

π(x|y, z, w) =
ψ3(x, z, w)ψ4(y, z, w)

ψ4(y, z, w)
∑

x ψ3(x, z, w)
=

ψ3(x, z, w)
∑

x ψ3(x, z, w)
=
ψ3(x, z, w)

ϕ3(z, w)
.

From the first equality

π(x|y, z, w) =
ψ1(x, y, w)

ϕ1(y, w)

we see that π(x|y, z, w) does not depend on z, from the other equality

π(x|y, z, w) =
ψ3(x, z, w)

ϕ3(z, w)
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we can see that it does not depend on y (more precisely, π(x|y, z, w) =
π(x|y′, z′, w) for all quadruples (x, y, z, w), (x, y′, z′, w) ∈ XL1∪L2∪L3∪L4).
Denoting

ψ1(x, y, w)
∑

x ψ1(x, y, w)
=

ψ3(x, z, w)
∑

x ψ3(x, z, w)
= η1(x,w)

one gets

ψ1(x, y, w) =

(

∑

x

ψ1(x, y, w)

)

η1(x,w) = ζ(y, w)η1(x,w).

Substituting this into (2.3) we get

π(x, y, z, w) = ψ1(x, y, w)ψ2(y, z, w) = ζ(y, w)η1(x,w)ψ2(y, z, w)

= η1(x,w)η2(y, z, w) ,

which yields, due to Factorization Lemma 2.1.1, the conditional indepen-
dence (A) XL1 ⊥⊥ XL@∪L3 |XL4 . �

2.2 Extensions of distributions

Consider K ⊆ L ⊆ N and a probability distribution π(xK). By Π(L) we
shall denote the set of all probability distributions defined for variables XL.
Similarly, Π(L)(π) will denote the system of all extensions of the distribution
π to L-dimensional distributions:

Π(L)(π) =
{

κ ∈ Π(L) : κ(xK) = π(xK)
}

,

(recall that κ(xK) is the marginal distribution of κ for variablesXK). Having
a system

Ξ = {π1(xK1), π2(xK2), . . . , πn(xKn
)} ,

of oligodimensional distributions (K1 ∪ . . . ∪Kn ⊆ L), the symbol Π(L)(Ξ)
denotes the system of distributions that are extensions of all the distributions
from Ξ:

Π(L)(Ξ) =
{

κ ∈ Π(L) : κ(Ki) = πi ∀i = 1, . . . , n
}

=
n
⋂

i=1

Π(L)(πi).

It is almost obvious that the set of extensions Π(L)(Ξ) is either empty or
convex set (naturally, one-point-set is convex, too).
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Table 2.5: 3-dimensional distribution

x1 = 0 x1 = 1
π

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 0.1 0.1 0.2 0.1

x3 = 1 0.0 0.1 0.0 0.1

x3 = 2 0.2 0.0 0.0 0.1

Lemma 2.2.1 For any system of oligodimensional distributions

Ξ = {π1(xK1), π2(xK2), . . . , πn(xKn
)}

the set of its extensions Π(L)(Ξ) is either empty or convex.

Proof. To prove this assertion we have to show that if Π(L)(Ξ) 6= ∅ than

ν, κ ∈ Π(L)(Ξ) =⇒ (αν + (1− α)κ) ∈ Π(L)(Ξ),

for any α ∈ [0, 1]. Consider arbitrary such distributions ν(xL), κ(xL) ∈
Π(L)(Ξ) and πi ∈ Ξ. Since both ν↓Ki = πi, and κ↓Ki = πi, it is clear that

also µ↓Ki
α = πi for any distribution

µα(xL) = αν(xL) + (1− α)κ(xL).

As this must hold for all i = 1, . . . , n and therefore Ξ is a convex set. �

Example 2.2.1 Consider a 3-dimensional distribution π(x{1,2,3}) from Ta-

ble 2.5. Its marginal distributions π↓{1,2}, π↓{1,3} and π↓{2,3} are in Table
2.6.

Since π(x3) > 0 for all x3 = 0, 1, 2, the conditional distributions
π(x1, x2|x3), π(x1|x3) and π(x2|x3) are uniquely defined by

π(x1, x2|x3) =
π(x1, x2, x3)

π(x3)
,

and (for j = 1, 2)

π(xj |x3) =
π(xj , x3)

π(x3)
.
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Table 2.6: 2-dimensional marginal distributions

π↓{1,2} x1 = 0 x1 = 1

x2 = 0 0.3 0.2

x2 = 1 0.2 0.3

π↓{1,3} x1 = 0 x1 = 1

x3 = 0 0.2 0.3

x3 = 1 0.1 0.1

x3 = 2 0.2 0.1

π↓{2,3} x2 = 0 x2 = 1

x3 = 0 0.3 0.2

x3 = 1 0.0 0.2

x3 = 2 0.2 0.1

Therefore, if we want to find out whether the variables X1 and X2 are
conditional independent given X3, it is enough to check the equality

π(x1, x2|x3) = π(x1|x3)π(x2|x3)

for all 12 possible combinations of values x1, x2 ∈ {0, 1} and x3 ∈ {0, 1, 2}.
In this way we are getting that X1 6⊥⊥ X2|X3[π] because (for example) for
x1 = x2 = x3 = 0

π(x1 = 0, x2 = 0|x3 = 0) =
1

5
,

and

π(x1 = 0|x3 = 0) =
2

5
, π(x2 = 0|x3 = 0) =

3

5
.

In contrary to conditioning by single variableX3, conditional distribution
π(x1|x2, x3) is not defined uniquely; the definition is met by any distribution
from Table 2.7 (for α ∈ [0, 1]).

Now, let us raise a question what are the classes of extensions of the
2-dimensional distributions from Table 2.6. First, let us consider all three
distributions π↓{1,2}, π↓{1,3} and π↓{2,3}. The set of their extensions is, in
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Table 2.7: Conditional distribution π(x1|x2, x3)

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 1/3 1/2 2/3 1/2

x3 = 1 α 1/2 1− α 1/2

x3 = 2 1 0 0 1

correspondence with the above used notation, denoted by the symbol

Π({1,2,3})({π↓{1,2}, π↓{1,3}, π↓{2,3}}).

Since π ∈ Π({1,2,3})({π↓{1,2}, π↓{1,3}, π↓{2,3}}), it is clear that this set must
be nonempty. Due to Lemma 2.2.1 this set must be also convex. The reader
can verify that the set of extensions is the set of all distributions described
in Table 2.8 for β ∈ [.1, .2].

Table 2.8: Set Π({1,2,3})({π↓{1,2}, π↓{1,3}, π↓{2,3}})

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 β 0.2− β 0.3− β β

x3 = 1 0 0.1 0 0.1

x3 = 2 0.3− β β − 0.1 β − 0.1 0.2− β

Considering extensions of only two distributions, let us say π↓{1,2} and
π↓{2,3}, we are getting a wider class of distributions, since

Π({1,2,3})({π↓{1,2}, π↓{1,3}, π↓{2,3}}) =

3
⋂

i=1

Π({1,2,3})(π↓{i,(i mod 3)+1})

⊆ Π({1,2,3})(π↓{1,2}) ∩Π({1,2,3})(π↓{2,3}) = Π({1,2,3})({π↓{1,2}, π↓{2,3}}).

This class is described in Table 2.9 for γ ∈ [.1, .3], δ ∈ [0, .2] and ε ∈
[.1− δ, .2− δ]. ♦
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Table 2.9: Set Π({1,2,3})({π↓{1,2}, π↓{2,3}})

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 γ δ 0.3− γ 0.2− δ

x3 = 1 0 ε 0 0.2− ε

x3 = 2 0.3− γ 0.2− (δ + ε) γ − 0.1 (δ + ε)− 0.1

2.3 Information-theoretic notions

In the sequel, several notions characterizing probability distributions and
their relationship will be used. The first is the well-known Shannon entropy
defined (for π ∈ Π(N))

H(π) = −
∑

x∈XN :π(x)>0

π(x) log π(x).

Remark 2.3.1 In this section we shall see a close relation of the Shannon
entropy to (mutual) information. If we want to measure the information
in bits then in the above definition must be the binary logarithm (log2),
otherwise we can consider a logarithm of an arbitrary basis. We have only
keep in mind that all the logarithms must be the same. ◦

Recall that for two disjoint index sets K,L ⊂ N one can also define a
conditional entropy H(π(xK |xL) using the expression:

H(π(xK |xL)) = −
∑

x∈XK∪L:π(x)>0

π(x) log π(xK |xL).

Notice that for L = ∅ H(π(xK |xL) = H(π(xK)). It is well known that
(conditional) Shannon entropy is always nonnegative and equals 0 only for
“degenerate” distribution, ie., for distribution that equals 1 for one x. There-
fore, it is quite natural to define also for K = ∅

H(π(xK |xL) = 0.

To compare two distributions defined for the same system of variables
(i.e. π, κ ∈ ΠN ) we will use Kullback-Leibler divergence (in literature called
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also I-divergence, or cross-entropy). It is in fact a relative entropy of the
first distribution with respect to the other:

Div(π‖κ) =







∑

x∈XN :π(x)>0

π(x) log π(x)
κ(x) if π ≪ κ,

+∞ otherwise,

where symbol π ≪ κ denotes the fact that κ dominates π. Dominance (or
absolute continuity) is an important concept that will be used also when
introducing other basic notions. In the considered finite case, this property
can be defined by the following condition

π ≪ κ ⇐⇒ ∀x ∈ X (κ(x) = 0 =⇒ π(x) = 0) .

Let us go back to the Kullback-Leibler divergence. The reader can im-
mediately see that if π = κ then Div(π‖κ) = 0. It is a well-known property
of Kullback-Leibler divergence (and not too difficult to be proven) that its
value is always non-negative and equals 0 if and only if π = κ. This is the
reason why we shall use it to “measure a distance” between two probabil-
ity distributions defined for the same set of variables. But we will have to
keep in mind that this divergence is not a distance in a mathematical sense,
because it is not symmetric, i.e., generally Div(π‖κ) 6= Div(κ‖π). For a
trivial example of this inequality consider two distributions π and κ of 3-
valued variable X from Table 2.10. As the reader can easily verify, when
considering a binary logarithm, we get Div(π‖κ) = 1 and Div(κ‖π) = +∞.

Table 2.10: Distributions π and κ

0 1 2

π 0.5 0 0.5

κ 0.25 0.5 0.25

One of the fundamental notions of information theory is a mutual infor-
mation. Having a distribution π(xN ) and two disjoint subsets K,L ⊂ N , it
expresses how much one group of variables XK influences the other one –
XL. It is defined

MIπ(XK ;XL) =
∑

x∈XK∪L:π(x)>0

π(x) log
π(x)

π(xK)π(xL)
,
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and equals 0 if and only if variables XK are independent with variables XL

under the distribution π. Otherwise, the mutual information MIπ(XK ;XL)
is always positive.

For disjoint subsets K,L,M ⊂ N conditional mutual information is
defined by the formula

MIπ(XK ;XL|XM ) =
∑

x∈XK∪L∪M :π(x)>0

π(x) log
π(x)π(xM )

π(xK∪M )π(xL∪M )
.

As the reader can see, analogously to Shannon entropy, mutual information
is just a special case of a conditional mutual information for M = ∅. There-
fore, it is not surprising that also conditional mutual information is always
nonnegative and equals zero if and only if the respective groups of variables
are conditionally independent:

MIπ(XK ;XL|XM ) = 0 ⇐⇒ XK ⊥⊥ XL|XM [π].

The last notion, which will be of great importance, but which is not
as famous as Shannon entropy or mutual information, is an informational
content2 of a distribution defined (for π ∈ Π(N)):

IC(π) =
∑

x∈XN :π(x)>0

π(x) log
π(x)
∏

j∈N

π(xj)
,

and its conditional version (for disjoint K,L ⊂ N)

IC(π(xK |xL)) =
∑

x∈XK∪L:π(x)>0

π(x) log
π(xK |xL)
∏

j∈K

π(xj)
.

Notice that IC(π) is nothing but a Kullback-Leibler divergence of two
distributions: π(xN ) and

∏

j∈N π(xj). Since π(x)≪
∏

j∈N

π(xj), this value is

always finite and equals 0 if and only if π(x) =
∏

j∈N

π(xj). In fact, this value

expresses how much individual variables are dependent under the distribu-
tion π. Therefore the higher this value, the more dependent the variables,
and consequently, the greater amount of information carried by the distrib-
ution.

One can also immediately see that for a 2-dimensional distribution π(x1, x2)

IC(π) = MIπ(X1;X2).

2Some authors (Milan Studený) call this notion multiinformation.
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Let us present a couple of expressions describing relationship among
the introduced notions (all of the proofs can be found in any textbook on
Information Theory like the classical textbook by Gallager [9], however we
recommend the reader to prove all these formulae as an exercise).

Lemma 2.3.1 Let K,L,M ⊆ N be disjoint. For any probability distribu-
tion π(xN ) the following expressions hold true.

1. 0 ≤ H(π(xK)) ≤ H(π(xK∪L));

2. 0 ≤MIπ(XK ;XL) ≤ min(H(π(xK)), H(π(xL)));

3. H(π(xK |xL)) = H(π(xK∪L))−H(π(xL));

4. MIπ(XK ;XL) = H(π(xK)) +H(π(xL))−H(π(xK∪L))
= H(π(xK))−H(π(xK |xL));

5. MIπ(XK ;XL|XM ) = H(π(xK |xM ))+H(π(xL|xM ))−H(π(xK∪L|xM ))
= H(π(xK |xM ))−H(π(xK |xL∪M ));

6. MIπ(XK ;XL∪M ) = MIπ(XK ;XM ) +MIπ(XK ;XL|XM );

7. IC(π(xK)) =
∑

i∈K

H(π(xi))−H(π(xK));

8. IC(π(xK∪L)) = IC(π(xK)) + IC(π(xL)) +MIπ(XK ;XL);

9. IC(π(xK |xL)) = IC(π(xK∪L))− IC(π(xL));

10. XK ⊥⊥ XL|XM [π] ⇐⇒ MIπ(XK ;XL|XM ) = 0;

11. XK ⊥⊥ XL|XM [π] =⇒ MIπ(XK ;XM ) ≥MIπ(XK ;XL);

12. XK ⊥⊥ XL|XM [π] ⇐⇒ MIπ(XK ;XL∪M ) = MIπ(XK ;XM ).
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Chapter 3

Operators of composition

3.1 Definition of operators

To be able to compose low-dimensional distributions to get a distribution of
a higher dimension we will introduce two operators of composition.

First, let us introduce an operator ⊲ of right composition. To make it
clear from the very beginning, let us stress that it is just a generalization
of the idea of computing the three-dimensional distribution from two two-
dimensional ones introducing the conditional independence:

π(x1, x2) ⊲ κ(x2, x3) =
π(x1, x2)κ(x2, x3)

κ(x2)
= π(x1, x2)κ(x3|x2).

Example 3.1.1 Let us illustrate this formula by computing

π↓{1,2}(x1, x2) ⊲ π
↓{2,3}(x2, x3) =

π↓{1,2}(x1, x2)π
↓{2,3}(x2, x3)

π↓{2,3})(x2)
,

where the 2-dimensional distributions involved are the marginal distribu-
tions from Example 2.2.1. The computation results in a distribution pre-
sented in Table 3.1. One can immediately see that this distribution be-
longs to Π({1,2,3})({π↓{1,2}, π↓{2,3}}) (it is a distribution from Table 2.9 with
γ = .18 and δ = .08) but not to Π({1,2,3})({π↓{1,2}, π↓{1,3}, π↓{2,3}}). ♦

Consider two probability distributions π(xK) and κ(xL), for which we
want to define their composition. At this moment we do not pose any
condition on the relationship of the two sets of variables: XK and XL.
Nevertheless, if these sets are not disjoint, it may happen (under a rather
special condition) that the composition π ⊲ κ does not exist. In case that

35
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Table 3.1: Composed 3-dimensional distribution π({1,2}) ⊲ π({2,3})

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 0.18 0.08 0.12 0.12

x3 = 1 0 0.08 0 0.12

x3 = 2 0.12 0.04 0.08 0.06

π(xL∩K) ≪ κ(xL∩K), the right composition of these two distributions is
given by the formula

π ⊲ κ =
πκ

κ↓L∩K
.

Since we assume π↓L∩K ≪ κ↓L∩K , if for any x ∈ X(L∩K) κ
↓L∩K(x) = 0

then there is a product of two zeros in the numerator and we take, quite
naturally,

0.0

0
= 0.

If L ∩ K = ∅ then κ↓L∩K = 1 and the formula degenerates to a simple
product of π and κ (obviously, since in this case π↓L∩K = κ↓L∩K = 1, the
condition π(xL∩K)≪ κ(xL∩K) holds true).

Let us stress that in case π↓L∩K 6≪ κ↓L∩K the expression π ⊲ κ remains
undefined.

Thus, the formal definition of the operator ⊲ is as follows.

Definition 3.1.1 For arbitrary two distributions π ∈ Π(K) and κ ∈ Π(L)

their right composition is given by the following formula

π(xK) ⊲ κ(xL) =







π(xK)κ(xL)

κ(xK∩L)
if π(xK∩L)≪ κ(xK∩L),

undefined otherwise.

The following simple assertion answers the question: what is the result
of composition of two distributions?

Lemma 3.1.1 Let π, κ be probability distributions from Π(K),Π(L), respec-
tively. If π(xL∩K) ≪ κ(xL∩K) (i.e., if π(xK) ⊲ κ(xL) is defined) then
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π(xK)⊲κ(xL) is a probability distribution from Π(L∪K)(π), i.e., it is a prob-
ability distribution and its marginal distribution for variables XK equals π:

(π ⊲ κ)(xK) = π(xK)

for all xK ∈ XK .

Proof. To show that π ⊲κ is a probability distribution from Π(L∪K) we have
to show that

∑

x∈XK∪L

(π ⊲ κ)(x) = 1.

Therefore, to prove the whole assertion it is enough to show the second part,
that is to show that

(π ⊲ κ)(xK) =
∑

xL\K∈XL\K

(π ⊲ κ)(x) = π(xK),

because then the required equality is guaranteed by the fact that π(xK) is
a probability distribution.

∑

xL\K∈XL\K

(π ⊲ κ)(x) =
∑

xL\K∈XL\K

π(xK)κ(xL)

κ(xK∩L)

=
∑

xL\K∈XL\K

π(xK)κ(xK∩L, xL\K)

κ(xK∩L)

=
∑

xL\K∈XL\K

π(xK)κ(xK∩L)κ(xL\K |xK∩L)

κ(xK∩L)

= π(xK)
κ(xK∩L)

κ(xK∩L)

∑

xL\K∈XL\K

κ(xL\K |xK∩L).

In the last expression κ(xL\K |xK∩L) is a conditional distribution and there-
fore

∑

xL\K∈XL\K

κ(xL\K |xK∩L) = 1.

Moreover, due to the assumption

π(xL∩K)≪ κ(xL∩K),

if κ(xL∩K) = 0 then also π(xL∩K) = 0, and we defined π ⊲ κ = 0 in these
points. Therefore

π(xK)
κ(xK∩L)

κ(xK∩L)
= π(xK)
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for all xK ∈ XK , which finishes the proof. �

Example 3.1.2 Let us illustrate difficulties, which can occur when π↓L∩K 6≪
κ↓K∩L by a simple example.

Consider the distributions π(x1, x2) and κ(x2, x3) given in Tables 3.2 and
3.3, for which π(x2 = 0) > 0 and κ(x2 = 0) = 0.

Table 3.2: Probability distribution π

π x1 = 0 x1 = 1

x2 = 0 1
2

1
2

x2 = 1 0 0

Table 3.3: Probability distribution κ

κ x3 = 0 x3 = 1

x2 = 0 0 0

x2 = 1 1
2

1
2

If the composition of these two distributions was computed according to
the expression

(π ⊲ κ)(x1, x2, x3) =
π(x1, x2)κ(x2, x3)

κ(x2)

for all (x1, x2, x3) ∈ X{1,2,3}, the reader could easily see that for any (x1, x2, x3)

π(x1, x2)κ(x2, x3) = 0

since for x2 = 1 π(x2, x3) = 0, and for x2 = 0 κ(x1, x2) = 0.

Notice also that it can easily happen that π ⊲ ν is well defined whereas
ν ⊲π remains undefined. For this, consider the distribution ν from Table 3.4
and π from Table 3.2. Computation of π ⊲ ν and ν ⊲ π is in Table 3.5. ♦
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Table 3.4: Uniform probability distribution ν

ν x1 = 0 x1 = 1

x2 = 0 1
4

1
4

x2 = 1 1
4

1
4

Table 3.5: Computation of π ⊲ ν and ν ⊲ π

x1 x2 x3 π ⊲ ν ν ⊲ π

0 0 0 1
2 ·

1
2 = 1

4
1
4 ·

1
2 = 1

8

0 0 1 1
2 ·

1
2 = 1

4
1
4 ·

1
2 = 1

8

0 1 0 0 · 1
2 = 0 1

4 ·
0
0 = ?

0 1 1 0 · 1
2 = 0 1

4 ·
0
0 = ?

1 0 0 1
2 ·

1
2 = 1

4
1
4 ·

1
2 = 1

8

1 0 1 1
2 ·

1
2 = 1

4
1
4 ·

1
2 = 1

8

1 1 0 0 · 1
2 = 0 1

4 ·
0
0 = ?

1 1 1 0 · 1
2 = 0 1

4 ·
0
0 = ?

Let us state here also a property of a dominance that will help us to
prove some of the assertions in the following chapters.

Lemma 3.1.2 Let M ⊆ K ∩ L. For arbitrary two distributions π(xK) and
κ(xL) the following two expressions are equivalent:

(A) π↓K∩L 6≪ κ↓K∩L;

(B) π↓M 6≪ κ↓M or π 6≪ π↓(K\L)∪M ⊲ κ↓K∩L.

Proof. Let us recall the meaning of dominance. Condition (A) is true iff
there exists x ∈ XK∩L for which κ(x) = 0 and simultaneously π(x) > 0.
Since M ⊆ K ∩ L,

κ(x) = κ(xM )κ(x(K∩L)\M |xM ),
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and therefore (A) holds true iff there exists x ∈ XK∩L such that π(x) > 0
and simultaneously either

κ(xM ) = 0,

or

κ(x(K∩L)\M |xM ) = 0.

The former case occurs if π↓M 6≪ κ↓M is true, whereas the latter case is
equivalent to π 6≪ π↓(K\L)∪M ⊲ κ↓K∩L. �

Analogously to ⊲, we can also introduce the operator of left composition.

Definition 3.1.2 For arbitrary two distributions π ∈ Π(K) and κ ∈ Π(L)

their left composition is given by the following formula

π(xK) ⊳ κ(xL) =







π(xK)κ(xL)

π(xK∩L)
if κ(xK∩L)≪ π(xK∩L),

undefined otherwise.

Let us repeat that either of the expressions π(xK)⊲κ(xL), π(xK)⊳κ(xL),
if defined, is a probability distribution of variablesXK∪L. Properties of these
composed distributions will be discussed in the next section.

3.2 Basic properties

In this section a number of basic properties of operators of composition are
presented. Some of them are quite intuitive and help us to understand more
complex properties necessary for multidimensional model construction, some
others are rather technical and will be used to simplify proofs in subsequent
sections.

Lemma 3.2.1 Let K ⊆ L ⊆ N . For any probability distributions π ∈ Π(K)

and κ ∈ Π(L) such that π ≪ κ↓K , the relation

π ⊲ κ≪ κ

holds true, and for any ν ∈ Π(L)(π)

ν ≪ κ⇐⇒ ν ≪ π ⊲ κ.
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Proof. The assertion directly follows from the definition of the operator ⊲
which can be for the current situation written

π ⊲ κ =
πκ

κ↓K
.

From this formula it follows evidently that for any x ∈ XL

κ(x) = 0 =⇒ (π ⊲ κ)(x) = 0,

which proves that π ⊲ κ≪ κ.

Analogously, let ν ∈ Π(L)(π) be dominated by κ. Consider an x ∈ XL

for which

(π ⊲ κ)(x) =
π(xK)κ(x)

κ(xK)
= 0.

That means that either π(xK) = 0 or κ(x) = 0 (or both). If π(xK) = 0
then ν(xK) = 0 as ν↓K equals π since ν ∈ ΠL(π). Therefore also ν(x) = 0.
On the other hand, if κ(x) = 0 then ν(x) = 0 because ν is dominated by κ.
This proves that

ν ≪ κ =⇒ ν ≪ π ⊲ κ.

The opposite implication

ν ≪ π ⊲ κ =⇒ ν ≪ κ

follows immediately from the first part of the proof due to transitivity of
dominance

ν ≪ π ⊲ κ & π ⊲ κ≪ κ =⇒ ν ≪ κ. �

Definition 3.2.1 We shall say that distributions π ∈ Π(K) and κ ∈ Π(L)

are consistent if

π(K∩L) = κ(K∩L).

Remark 3.2.1 Notice that if K ∩ L = ∅, the distributions π and κ are
always consistent. ◦

Directly from the definition of the operators ⊳ and ⊲ we get the following
trivial assertion.
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Lemma 3.2.2 Let π ∈ Π(K) and κ ∈ Π(L). If π and κ are consistent then

π ⊲ κ = π ⊳ κ.

If either π↓K∩L ≪ κ↓K∩L or κ↓K∩L ≪ π↓K∩L then also the reverse implica-
tion holds true:

π ⊲ κ = π ⊳ κ =⇒ π and κ are consistent.

Proof. If π and κ are consistent then

π ⊲ κ =
πκ

κ↓K∩L
=

πκ

π↓K∩L
= π ⊳ κ.

To prove the other side of the equivalence assume
π ⊲ κ = π ⊳ κ. Since we assume also that either π↓K∩L ≪ κ↓K∩L or
κ↓K∩L ≪ π↓K∩L, it means that either π ⊲ κ or π ⊳ κ is defined, and because
these compositions equal each other, both of them must be defined. Using
twice Lemma 3.1.1, assumed equivalence and definition of the operators one
gets

π(xK∩L) = (π ⊲ κ)(xK∩L) = (π ⊳ κ)(xK∩L)

= (κ ⊲ π)(xK∩L) = κ(xK∩L).
�

As said at the beginning of this chapter, application of the operator
of composition introduces conditional independence among the variables.
What is the exact meaning of this statement can be seen from the following
simple but important assertion.

Lemma 3.2.3 Let ν(xK∪L) = π(xK) ⊲ κ(xL) be defined. Then

XK\L ⊥⊥ XL\K |XK∩L[ν].

Proof. To prove this assertion we have to show that for ν = π ⊲ κ

ν(xK∪L)ν(xK∩L) = ν(xK)ν(xL) (3.1)

for all x ∈ XK∪L. If for x ∈ XK∪L κ(xK∩L) = 0, then also π(xK∩L) = 0
(because ν is defined only when π(xK∩L) ≪ κ(xK∩L)), and therefore also
ν(xK∩L) = 0 (and thus ν(xK) = ν(xL) = ν(xK∪L) = 0, too). From this we
immediately get that equality (3.1) holds because both its sides equal 0.
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Consider now x ∈ XK∪L, for which κ(xK∩L) > 0. Lemma 3.1.1 says
that ν(xK) = π(xK). Let us compute ν(xL):

ν(xL) =
∑

xK\L∈XK\L

π(xK\L, xK∩L)κ(xL)

κ(xK∩L)

=
π(xK∩L)κ(xL)

κ(xK∩L)

∑

xK\L∈XK\L

π(xK\L|xK∩L),

where
∑

xK\L∈XK\L

π(xK\L|xK∩L) = 1.

Therefore

ν(xK)ν(xL) = π(xK)
π(xK∩L)κ(xL)

κ(xK∩L)
=
π(xK)κ(xL)

κ(xK∩L)
π(xK∩L),

where
π(xK)κ(xL)

κ(xK∩L)
= ν(xK∪L)

from the definition of operator ⊲, and π(xK∩L) = ν(xK∩L) due to
Lemma 3.1.1. �

Remark 3.2.2 In the following proof we shall use a standard trick, which
will be later repeated quite often. Let M ⊂ K and ν ∈ Π(K). Let us
compute
∑

x ∈ XK

ν(x) > 0

ν(x) log ν(xM ) =
∑

x ∈ XK

ν(x) > 0

ν(xM )ν(xK\M |xM ) log ν(xM )

=
∑

x ∈ XM

ν(x) > 0

ν(xM ) log ν(xM )
∑

y ∈ XK\M

ν(y|x) > 0

ν(y|x) = H(ν↓M )

because
∑

y ∈ XK\M

ν(y|x) > 0

ν(y|x) = 1.

◦
The conditional independence of variables introduced by the operator

of composition is closely connected with the fact that the composed dis-
tribution achieves maximal Shannon entropy, as expressed in the following
assertion.
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Theorem 3.2.1 If probability distributions π ∈ Π(K) and κ ∈ Π(L) are
consistent then

H(π ⊲ κ) = H(π) +H(κ)−H(κ↓K∩L),

and

π ⊲ κ = arg max
ν∈Π(K∪L)(π)∩Π(K∪L)(κ)

H(ν).

Proof. The first part of the proof is trivial:

H(π ⊲ κ) = −
∑

x ∈ XK∪L

(π ⊲κ)(x) > 0

(π ⊲ κ)(x) log(π ⊲ κ)(x)

= −
∑

x ∈ XK∪L

(π ⊲κ)(x) > 0

(π ⊲ κ)(x) log π(xK)

−
∑

x ∈ XK∪L

(π ⊲κ)(x) > 0

(π ⊲ κ)(x) log κ(xL)

+
∑

x ∈ XK∪L

(π ⊲κ)(x) > 0

(π ⊲ κ)(x) log κ(xK∩L)

= H(π) +H(κ)−H(κ(K∩L)),

because both π and κ are marginal to π ⊲ κ (this holds due to consistency
of π and κ, and Lemmata 3.2.2 and 3.1.1).

Now, let us compute the Shannon entropy for an arbitrary distribution
ν ∈ Π(K∪L)(π) ∩Π(K∪L)(κ).

H(ν) = −
∑

x ∈ XK∪L

ν(x) > 0

ν(x) log ν(x)

= −
∑

x ∈ XK∪L

ν(x) > 0

ν(x) log
ν(xK)ν(xL)ν(x)ν(xK∩L)

ν(xK∩L)ν(xK)ν(xL)
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= −
∑

x ∈ XK∪L

ν(x) > 0

ν(x) log ν(xK)−
∑

x ∈ XK∪L

ν(x) > 0

ν(x) log ν(xL)

+
∑

x ∈ XK∪L

ν(x) > 0

ν(x) log ν(xK∩L)−
∑

x ∈ XK∪L

ν(x) > 0

ν(x) log
ν(x)ν(xK∩L)

ν(xK)ν(xL)

= H(ν↓K) +H(ν↓L)−H(ν↓K∩L)−MIν(XK\L;XL\K |XK∩L)

= H(π) +H(κ)−H(κ↓K∩L)−MIν(XK\L;XL\K |XK∩L)

= H(π ⊲ κ)−MIν(XK\L;XL\K |XK∩L),

which concludes the proof because the conditional mutual information is
always nonnegative (and equals 0 if and only if ν = π ⊲ κ). �

Remark 3.2.3 First notice that H(κ)−H(κ↓K∩L) is a conditional entropy
H(κ(xL|xK∩L) (see property 3 on page 33). In this context the reader should
realize that the equality

H(π(xK) ⊲ κ(xL)) = H(π(xK)) +H(κ(xL|xK∩L))

is guaranteed only for consistent distributions. As we shall see from the
following example, in case that π and κ are inconsistent, the entropy of
their composition can be lower as well as higher than this sum. ◦

Example 3.2.1 Consider distribution κ from Table 3.6.

Table 3.6: Probability distribution κ

κ x1 = 0 x1 = 1

x2 = 0 0 1
2

x2 = 1 1
4

1
4
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Taking binary logarithm for computation of Shannon entropy we easily
get

H(κ(x2|x1)) = H(κ(x1, x2))−H(κ(x1)) =
3

2
− 1 =

1

2
.

Let us compute entropy of the distribution

π(x1) ⊲ κ(x1, x2),

for π(x1 = 0) = 0.1, π(x1 = 1) = 0.9. This composed distribution is in
Table 3.7, and its entropy equals

∑

x1=0,1

∑

x2=0,1

π(x1)κ(x2|x1) = 0 log2 0 + .1 log2 .1 + .45 log2 .45 + .45 log2 .45

= 1.369,

which certainly differs from

H(π(x1)) +H(κ(x2|x1)) = 0.469 + 0.5 = 0.969.

Table 3.7: Probability distribution π ⊲ κ

π ⊲ κ x1 = 0 x1 = 1

x2 = 0 0 .1

x2 = 1 .45 .45

Similarly, when composing κ with distribution π̂, for which π̂(x1 = 0) =
0.9, π̂(x1 = 1) = 0.1 (evidently H(π̂) = H(π)), we get the distribution π̂ ⊲ κ
(see Table 3.8), whose entropy equals

∑

x1=0,1

∑

x1=0,1

π̂(x1)κ(x2|x1) = 0 log2 0 + .9 log2 .9 + .05 log2 .05 + .05 log2 .05

= 0.569.

To make the situation more complicated, let us mention that, however,
it may happen that the equality

H(π ⊲ κ) = H(π) +H(κ)−H(κ↓K∩L)
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Table 3.8: Probability distribution π̂ ⊲ κ

π̂ ⊲ κ x1 = 0 x1 = 1

x2 = 0 0 .9

x2 = 1 .05 .05

Table 3.9: Probability distribution κ̂

κ̂ x1 = 0 x1 = 1

x2 = 0 .1 .4

x2 = 1 .4 .1

holds in case of inconsistent distributions. For example, for κ̂ from Table 3.9
all distributions ν ⊲ κ̂ achieve the same value of entropy. This is because

H(ν ⊲ κ̂) = H(ν) +
∑

x1=0,1

ν(x1)H(κ̂(·|x1)),

and H(κ̂(·|x1 = 0)) = H(κ̂(·|x1 = 1)). ♦

Example 3.2.2 In the proofs, we shall often compute a marginal distribu-
tion from a distribution defined as a composition of two (or several) oligodi-
mensional distributions. Therefore, it is important to realize that generally
for M ⊂ K ∪ L

(π ⊲ κ)↓M 6= π↓K∩M ⊲ κ↓L∩M . (3.2)

To illustrate the situation when equality in formula (3.2) does not hold
consider π↓{1,2} ⊲ π↓{2,3} from Example 3.1.1 (see Table 3.1 on page 36)
and its marginal distribution (π↓{1,2} ⊲ π↓{2,3})↓{1,3}, which is in Table 3.10.
Examining this marginal distribution we see that variables X1 and X3 are
not independent. Therefore

(π(x1, x2) ⊲ π(x2, x3))
↓{1,3} 6= (π(x1, x2))

↓{1} ⊲ (π(x2, x3))
↓{3}

= π(x1) ⊲ π(x3) = π(x1)π(x3). ♦



48 CHAPTER 3. OPERATORS OF COMPOSITION

Table 3.10: Marginal distribution (π↓{1,2} ⊲ π↓{2,3})↓{1,3}

π↓{1,3} x1 = 0 x1 = 1

x3 = 0 0.26 0.24

x3 = 1 0.08 0.12

x3 = 2 0.16 0.14

The following simple assertion presents a sufficient condition under which
the equality in expression (3.2) holds.

Lemma 3.2.4 Let K,L,M ⊆ N . If K ∪ L ⊇ M ⊇ K ∩ L then for any
probability distributions π ∈ Π(K) and κ ∈ Π(L)

(π ⊲ κ)↓M = π↓K∩M ⊲ κ↓L∩M .

Proof. Let us first mention that π ⊲κ is not defined only if π↓K∩L 6≪ κ↓K∩L.
However, because of the assumption laid on M , K∩L = (K∩M)∩(L∩M),
and therefore it holds true if and only if π(K∩M) ⊲ κ(L∩M) is not defined,
too. Therefore, if one composition is not defined then neither the other
composition is defined.

To prove the assertion in case that π ⊲ κ is defined, let us first compute

(π ⊲ κ)↓K∪M =
∑

xL\M∈XL\M

π(xK)κ(xL∩M , xL\M )

κ(xL∩K)

=
π(xK)κ(xL∩M )

κ(xL∩K)

∑

xL\M∈XL\M

κ(xL\M |xL∩M ) = π ⊲ κ↓L∩M .

Now we can compute the required marginal distribution

(π ⊲ κ)↓M = ((π ⊲ κ)↓K∪M )↓M = (π ⊲ κ↓L∩M )↓M

=
∑

xK\M∈XK\M

π(xK∩M , xK\M )κ(xL∩M )

κ(xL∩K)

=
π(xK∩M )κ(xL∩M )

κ(xL∩K)

∑

xK\M∈XK\M

π(xK\M |xK∩M )

= π↓K∩M ⊲ κ↓L∩M . �
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The following assertion shows that any composition of two distributions
can be expressed as a composition of two consistent distributions, each of
which is defined for the same group of variables as the original ones.

Lemma 3.2.5 Let π ∈ Π(K) and κ ∈ Π(L). If π ⊲ κ is defined then

π ⊲ κ = π ⊲ (π ⊲ κ)↓L.

Proof. The assertion is a trivial consequence of the next, more general
assertion. �

Lemma 3.2.6 Let π ∈ Π(K) and κ ∈ Π(L). If π⊲κ is defined and L ⊆M ⊆
K ∪ L then

π ⊲ κ = π ⊲ (π ⊲ κ)↓M . (3.3)

Proof First notice that if π ⊲ κ is not defined then also the right hand side
of formula (3.3) is not defined. In opposite case, if π ⊲ κ is defined, π and
π ⊲ κ are consistent (see Lemma 3.1.1) and therefore π ⊲ (π ⊲ κ)↓M is also
defined.

Therefore, consider only situations when π ⊲ κ is defined. We have to
prove that the required equality holds for all x ∈ XK∪L. If for such x,
π(xK∩M ) = 0, equality (3.3) holds true, because in these points π(xK) = 0
and therefore also both π ⊲ κ = 0 and π ⊲ (π ⊲ κ)↓M = 0. For all other
x ∈ XK∪L, for which π(xK∩M ) > 0 the assertion follows from Lemma 3.2.4,
the definition of the composition operator ⊲ and Lemma 3.1.1 saying that

(π↓K∩M ⊲ κ)↓K∩M = π↓K∩M :

π ⊲ (π ⊲ κ)↓M = π ⊲
(

π↓K∩M ⊲ κ
)

=
π
(

π↓K∩M ⊲ κ
)

(π↓K∩M ⊲ κ)
↓K∩M

=
π
(

π↓K∩M ⊲ κ
)

π↓K∩M
=

π

π↓K∩M

π↓K∩Mκ

κ↓K∩M∩L
=

πκ

κ↓K∩L
= π ⊲ κ.

�

The following simple assertion introduces a property that will be used
in several proofs.

Lemma 3.2.7 Let M be such that K ∩ L ⊆M ⊆ L; then

π(xK) ⊲ κ(xL) = (π(xK) ⊲ κ(xM )) ⊲ κ(xL).
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Proof. It is, again, trivial to show that left hand side of this equality is
undefined if and only if also its right hand side is undefined. Therefore we
will prove it under an assumption the expression is defined. We have to
distinguish two situations. For x ∈ XK∪L, for which κ(xL∩M ) = 0, the
property holds, because both sides of the equality in question equal 0. To
prove it for x ∈ XK∪L, for which κ(xL∩M ) > 0, realize that, under the given
assumptions, M ∩K = K ∩L and L∩ (K ∪M) = (L∩K)∪M = M . Then
the assertion follows immediately from the definition of the composition
operator ⊲:

(π ⊲ κ↓M ) ⊲ κ =
πκ↓M

κ↓M∩K

κ

κ↓L∩(K∪M)
=

πκ↓M

κ↓K∩L

κ

κ↓M
=

πκ

κ↓K∩L
= π ⊲ κ.

�

3.3 I-geometry of composition operators

This section is based on the results of Imre Csiszár ([6]) and therefore we
use also his terminology (including the term I-geometry in the section title).

Definition 3.3.1 Consider any π ∈ Π(L) and an arbitrary subset Θ of Π(L).
Distribution

κ = arg min
ν∈Θ

Div(ν‖π)

is called an I-projection of π into Θ, and, similarly,

κ′ = arg min
ν∈Θ

Div(π‖ν)

is called a reverse I-projection of π into Θ.

Thus, according to this definition, both I-projection and reverse I-projection
are distributions from Θ ⊂ Π(L), which are, in a sense, closest to π. As a
measure of distance we take the Kullback-Leibler divergence1

Div(κ‖π) =
∑

x∈XL:κ(x)>0

κ(x) log
κ(x)

π(x)
.

Generally, it may happen that for given π and Θ neither of the pro-
jections exists. However, we will always consider Θ to be a set of distri-
butions with given marginal(s), which is always a convex compact set of

1Recall, that if κ 6≪ π then Div(κ‖π) = +∞ by definition.
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distributions. For Θ = Π(L)(Ξ) the existence of an I-projection (reverse
I-projection) is guaranteed just by the existence of one ν ∈ Θ, for which
Div(ν‖π) (Div(π‖ν), respectively) is finite. Instructions how to find these
I-projections are given by the following two assertions.

Theorem 3.3.1 Let K ⊆ L ⊆ N . For arbitrary probability distributions
π ∈ Π(K) and κ ∈ Π(L) such that π ≪ κ↓K , π ⊲ κ is the I-projection of κ
into Π(L)(π). Moreover,

Div(ν‖κ) = Div(ν‖π ⊲ κ) +Div(π ⊲ κ‖κ)

for any ν ∈ Π(L).

Proof. π ⊲ κ ∈ Π(L)(π) and since π ⊲ κ ≪ κ (this holds due to Lemma
3.2.1), Div(π ⊲κ‖κ) is finite. Therefore the I-projection ν∗ of κ into Π(L)(π)
must be dominated by κ (otherwise Div(ν∗‖κ) = +∞ and ν∗ cannot be an
I-projection of κ into Π(L)(π)).

Consider any ν ∈ Π(L)(π) that is dominated by κ. First, realize that
because of Lemma 3.2.1 ν ≪ π ⊲ κ. Therefore one can compute

Div(ν‖κ) =
∑

x∈XL:ν(x)>0

ν(x) log
ν(x)

κ(x)

=
∑

x∈XL:ν(x)>0

ν(x) log

(

ν(x)

(π ⊲ κ)(x)

(π ⊲ κ)(x)

κ(x)

)

= Div(ν‖π ⊲ κ) +
∑

x∈XL:ν(x)>0

ν(x) log
(π ⊲ κ)(x)

κ(x)

= Div(ν‖π ⊲ κ) +
∑

x∈XL:ν(x)>0

ν(x) log
π(xK)κ(x)

κ(xK)κ(x)

= Div(ν‖π ⊲ κ) +
∑

z∈XK :ν(K)(z)>0

ν(z) log
π(z)

κ(z)

= Div(ν‖π ⊲ κ) +
∑

z∈XK :π(z)>0

π(z) log
π(z)

κ(z)

= Div(ν‖π ⊲ κ) +Div(π‖κ↓K).

As it is known that the divergence Div(ν‖π ⊲ κ) cannot be negative,
Div(ν‖κ) achieves its minimum for ν = π ⊲ κ (since Div(π ⊲ κ‖π ⊲ κ) = 0)
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Figure 3.1: I-projection of κ into Π(L)(π)

and thus

Div(π ⊲ κ‖κ) = Div(π‖κ↓K).

The equality

Div(ν‖κ) = Div(ν‖π ⊲ κ) +Div(π ⊲ κ‖κ)

holds also when ν 6≪ κ because, according to Lemma 3.2.1, also ν 6≪ π ⊲ κ
and therefore both Div(ν‖κ) and Div(ν‖π ⊲ κ) equal +∞. �

Theorem 3.3.2 Let K ⊆ L ⊆ N . If probability distributions π ∈ Π(K) and
κ ∈ Π(L) are such that π ≪ κ↓K and κ ≪ π ⊲ κ, then π ⊲ κ is the reverse
I-projection of κ into Π(L)(π).

Proof. The assumption κ ≪ π ⊲ κ guarantees that there exists at least
one distribution ν from Π(L)(π) for which Div(κ‖ν) < +∞ (namely ν =
π ⊲ κ). Therefore we are sure that the reverse I-projection of κ into Π(L)(π)
dominates κ. According to Lemma 3.2.1, κ dominates π ⊲ κ and so does,
due to transitivity of a dominance, also the considered reverse I-projection.

Consider any ν ∈ Π(L)(π) such that π⊲κ≪ ν. Then we can compute (the
extension of the argument of the logarithm is possible because we assume
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that κ≪ π ⊲ κ):

Div(κ‖ν) =
∑

x∈XL:κ(x)>0

κ(x) log
κ(x)

ν(x)

=
∑

x∈XL:κ(x)>0

κ(x) log

(

κ(x)

(π ⊲ κ)(x)

(π ⊲ κ)(x)

ν(x)

)

= Div(κ‖π ⊲ κ) +
∑

x∈XL:κ(x)>0

κ(x) log
(π ⊲ κ)(x)

ν(x)

= Div(κ‖π ⊲ κ) +
∑

x∈XL:κ(x)>0

κ(x) log
π(xK)κ(x)

κ(xK)ν(x)

= Div(κ‖π ⊲ κ)

+
∑

x∈XL:κ(x)>0

(

κ(x) log
π(xK)κ(xK)κ(xL\K |xK)

κ(xK)ν(xK)ν(xL\K |xK)

)

= Div(κ‖π ⊲ κ) +
∑

z ∈ XK

κ(K)(z) > 0

∑

y ∈ XL\K

κ(y|z) > 0

κ↓K(z)κ(y|z) log
κ(y|z)

ν(y|z)

= Div(κ‖π ⊲ κ) +
∑

z ∈ XK

κ(K)(z) > 0

κ↓K(z)
∑

y ∈ XL\K

κ(y|z) > 0

κ(y|z) log
κ(y|z)

ν(y|z)

= Div(κ‖π ⊲ κ) +
∑

z ∈ XK

κ(K)(z) > 0

κ↓K(z)Div(κ(·|z)‖ν(·|z)).

As Div(κ(·|z)‖ν(·|z)) cannot be negative for any z ∈ XK , Div(κ‖ν)
achieves its minimum for ν = π ⊲ κ. �

3.4 Iterations of the operators of composition

The importance of the operators of composition stems from the fact that
they can form multidimensional distributions from a system of oligodimen-
sional (low-dimensional) distributions. When these operators are iteratively
applied to a sequence of distributions, the result, if defined, is a multi-
dimensional distribution. This resulting distribution is defined for all the
variables, which appear among the arguments of at least one distribution
from the considered sequence. And it is this iterative application of opera-
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tors, from which we will also see the reason why we defined two operators ⊲
and ⊳.

To make the formulae more lucid, let us make the following conven-
tion: if not specified otherwise by brackets, operators ⊲ and ⊳ are always in
expressions applied from left to right. It means that

π1 ⊲ π2 ⊲ π3 ⊲ . . . ⊲ πn−1 ⊲ πn = (. . . ((π1 ⊲ π2) ⊲ π3) ⊲ . . . ⊲ πn−1) ⊲ πn,

and

π1 ⊳ π2 ⊳ π3 ⊳ . . . ⊳ πn−1 ⊳ πn = (. . . ((π1 ⊳ π2) ⊳ π3) ⊳ . . . ⊳ πn−1) ⊳ πn.

This section will be for most of the readers rather technical. We shall
present ten assertions describing elementary situations when the operators
are applied (as a rule) twice. Nevertheless, we will see that even in these
simple situations there arise quite interesting problems. This is because the
operators are neither commutative nor associative. In the following example
we shall show that generally

(a) π1 ⊲ π2 ⊲ π3 6= π1 ⊲ (π2 ⊲ π3) = π2 ⊲ π3 ⊳ π1 = π3 ⊳ π2 ⊳ π1,

(b) π1 ⊲ π2 ⊲ π3 6= π1 ⊲ π3 ⊲ π2,

(c) π1 ⊲ π2 ⊲ π3 6= π1 ⊳ π2 ⊳ π3,

(d) π1 ⊳ π2 ⊳ π3 6= π1 ⊳ π3 ⊳ π2.

Nevertheless, let us keep in mind that in special situations the equality
in these expressions may occur. For example, when all the distributions
π1, π2, π3 are uniform, then all the expressions result in a uniform distribu-
tion, too.

Example 3.4.1
(a) Consider

π1(x1) ⊲ π2(x2) ⊲ π3(x1, x2) = π1(x1)π2(x2), (3.4)

which evidently differs from

π1(x1) ⊲ (π2(x2) ⊲ π3(x1, x2)) =
π1(x1)(π2(x2)π3(x1|x2))
∑

y∈X1

π2(x2)π3(y|x2)
. (3.5)

Namely, in (3.4), the variables X1 and X2 are independent:

X1 ⊥⊥ X2[π1 ⊲ π2 ⊲ π3],
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which need not be true, generally, for (3.5). To see it, take an example where
both π1(x1) and π2(x2) are uniform distributions and π3(0, 0) = π3(1, 1) = 1

2 ,
π3(0, 1) = π3(1, 0) = 0. In this case both the marginal distributions π3(x1)
and π3(x2) are uniform and therefore π1 and π3, as well as π2 and π3 are
consistent. Therefore (due to Lemma 3.2.2)

π1 ⊲ π3 = π1 ⊳ π3 = π3,

and also

π2 ⊲ π3 = π2 ⊳ π3 = π3.

From this we get

π1 ⊲ (π2 ⊳ π3) = π1 ⊲ π3 = π1 ⊳ π3 = π3,

which obviously differ from π1⊲π2, which, as a product of two 1-dimensional
uniform distributions, is a uniform distribution, too.

(b) To illustrate the second inequality consider three 1-dimensional distri-
butions π1(x1), π2(x2), π3(x2), such that π2(x2) 6= π3(x2). Then

π1(x1) ⊲ π2(x2) ⊲ π3(x2) = π1(x1)π2(x2)

6= π1(x1)π3(x2) = π1(x1) ⊲ π3(x2) ⊲ π2(x2).

(c) Consider three distributions π1(x), π2(x), π3(x), for which π1(x) 6=
π3(x). Then

π1(x) ⊲ π2(x) ⊲ π3(x) = π1(x) 6= π3(x) = π1(x) ⊳ π2(x) ⊳ π3(x).

(d) Consider again three distributions π1(x), π2(x), π3(x), this time such
that π2(x) 6= π3(x). Then it is clear that

π1(x) ⊳ π2(x) ⊳ π3(x) = π3(x) 6= π2(x) = π1(x) ⊳ π3(x) ⊳ π2(x). ♦

Now, let us present lemmata saying under which conditions some of
these equalities hold. Whenever in this section we shall use probability
distributions π1, π2, π3, we shall assume that πi ∈ Π(Ki) for i = 1, 2, 3.

Lemma 3.4.1 If K1 ⊇ (K2 ∩K3) then

π1 ⊲ π2 ⊲ π3 = π1 ⊲ π3 ⊲ π2. (3.6)
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Proof. First, let us show that the left hand side expression in (3.6) is not
defined iff the right hand side of this formula is not defined. From the
definition of the operators we know that π1 ⊲ π2 ⊲ π3 is not defined iff

π↓K1∩K2
1 6≪ π↓K1∩K2

2

or

(π1 ⊲ π2)
↓(K1∪K2)∩K3 6≪ π

↓(K1∪K2)∩K3

3 .

Analogously, π1 ⊲ π3 ⊲ π2 is not defined iff

π↓K1∩K3
1 6≪ π↓K1∩K3

3

or

(π1 ⊲ π3)
↓(K1∪K3)∩K2 6≪ π

↓(K1∪K3)∩K2

2 .

Under the given assumption K1 ⊇ (K2 ∩K3), these two conditions coincide
because

((K1 ∪K2) ∩K3) = (K1 ∩K3), (3.7)

((K1 ∪K3) ∩K2) = (K1 ∩K2), (3.8)

and

(π1 ⊲ π2)
↓(K1∪K2)∩K3 = π↓K1∩K3

1 ,

(π1 ⊲ π3)
↓(K1∪K3)∩K2 = π↓K1∩K2

1 .

Now, let us assume that both the expressions in formula (3.6) are defined.
Because of (3.7) and (3.8) the expressions

π1 ⊲ π2 ⊲ π3 =
π1π2π3

π↓K1∩K2
2 π

↓K3∩(K1∪K2)
3

,

π1 ⊲ π3 ⊲ π2 =
π1π2π3

π↓K1∩K3
3 π

↓K2∩(K1∪K3)
2

are equivalent each to other, which finishes the proof. �

Lemma 3.4.2 If π1 and π2 are consistent then

K2 ⊇ (K1 ∩K3) =⇒ π1 ⊲ π2 ⊲ π3 = π1 ⊲ π3 ⊳ π2.



3.4. ITERATIONS OF THE OPERATORS OF COMPOSITION 57

Proof. Let us start, again, by showing that, under the given assumptions,
π1 ⊲ π2 ⊲ π3 is undefined iff π1 ⊲ π3 ⊳ π2 is undefined.

Since we assume that π1 and π2 are consistent, the former expression is
undefined only if

(π1 ⊲ π2)
↓K3∩(K1∪K2) 6≪ π

↓K3∩(K1∪K2)
3 .

Moreover, since K2 ⊇ (K1 ∩K3) =⇒ K3 ∩ (K1 ∪K2) = K3 ∩K2,

(π1 ⊲ π2)
↓K3∩(K1∪K2) = (π1 ⊲ π2)

↓K3∩K2 = (π1 ⊳ π2)
↓K3∩K2 = π↓K3∩K2

2 .

Thus we got that π1 ⊲ π2 ⊲ π3 is not defined iff

π↓K2∩K3
2 6≪ π↓K2∩K3

3 . (3.9)

π1 ⊲ π3 ⊳ π2 is undefined iff

π↓K1∩K3
1 6≪ π↓K1∩K3

3 , (3.10)

or

π
↓K2∩(K1∪K3)
2 6≪ (π1 ⊲ π3)

↓K2∩(K1∪K3). (3.11)

Since K1 ∩K3 ⊆ K2 ∩ (K1 ∪K3) we can apply Lemma 3.2.4 getting

(π1 ⊲ π3)
↓K2∩(K1∪K3) = π↓K2∩K1

1 ⊲ π↓K2∩K3
3 = π↓K2∩K1

2 ⊲ π↓K2∩K3
3 ,

where the last equality follows from the consistency of π1 and π2. Thus we
got that (3.11) is equivalent to

π
↓K2∩(K1∪K3)
2 6≪ π↓K2∩K1

2 ⊲ π↓K2∩K3
3 . (3.12)

Regarding the fact that in our case K1 ∩K3 ⊆ K2, and π1 and π2 are
consistent, (3.10) is equivalent to

π↓K1∩K3
2 6≪ π↓K1∩K3

3 . (3.13)

The fact that (3.9) occurs iff (3.12) or (3.13) holds true, immediately

follows from Lemma 3.1.2 (to check it assign: π ← π
↓K2∩(K1∪K3)
2 , κ ←

π↓K2∩K3
3 and M ← K1 ∩K3), which finishes the first part of the proof.

Now, it has remained to be shown that

π1 ⊲ π2 ⊲ π3 = π1 ⊲ π3 ⊳ π2
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in case that both sides of the equality are defined.

π1 ⊲ π3 ⊳ π2 =
π1π2π3

π
(K1∩K3)
3 (π1 ⊲ π3)(K2∩(K1∪K3))

,

and since we assume K2 ⊇ (K1 ∩K3), we can apply Lemma 3.2.4

(π1 ⊲ π3)
(K2∩(K1∪K3)) = π

(K1∩K2)
1 ⊲ π

(K3∩K2)
3 =

π
(K1∩K2)
1 π

(K3∩K2)
3

π
(K1∩K3)
3

,

and therefore

π1 ⊲ π3 ⊳ π2 =
π1π2π3

π
(K1∩K3)
3

π
(K1∩K2)
1 π

(K3∩K2)
3

π
(K1∩K3)
3

= π1 ⊲ π2 ⊲ π3

because of π
(K1∩K2)
1 = π

(K1∩K2)
2 and K3 ∩ (K1 ∪K2) = K3 ∩K2. �

Lemma 3.4.3 If π1 and π3 are consistent then

K1 ⊇ (K2 ∩K3) =⇒ π1 ⊲ π2 ⊲ π3 = π1 ⊲ π2 ⊳ π3.

Proof. Both expressions π1 ⊲π2 ⊲π3 and π1 ⊲π2 ⊳π3 are not defined if π1 ⊲π2

is undefined (i.e. if π↓K1∩K2
1 6≪ π↓K1∩K2

2 ).
In case that π1 ⊲ π2 is defined, then, under the given assumptions

K3 ∩ (K1 ∪K2) = K3 ∩K1,

we get that (π1⊲π2)
↓K3∩(K1∪K2) = π↓K3∩K1

1 = π↓K3∩K1
3 , and therefore π1⊲π2

and π3 are consistent. Therefore both expressions π1 ⊲π2 ⊲π3 and π1 ⊲π2 ⊳π3

are defined and equivalent each to other (due to Lemma 3.2.2). �

Lemma 3.4.4 If π2 and π3 are consistent then

K3 ⊇ (K1 ∩K2) =⇒ π1 ⊳ π2 ⊳ π3 = π1 ⊳ π3 ⊳ π2.

Proof. Let us start with discussing the conditions under which the respective
expressions are not defined. π1⊳π3⊳π2 is not defined iff π1⊳π3 is not defined,
i.e. when

π↓K1∩K3
3 6≪ π↓K1∩K3

1 , (3.14)

because in opposite case (π1 ⊳ π3) ⊳ π2 is always defined. It follows from
the fact that under the given assumptions K2 ∩ (K1 ∪K3) = K2 ∩K3 and

(π1 ⊳ π3)
↓K2∩K3 = π↓K2∩K3

2 .
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The other expression π1 ⊳ π2 ⊳ π3 is not defined iff at least one of the
operators is not defined. The first one is not defined if πK1∩K2

2 6≪ πK1∩K2
1 ,

or, which is, due to the given assumptions, equivalent to

πK1∩K2
3 6≪ πK1∩K2

1 . (3.15)

In case that (3.15) does not hold, then the second operator is not defined if

π
↓K3∩(K1∪K2)
3 6≪ (π1 ⊳ π2)

↓K3∩(K1∪K2).

Using Lemma 3.2.4, the given assumptions and the definition of the opera-
tors we can perform the following modifications

(π1 ⊳ π2)
↓K3∩(K1∪K2) = π↓K3∩K1

1 ⊳ π↓K3∩K2
2 = π↓K3∩K1

1 ⊳ π↓K3∩K2
3

= π↓K3∩K2
3 ⊲ π↓K3∩K1

1

getting an equivalent condition

π
↓K3∩(K1∪K2)
3 6≪ π↓K3∩K2

3 ⊲ π↓K3∩K1
1 . (3.16)

Now, applying Lemma 3.1.2 we get that (3.14) occurs iff either (3.15)
or (3.16) holds true. (For application of Lemma 3.1.2 we assign π ←

π
↓K3∩(K1∪K2)
3 , κ← π↓K1∩K3

1 and M ← K1 ∩K2.)

Now let us start proving that if the respective expressions are defined
they equal each other. For this, express π1 ⊳ π2 ⊳ π3 in the form of a ratio

π1 ⊳ π2 ⊳ π3 =
π1π2π3

π
(K1∩K2)
1 (π1 ⊳ π2)(K3∩(K1∪K2))

.

Since we assume that K3 ⊇ (K1 ∩K2) we can apply Lemma 3.2.4 according
to which

(π1 ⊳ π2)
(K3∩(K1∪K2)) = π

(K3∩K1)
1 ⊳ π

(K3∩K2)
2 .

In the following computations we apply the fact that under our assumptions
K1∩K2∩K3 = K1∩K2, and then the assumed consistency of π2, π3, the fact
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that π
(K3∩K2)
3 = (π1⊳π3)

(K3∩K2) and the equality K2∩(K1∪K3) = K2∩K3:

π1 ⊳ π2 ⊳ π3 =
π1π2π3

π
(K1∩K2)
1

(

π
(K3∩K1)
1 ⊳ π

(K3∩K2)
2

)

=
π1π2π3π

(K1∩K2∩K3)
1

π
(K1∩K2)
1 π

(K3∩K1)
1 π

(K3∩K2)
2

=
π1π2π3

π
(K1∩K3)
1 π

(K3∩K2)
2

=
π1π2π3

π
(K1∩K3)
1 π

(K3∩K2)
3

=
π1π2π3

π
(K1∩K3)
1 (π1 ⊳ π3)

(K3∩K2)

=
π1π2π3

π
(K1∩K3)
1 (π1 ⊳ π3)

(K2∩(K1∪K3)
= π1 ⊳ π3 ⊳ π2.

�

Lemma 3.4.5 If K3 ⊇ (K1 ∩K2) then

π1 ⊳ π2 ⊳ π3 = π1 ⊳ π3 ⊳ π2 ⊳ π3. (3.17)

if the right hand formula is defined.

Proof. To show that, under the given assumptions, π1⊳π2 is defined is simple.
Namely, existence of π1 ⊳ π3 ⊳ π2 ⊳ π3 guarantees that π↓K1∩K3

3 ≪ π↓K1∩K3
1

and π
↓K2∩(K1∪K3)
2 ≪ (π1 ⊳ π3)

↓K2∩(K1∪K3). Applying transitivity of the
dominance and the assumption K3 ⊇ (K1 ∩ K2) we immediately get that

π↓K1∩K2
2 ≪ π↓K1∩K2

1 .

Now, assume that (π1 ⊳ π2) ⊳ π3 is not defined. It means that there
exists x ∈ XK3∩(K1∪K2) such that (π1 ⊳ π2)(x) = 0 < π3(x). Regarding
the assumption that π1 ⊳ π3 is defined it means that π2(xK2∩K3) = 0, and
therefore also (π1 ⊳π3 ⊳π2)(x) = 0, which contradicts to the assumption that
π1 ⊳π3 ⊳π2 ⊳π3 is defined. So, we have proven that π1 ⊳π2 ⊳π3 is also defined.

It remains to be shown that both the expressions in (3.17) equal each
other. In the following computations we shall use only the definition of ⊳,
relations following from the assumption K3 ⊇ (K1 ∩K2) and Lemma 3.2.4.

π1 ⊳ π2 ⊳ π3 =
π1π2

π
(K1∩K2)
1

π3

(π1 ⊳ π2)(K3∩(K1∪K2))

=
π1π2π3

π
(K1∩K2)
1 (π

(K3∩K1)
1 ⊳ π

(K3∩K2)
2 )

=
π1π2π3π

(K1∩K2)
1

π
(K1∩K2)
1 π

(K3∩K1)
1 π

(K3∩K2)
2

=
π1π2π3

π
(K3∩K1)
1 π

(K3∩K2)
2

.
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Now, we shall use also the fact that (π1 ⊳ π3)
(K3) = π3.

π1 ⊳ π3 ⊳ π2 ⊳ π3

=
π1π3

π
(K1∩K3)
1

π2

(π1 ⊳ π3)(K2∩(K1∪K3))

π3

(π1 ⊳ π3 ⊳ π2)(K3∩(K1∪K2∪K3))

=
π1π3

π
(K1∩K3)
1

π2

(π1 ⊳ π3)(K2∩K3)

π3

(π1 ⊳ π3 ⊳ π2)(K3)

=
π1π3

π
(K1∩K3)
1

π2

(π1 ⊳ π3)(K2∩K3)

π3

(π1 ⊳ π3)(K3) ⊳ π
(K2∩K3)
2

=
π1π3

π
(K1∩K3)
1

π2

(π1 ⊳ π3)(K2∩K3)

π3

π3 ⊳ π
(K2∩K3)
2

=
π1π3

π
(K1∩K3)
1

π2

π
(K2∩K3)
3

π3π
(K2∩K3)
3

π3π
(K2∩K3)
2

=
π1π3π2

π
(K1∩K3)
1 π

(K2∩K3)
2

.

�

The following lemma is the only assertion presented here expressing a
condition allowing to change the ordering of operations of composition that
does not require a special form of sets Ki. It is based only on a special form
of conditional independence of distributions π2 and π3 and coincidence of
respective conditional distributions.

Lemma 3.4.6 If

π
(K2∩K3)
2 π

(K2∩K1)
2 = π

(K2∩(K1∪K3))
2 π

(K1∩K2∩K3)
2 ,

π
(K3∩K2)
3 π

(K3∩K1)
3 = π

(K3∩(K1∪K2))
3 π

(K1∩K2∩K3)
3 ,

and
π

(K2∩K3)
2

π
(K1∩K2∩K3)
2

=
π

(K3∩K2)
3

π
(K1∩K2∩K3)
3

then
π1 ⊲ π2 ⊲ π3 = π1 ⊲ π3 ⊲ π2.

Proof.

π1 ⊲ π2 ⊲ π3 =
π1π2π3

π
(K2∩K1)
2 π

(K3∩(K1∪K2))
3

and
π1 ⊲ π3 ⊲ π2 =

π1π2π3

π
(K3∩K1)
3 π

(K2∩(K1∪K3))
2

.
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Now, we shall show that the denominators in both these expressions equal
each to other.

π
(K2∩K1)
2 π

(K3∩(K1∪K2))
3 = π

(K2∩K1)
2 π

(K3∩(K1∪K2))
3

π
(K1∩K2∩K3)
3

π
(K3∩K2)
3

π
(K2∩K3)
2

π
(K1∩K2∩K3)
2

=
π

(K2∩K1)
2 π

(K3∩K2)
3 π

(K3∩K1)
3 π

(K2∩K3)
2

π
(K3∩K2)
3 π

(K1∩K2∩K3)
2

=
π

(K3∩K2)
3 π

(K3∩K1)
3 π

(K2∩(K1∪K3))
2 π

(K1∩K2∩K3)
2

π
(K3∩K2)
3 π

(K1∩K2∩K3)
2

= π
(K3∩K1)
3 π

(K2∩(K1∪K3))
2 .

Therefore if one of the expressions π1 ⊲ π2 ⊲ π3, π1 ⊲ π3 ⊲ π2 is defined then
the other one must be defined, too, and then

π1 ⊲ π2 ⊲ π3 = π1 ⊲ π3 ⊲ π2.
�

Corollary 3.4.1 If π2 and π3 are consistent and for both i = 2, 3

π
(Ki∩(K1∪K5−i))
i = π

((Ki∩K1)\K5−i)
i π

(K2∩K3)
i ,

then
π1 ⊲ π2 ⊲ π3 = π1 ⊲ π3 ⊲ π2.

Proof. We shall only verify that all the assumptions of the preceding Lemma
are fulfilled. The equality

π
(K2∩K3)
2

π
(K1∩K2∩K3)
2

=
π

(K3∩K2)
3

π
(K1∩K2∩K3)
3

follows immediately from the consistency of π2, π3.

Moreover, under the given assumptions

π
(Ki∩K1)
i = (π

(Ki∩(K1∪K5−i))
i )(Ki∩K1) = (π

((Ki∩K1)\K5−i)
i π

(K2∩K3)
i )(Ki∩K1)

= π
((Ki∩K1)\K5−i)
i π

(K1∩K2∩K3)
i

and therefore

π
(Ki∩K1)
i π

(K2∩K3)
i = π

((Ki∩K1)\K5−i)
i π

(K1∩K2∩K3)
i π

(K2∩K3)
i

= π
(Ki∩(K1∪K5−i))
i π

(K1∩K2∩K3)
i
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for both i = 2, 3. �

To prove the remaining assertions of this section we will need still another
operator (it will be called an anticipating operator), which will define a
special type of composition of two distributions. Notice, that this operator
is parametrized by an index set, which is the main difference with respect to
the previously defined operators ⊲ and ⊳. In Theorem 3.4.1 we will articulate
the main purpose, why this operators is introduced. Namely, operator ⊲ can
be substituted by an anticipating operator simultaneously with changing the
ordering of operations. The purpose of the parameter K will be intuitively
explained in Remark 3.4.5.

Definition 3.4.1 Let K, L, M be subsets of N . By application of the
anticipating operator ©⊲M to distributions π ∈ Π(K) and κ ∈ Π(L) we
understand computation of the following distribution

π(xK) ©⊲Mκ(xL) = (κ(x(M\K)∩L) · π(xK)) ⊲ κ(xL).

regardless of the choice of set M .

Remark 3.4.1 It should be stressed that since the anticipating operator is
defined with the help of the operator of right composition, it may happen
that the result remains undefined. It follows immediately from the respec-
tive definitions that π(xK) ©⊲Mκ(xL) is not defined iff π(xK) ⊲ κ(xL) is
undefined. Moreover notice that distribution π(xK) ©⊲Mκ(xL), if defined, is
defined for the same set of variables as the distribution π(xK) ⊲ κ(xL), and
that (π(xK) ©⊲Mκ(xL))↓K = π. ◦

Theorem 3.4.1 If π1, π2 and π3 are such that π1 ⊲ (π2 ©⊲K1
π3) is defined

then

π1 ⊲ π2 ⊲ π3 = π1 ⊲ (π2 ©⊲K1
π3) = π2 ©⊲K1

π3 ⊳ π1.

Proof. Assume that π1 ⊲ (π2 ©⊲K1
π3) is defined. It means that

π
↓K1∩(K2∪K3)
1 ≪ (π2 ©⊲K1

π3)
↓K1∩(K2∪K3), (3.18)

and, as a consequence of the fact that dominance holds also for the respective
marginal distributions, π↓K1∩K2

1 ≪ π↓K1∩K2
2 . This guarantees that π1 ⊲π2 is

defined.
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Let us now show by contradiction that also (π1⊲π2)⊲π3 must be defined.
Assume it is not defined. It means that there exists xK1∪K2∪K3 such that in
the expression

(π1 ⊲ π2 ⊲ π3)(x) =
π1(xK1) · π2(xK2) · π3(xK3)

π2(xK2∩K1) · π3(xK3∩(K1∪K2))

π3(xK3∩(K1∪K2)) = 0 and simultaneously π1(xK1) · π2(xK2) > 0. This, how-
ever, contradicts to our assumption that π2 ©⊲K1

π3 is defined: as we can see
from the respective formula

(π2 ©⊲K1
π3)(x) =

π3(x(K1\K2)∩K2
) · π2(xK2) · π3(xK3)

π3(xK3∩(K1∪K2))
,

π3(xK3∩(K1∪K2)) = 0 =⇒ π2(xK2) = 0.

Now, assuming π1 ⊲ (π2 ©⊲K1
π3) be defined let us compute (using the

definition of the operator ©⊲ and Lemma 3.2.4):

π1 ⊲ (π2 ©⊲K1
π3) =

π1
π
↓(K1\K2)∩K3
3 π2π3

π
↓(K1∪K2)∩K3
3

(

π
↓(K1\K2)∩K3
3 π2π3

π
↓(K1∪K2)∩K3
3

)↓(K2∪K3)∩K1

=

π
↓(K1\K2)∩K3

3
π1π2π3

π
↓(K1∪K2)∩K3
3

π
↓(K1\K2)∩K3

3

(

π2π3

π
↓(K1∪K2)∩K3
3

)↓(K2∪K3)∩K1

=

π1π2π3

π
↓(K1∪K2)∩K3
3

(

π2π3

π
↓(K1∪K2)∩K3
3

)↓(K2∪K3)∩K1
,

where the second modification is feasible because

(K1 \K2) ∩K3 ⊆ (K2 ∪K3) ∩K1.

Notice here that the last modification is just an elimination of the auxiliary

distribution π
↓(K1\K2)∩K3)
3 introduced in the definition of the operator ©⊲K1

.

Therefore, we can see that instead of π
↓(K1\K2)∩K3

3 we could use (almost) an
arbitrary distribution κ(x(K1\K2)∩K3

) (see Remark 3.4.4).
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Let us focus our attention on the denominator of the last fraction. It is
a marginal of a product of π2 with a conditional distribution

π3(xK3\(K1∪K2)|xK3∩(K1∪K2)).

When computing this marginal, we have to sum up over all combinations
of values of variables X(K2∪K3)\K1

. In the following computations we will
separate these variables into two groups: XK2\K1

and XK3\(K1∪K2). xK2 ∈
XK2 is thus a vector of values of variables XK2 which can be split into two
parts:

xK2 = (xK2\K1
, xK2∩K1).

Analogously, for xK3∩(K1∪K2) ∈ XK3∩(K1∪K2) we will consider parts

xK3∩(K1∪K2) = (xK3∩K1 , x(K3∩K2)\K1)).

Using this notation, we can compute:

(

π2(xK2)π3(xK3\(K1∪K2)|xK3∩(K1∪K2))
)↓(K2∪K3)∩K1

=
∑

xK2\K1
∈XK2\K1

∑

xK3\(K1∪K2)∈XK3\(K1∪K2)

π2(xK2∩K1 , xK2\K1
)

·π3(xK3\(K1∪K2)|x(K3∩K2)\K1
, xK3∩K1)

= π2(xK2∩K1)
∑

xK2\K1

π2(xK2\K1
|xK2∩K1)

∑

xK3\(K1∪K2)

π3(xK3\(K1∪K2
|x(K3∩K2)\K1

, xK3∩K1)

= π2((Xi)i∈K2∩K1).

Substituting this result back into the denominator of the fraction, we
get

π1 ⊲ (π2 ©⊲K1
π3) =

π1π2π3

π
↓(K1∪K2)∩K3
3

π↓K2∩K1
2

=
π1π2π3

π↓K2∩K1
2 π

↓(K1∪K2)∩K3

3

= π1 ⊲ π2 ⊲ π3.

which completes the proof. �
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Remark 3.4.2 Notice that the assertion does not claim that the equality
holds true when π1 ⊲ π2 ⊲ π3 is defined. This is because it can easily happen
that π1 ⊲ π2 ⊲ π3 is defined and π1 ⊲ (π2 ©⊲K1

π3) not. To show it consider a
simple situation with the following distributions:

π1(x) =

(

1

5
,

1

2
, 0

)

π2(x) =

(

1

3
,

1

3
,

1

3

)

π3(x) =

(

1

5
,

1

2
, 0

)

.
◦

Corollary 3.4.2 If K2 ⊇ (K1 ∩K3) then

π2 ©⊲K1
π3 = π2 ⊲ π3

and thus also

π1 ⊲ π2 ⊲ π3 = π1 ⊲ (π2 ⊲ π3) = π2 ⊲ π3 ⊳ π1.

Proof. The assertion is an immediate consequence of the fact

K2 ⊇ (K1 ∩K3) =⇒ (K1 \K2) ∩K3 = ∅. �

Remark 3.4.3 It should be highlighted here that the computational com-
plexity of the composition π2 ©⊲K1

π3 does not differ substantially from the
complexity of computation of π2 ⊲ π3. It follows, namely, from the fact that
both of these distributions are of the same dimensionality; both are defined
for variables XK2∪K3 . In other words, in both cases we have to compute the
same number of probability values. ◦

Remark 3.4.4 As mentioned in the proof, we could define the ©⊲K oper-
ator with the aid of an (almost) arbitrary distribution ν

π2 ©⊲K1
π3 = (ν((K1\K2)∩K3)π2) ⊲ π3.

For example, an arbitrary positive distribution which is defined for the re-
spective variables will serve well. For the sake of simplicity, it seems reason-
able to consider a uniform distribution. ◦
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Remark 3.4.5 As the reader can see, the operator is parameterized by
the index set K1. The purpose of the operator is, namely, to compose the
distributions (in our case distributions π2 and π3) but, simultaneously, to
introduce the necessary independence of variables X(K1\K2)∩K3

and XK2

that would otherwise be omitted. If we want to compose distributions π2

and π3 before π1 is considered, we have to “anticipate” the independence
which was originally introduced by the previous operator. This also explains
why the operator ©⊲K is called an anticipating operator. ◦

Example 3.4.2 As said before, the specific purpose of the anticipating op-
erator is to introduce the necessary conditional independence that would
otherwise be omitted. To illustrate the point, let us consider three distrib-
utions π1(x1), π2(x2), π3(x1, x2) for which

π1(x1) ⊲ π2(x2) ⊲ π3(x1, x2) = π1(x1)π2(x2).

If we used the operator ⊲ instead of ©⊲K1
, we would get

π1(x1) ⊲ (π2(x2) ⊲ π3(x1, x2)) =
π1(x1)(π2(x2)π3(x1|x2))
∑

x1∈X1

π2(x2)π3(x1|x2)
,

which evidently differs from π1(x1)π2(x2) because π1 ⊲ (π2 ⊲ π3) inherits the
dependence of variables X1 and X2 from π3. Nevertheless, considering

π1(x1) ⊲ (π2(x2) ©⊲{1}π3(x1, x2)) = π1(x1) ⊲ (π3(x1)π2(x2) ⊲ π3(x1, x2))

= π1(x1) ⊲ π3(x1)π2(x2) = π1(x1)π2(x2)

we get the desired result.
Perhaps, it is also worth of mentioning that in this example

π2(x2) ©⊲{1}π3(x1, x2)) = π3(x1)π2(x2) is not a marginal distribution of the
resulting π1(x1) ⊲ π2(x2) ⊲ π3(x1, x2). ♦

Example 3.4.3 Let us present another, a little bit more complex exam-
ple illustrating application of the anticipating operator. This time consider
distributions π1(x1, x2, x3, x4), π2(x2, x3, x5), π3(x3, x4, x6). In this case ac-
cording to Theorem 3.4.1

π1(x1, x2, x3, x4) ⊲ π2(x2, x3, x5) ⊲ π3(x3, x4, x6)

= π1(x1, x2, x3, x4) ⊲
(

π2(x2, x3, x5) ©⊲{1,2,3,4}π3(x3, x4, x6)
)

.
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According to the definition of the anticipating operator, the expression in
brackets equals

π3(x4)π2(x2, x3, x5) ⊲ π3(x3, x4, x6)

= π3(x4)π2(x2, x3, x5)π3(x6|x3, x4). (3.19)

The reader certainly noticed that, thanks to the anticipating operator, there
appears π3(x6|x3, x4) in this formula, which is exactly the form at which π3

occurs in

π1(x1, x2, x3, x4) ⊲ π2(x2, x3, x5) ⊲ π3(x3, x4, x6)

= π1(x1, x2, x3, x4)π2(x5|x2, x3)π3(x6|x3, x4).

Moreover, formula (3.19) allows for simple computation of the (in the next
step) required marginal:

(

π2(x2, x3, x5) ©⊲{1,2,3,4}π3(x3, x4, x6)
)↓{2,3,4}

= π3(x4)π2(x2, x3).

Therefore

π1(x1, x2, x3, x4) ⊲
(

π2(x2, x3, x5) ©⊲{1,2,3,4}π3(x3, x4, x6)
)

= π1(x1, x2, x3, x4)
π3(x4)π2(x2, x3, x5)π3(x6|x3, x4)

π3(x4)π2(x2, x3)

= π1(x1, x2, x3, x4)π2(x5|x2, x3)π3(x6|x3, x4). ♦

The last assertion of this section resembles Corollary 3.4.2. Notice, how-
ever, that in this case we cannot say that π2 ©⊲K1

π3 = π2 ⊲ π3.

Lemma 3.4.7 If K1 ⊇ (K2 ∩K3) then

π1 ⊲ π2 ⊲ π3 = π1 ⊲ (π2 ⊲ π3) = π2 ⊲ π3 ⊳ π1

if the right hand side formula is defined.

Proof. First let us show that if π2 ⊲ π3 ⊳ π1 is defined then also π1 ⊲ π2 ⊲ π3

must be defined.
Considering definition of the operator of composition we know that π2 ⊲

π3 ⊳ π1 is defined iff

π↓K2∩K3
2 ≪ π↓K2∩K3

3 , (3.20)

π
↓K1∩(K2∪K3)
1 ≪ (π2 ⊲ π3)

↓K1∩(K2∪K3). (3.21)
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A trivial consequence of the definition says that the dominance must hold
true also for the respective marginal distributions, and therefore (3.21) yields

π↓K1∩K2
1 ≪ (π2 ⊲ π3)

↓K1∩K2 = π↓K1∩K2
2 , (3.22)

which guarantees that π1 ⊲ π2 is defined.

To show that also the second operator in π1 ⊲ π2 ⊲ π3 is defined we have
to prove that

(π1 ⊲ π2)
↓K3∩(K1∪K2) ≪ π

↓K3∩(K1∪K2)
3

holds, which is, because of the assumption K1 ⊇ (K2 ∩K3), equivalent to

π↓K1∩K3
1 ≪ π↓K1∩K3

3 .

Assume the opposite: It means that there exists x ∈ XK1∩K3 such that
π1(x) > 0 and π3(x) = 0, or, which is the same (because K2∩K3 ⊆ K1∩K3),

π3(xK2∩K3)π3(x(K1\K2)∩K3
|xK2∩K3) = 0.

However, from (3.20) and (3.22) we get by transitivity of the dominance
that

π↓K2∩K3
1 ≪ π↓K2∩K3

3 ,

and therefore π3(xK2∩K3) > 0. Therefore, we are getting that

π3(x(K1\K2)∩K3
|xK2∩K3) = 0,

which contradicts to (3.21).

Now, we are able to start proving the required equivalence. With respect
to Theorem 3.4.1 it is enough to show that, under the given assumption,

π1 ⊲ (π2 ⊲ π3) = π1 ⊲ (π2 ©⊲K1
π3).

Therefore, regarding the definition of operator ⊲, we shall show that

π2 ©⊲K1
π3

(π2 ©⊲K1
π3)↓K1∩(K2∪K3)

=
π2 ⊲ π3

(π2 ⊲ π3)↓K1∩(K2∪K3)
.

In the following modifications we will employ the relations following from the
assumption K1 ⊇ (K2 ∩K3), Lemma 3.2.4 and definitions of the respective
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operators:

π2 ©⊲K1
π3

(π2 ©⊲K1
π3)↓K1∩(K2∪K3)

=
(π

↓(K1\K2)∩K3

3 π2) ⊲ π3

((π
↓(K1\K2)∩K3

3 π2) ⊲ π3)↓K1∩(K2∪K3)

=
(π

↓(K1\K2)∩K3

3 π2) ⊲ π3

(π
↓(K1\K2)∩K3

3 π2)↓K1∩(K2∪K3) ⊲ π↓K1∩K3
3

=
(π

↓(K1\K2)∩K3

3 π2) ⊲ π3

(π
↓(K1\K2)∩K3

3 π↓K1∩K2
2 ) ⊲ π↓K1∩K3

3

=
(π

↓(K1\K2)∩K3

3 π2) ⊲ π3

π
↓(K1\K2)∩K3

3 π↓K1∩K2
2

=
π
↓(K1\K2)∩K3

3 π2

π
↓(K1\K2)∩K3

3 π↓K1∩K2
2

π3

π
↓K3∩(K1∪K2)
3

=
π2π3

π↓K1∩K2
2 π

↓K3∩(K1∪K2)
3

π
(K1∩K2∩K3)
3

π
(K2∩K3)
3

=
π2 ⊲ π3

π↓K1∩K2
2 ⊲ π↓K1∩K2∩K3

3

=
π2 ⊲ π3

(π2 ⊲ π3)↓K1∩(K2∪K3)
.

�

Remark 3.4.6 Notice that it may happen that π1 ⊲ π2 ⊲ π3 is defined and
for the same distributions, π2 ⊲ π3 ⊳ π1 is undefined. The reader can show it
for the same distributions as mentioned in Remark 3.4.2. ◦

To conclude this section, we shall make an overview of the most im-
portant assertions presented in this section. Since they describe situations
under which an order of operators of composition can be changed with-
out influencing the resulting (“more-dimensional”) distribution we shall use
them quite often in the following proofs. For this, the table contains the
assumptions in an easy to check way.
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Table 3.11: Survey of assertions enabling alteration of order of compositions

requirement
structural property on statement reference

consistency

- -
π1 ⊲ π2 ⊲ π3

= π1 ⊲ (π2 ©⊲K1
π3)

Theorem 3.4.1

K1 ⊇ (K2 ∩K3) -
π1 ⊲ π2 ⊲ π3

= π1 ⊲ π3 ⊲ π2

Lemma 3.4.1

π1, π3
π1 ⊲ π2 ⊲ π3

= π1 ⊲ π2 ⊳ π3

Lemma 3.4.3

K1

K2

K3

'

&

$

%

�

�

�

�
�
�

�
�

-
π1 ⊲ π2 ⊲ π3

= π1 ⊲ (π2 ⊲ π3)
Lemma 3.4.7

K2 ⊇ (K1 ∩K3) π1, π2
π1 ⊲ π2 ⊲ π3

= π1 ⊲ π3 ⊳ π2

Lemma 3.4.2

K2

K1 K3

'

&

$

%

�
�

�
�

�
�

�
�

-
π1 ⊲ π2 ⊲ π3

= π1 ⊲ (π2 ⊲ π3)
Corollary 3.4.2

K3 ⊇ (K1 ∩K2)

π2, π3
π1 ⊳ π2 ⊳ π3

= π1 ⊳ π3 ⊳ π2

Lemma 3.4.4

K3

K2

K1

'

&

$

%

�

�

�

�
�
�

�
� -

π1 ⊳ π2 ⊳ π3

= π1 ⊳ π3 ⊳ π2 ⊳ π3

Lemma 3.4.5
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Chapter 4

Generating sequences

In this chapter we will start considering multidimensional compositional
models, i.e. multidimensional probability distributions assembled from se-
quences of oligodimensional distributions with the help of operators of com-
position. To avoid some technical problems and necessity of repeating some
assumptions too many times, let us make two important conventions. In this
and the following chapters we will consider a system of n oligodimensional
distributions π1(xK1), π2(xK2), . . . , πn(xKn

). Therefore, whenever we will
speak about a distribution πk, if not specified explicitly otherwise (usually
in examples), the distribution πk will always be assumed to be a distribution
from Π(Kk), which means it will be a distribution πk(xKk

). Thus, formulae
π1 ⊲ π2 ⊲ . . . ⊲ πn and π1 ⊳ π2 ⊳ . . . ⊳ πn, if they are defined, will determine the
distributions of variables XK1∪K2∪...∪Kn

. And our second convention con-
cerns this very condition that the models in question are defined. Namely,
since now, we shall always assume that the models we shall speak about,
which will be constructed by application of operators of composition, will
be defined.

Recall that regarding the fact that neither of these operators is com-
mutative or associative, we always apply the operators from left to right;
e.g.

π1 ⊲ π2 ⊲ π3 ⊲ . . . ⊲ πn = (. . . ((π1 ⊲ π2) ⊲ π3) ⊲ . . . ⊲ πn).

Therefore, in order to construct a distribution it is sufficient to determine
a sequence – we will call it a generating sequence – of oligodimensional
distributions. Moreover, since generally

π1 ⊲ π2 ⊲ . . . ⊲ πn 6= π1 ⊳ π2 ⊳ . . . ⊳ πn

it is necessary to determine which of the operators, ⊲ or ⊳, is used for com-

73
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position. If not said explicitly otherwise, we will usually consider operator ⊲.
This is because these two operators substantially differ from the computa-
tional point of view. To realize it, consider application of the k-th operator
in the sequences π1 ⊲ π2 ⊲ . . . ⊲ πn and π1 ⊳ π2 ⊳ . . . ⊳ πn. In the first case,
when computing

(π1 ⊲ . . . ⊲ πk) ⊲ πk+1 =
(π1 ⊲ . . . ⊲ πk)πk+1

π
↓Kk+1∩(K1∪...∪Kk)
k+1

,

one has to marginalize distribution πk+1, which is assumed to be low-
dimensional distribution. On the other hand, computation of

(π1 ⊳ . . . ⊳ πk) ⊳ πk+1 =
(π1 ⊳ . . . ⊳ πk)πk+1

(π1 ⊳ . . . ⊳ πk)
↓Kk+1∩(K1∪...∪Kk)

,

can only be done when computation of

(π1 ⊳ . . . ⊳ πk)
↓Kk+1∩(K1∪...∪Kk)

is tractable; since the distribution (π1 ⊳ . . . ⊳ πk) can be of a very high di-
mension it is not always the case. We will see that marginalization in com-
positional models is not a simple task; we will devote to it Section 7.1.

In agreement with what has just been said, for example, the generating
sequence

π1(x1, x3), π2(x3, x5), π3(x1, x4, x5, x6), π4(x2, x5, x6)

defines the distribution

(π1 ⊲ π2 ⊲ π3 ⊲ π4)(x1, x2, x3, x4, x5, x6)

= ((π1(x1, x3) ⊲ π2(x3, x5))π3(x1, x4, x5, x6)) ⊲ π4(x2, x5, x6)

= π1(x1, x3)π2(x5|x3)π3(x4, x6|x1, x5)π4(x2|x5, x6).

4.1 Perfect sequences

Not all generating sequences are equally efficient in their representations of
multidimensional distributions. Among them, so-called perfect sequences
hold an important position.
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Definition 4.1.1 A generating sequence of probability distributions π1,
π2, . . . , πn is called perfect if π1 ⊲ . . . ⊲ πn is defined and

π1 ⊲ π2 = π1 ⊳ π2,

π1 ⊲ π2 ⊲ π3 = π1 ⊳ π2 ⊳ π3,
...

π1 ⊲ π2 ⊲ . . . ⊲ πn = π1 ⊳ π2 ⊳ . . . ⊳ πn.

From this definition one can hardly see the importance of perfect se-
quences. This importance becomes clearer from the following characteri-
zation theorem. First, however, let us present a technical property, which,
being an immediate consequence of an inductive application of Lemma 3.2.2,
is presented without a proof.

Lemma 4.1.1 A sequence π1, π2, . . . , πn is perfect if and only if the pairs of
distributions (π1 ⊲ . . . ⊲ πm−1) and πm are consistent for all m = 2, 3, . . . , n.

Theorem 4.1.1 A sequence of distributions π1, π2,. . . ,πn is perfect iff all
the distributions from this sequence are marginals of the distribution (π1 ⊲
π2 ⊲ . . . ⊲ πn).

Proof. The fact that all distributions πk from a perfect sequence are mar-
ginals of (π1⊲π2⊲. . .⊲πn) follows from the fact that (π1⊲. . .⊲πk) is marginal
to (π1 ⊲ . . . ⊲ πn) and πk is marginal to (π1 ⊳ . . . ⊳ πk).

Suppose that for all k = 1, . . . , n, πk are marginal distributions of (π1 ⊲
. . . ⊲ πn). It means that all the distributions from the sequence are pairwise
consistent, and that each πk is consistent with any marginal distribution of
(π1 ⊲ . . . ⊲ πn). Therefore, π1 and π2 are consistent, and due to Lemma 3.2.2

π1 ⊲ π2 = π1 ⊳ π2.

Since π1⊲π2 is marginal to (π1⊲. . .⊲πn) (Lemma 3.1.1), it must be consistent
with π3, too. Using Lemma 3.2.2 again, we get

π1 ⊲ π2 ⊲ π3 = π1 ⊳ π2 ⊳ π3.

However, π1 ⊲π2 ⊲π3 being marginal to (π1 ⊲ . . . ⊲πn) must also be consistent
with π4 and we can continue in this manner until we achieve that for all
k = 2, . . . , n

π1 ⊲ π2 ⊲ . . . ⊲ πk = π1 ⊳ π2 ⊳ . . . ⊳ πk. �
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Example 4.1.1 The above presented theorem claims that a model defined
by a generating sequence preserves all the given marginals iff the model
is defined by a perfect sequence. If the considered generating sequence is
not perfect then some of the marginal distributions differ from the given
ones. In this example we show that non-perfect generating sequence need
not preserve one-dimensional marginal distributions – even in case that the
given oligodimensional distributions are pairwise consistent.

Consider distribution π(x1, x2, x3) from Table 2.5 on page 27. It is ob-
vious that π(x1), π(x2) and π(x1, x2, x3) must be pairwise consistent. Let
us deal with the distribution defined by generating sequence π(x1), π(x2),
π(x1, x2, x3), i.e. with the distribution

π(x1) ⊲ π(x2) ⊲ π(x1, x2, x3).

Since both the considered 1-dimensional marginal distributions π(x1), π(x2)
are uniform, the composition π(x1) ⊲ π(x2) is also uniform. Thus it is an
easy task to compute distribution κ = π(x1) ⊲ π(x2) ⊲ π(x1, x2, x3), which is
in Table 4.1.

Table 4.1: Distribution π(x1) ⊲ π(x2) ⊲ π(x1, x2, x3)

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 2
24

3
24

6
24

2
24

x3 = 1 0.0 3
24 0.0 2

24

x3 = 2 4
24 0.0 0.0 2

24

Summarizing entries in rows of Tables 2.5 and 4.1 we get the respective
one-dimensional marginal distributions π(x3) and κ(x3), respectively, from
which we see that these distributions are different:

π(x3 = 0) = 0.5 κ(x3 = 0) =
13

24
,

π(x3 = 1) = 0.2 κ(x3 = 1) =
5

24
,

π(x3 = 2) = 0.3 κ(x3 = 2) =
6

24
.

♦
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Remark 4.1.1 What is the main message conveyed by the characteriza-
tion Theorem 4.1.1? Considering that low-dimensional distributions πk are
carriers of local information, the constructed multidimensional distribution,
if it is a perfect sequence model, represents global information, faithfully
reflecting all of the local input. This is why we will be so much interested
in perfect sequence models. ◦

Remark 4.1.2 From Theorem 4.1.1 and the definition of a perfect sequence
we also immediately get that for perfect sequence π1, . . . , πn all the distrib-
utions πk (k = 1, . . . , n) are marginals of π1 ⊳ . . . ⊳πn. It should be, however,
stressed that in this case it does not mean that if all π1, . . . , πn are marginal
to π1 ⊳ . . . ⊳ πn that the considered sequence is perfect. We will illustrate
this fact by the following example. ◦

Example 4.1.2 Consider a sequence π1(x1, x2), π2(x2, x3), π3(x3, x4) and
assume it is perfect. Thus, we know that all π1, π2, π3 are marginal distrib-
utions of

π1 ⊲ π2 ⊲ π3 = π1 ⊳ π2 ⊳ π3

and all three distributions π1, π2, π3 are pairwise consistent. Since {2, 3} ⊃
{1, 2} ∩ {3, 4} we can apply Lemma 3.4.2, from which we get

π1 ⊲ π2 ⊲ π3 = π1 ⊲ π3 ⊳ π2 = π1 ⊳ π3 ⊳ π2.

(The last modification was possible because of Lemma 3.2.2.) Thus we got
that all π1, π2, π3 are marginal distributions of π1 ⊳ π3 ⊳ π2.

The question is whether also the sequence π1, π3, π2 is perfect. Using
Lemma 4.1.1 it happens if and only if the following two pairs of distributions
are consistent: (π1, π3) and (π1 ⊲ π3, π2). The former pair of distributions is
consistent, however, the latter one is consistent only when (π1⊲π3)(x2, x3) =
π2(x2, x3), which generally need not be true, because (π1 ⊲ π3)(x2, x3) =
π1(x2)π3(x3). Therefore, π1⊲π3 and π2 are consistent only when we consider
π2 to be a distribution of two independent variables

X2 ⊥⊥ X3[π2].

So we see that all distributions π1, π2, π3 are marginals of π1 ⊳ π3 ⊳ π2 and
yet the sequence π1, π3, π2 need not be perfect. ♦

Remark 4.1.3 Notice that when defining perfect sequence, let alone gen-
erating sequence, we have not imposed any conditions on sets of variables,
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for which the distributions were defined. For example, considering a gen-
erating sequence where one distribution is defined for a subset of variables
of another distribution (ie., Kj ⊂ Kk) is fully sensible and may carry an
information about the distribution. If π(x1), π(x2), π(x1, x2, x3) is a perfect
sequence modelling a 3-dimensional distribution, it is quite obvious that

π(x1) ⊲ π(x2) ⊲ π(x1, x2, x3) = π(x1, x2, x3)

(because all the elements of a perfect sequence are marginals of the resulting
distribution and therefore π(x1, x2, x3) must be marginal to π(x1) ⊲ π(x2) ⊲
π(x1, x2, x3)). Nevertheless, it may happen that for some reason or another
it may be advantageous to work with the model defined by the perfect se-
quence than just with the distribution π(x1, x2, x3). From the model one
can immediately see that variables X1 and X2 are independent, which, not
knowing the numbers defining the distribution, one cannot say about distri-
bution π(x1, x2, x3). (How to read all the conditional independence relations
from a compositional model will be presented in Section 6.) ◦

The following assertion shows that each generating sequence, for which
π1 ⊲ . . . ⊲ πn is defined, can be transformed into a perfect sequence (it is, in
a way, a generalization of Lemma 3.2.5).

Theorem 4.1.2 For any generating sequence π1, π2, . . . , πn the sequence
κ1, κ2, . . . , κn computed by the following process

κ1 = π1,

κ2 = κ↓K2∩K1
1 ⊲ π2,

κ3 = (κ1 ⊲ κ2)
↓K3∩(K1∪K2) ⊲ π3,

...

κn = (κ1 ⊲ . . . ⊲ κn−1)
↓Kn∩(K1∪...Kn−1) ⊲ πn

is perfect and

π1 ⊲ . . . ⊲ πn = κ1 ⊲ . . . ⊲ κn.

Proof The perfectness of the sequence κ1, . . . , κn follows immediately from
Lemma 4.1.1 and from the definition of this sequence as

κ
↓Ki∩(K1∪...∪Ki−1)
i = (κ1 ⊲ . . . ⊲ κi−1)

↓Ki∩(K1∪...∪Ki−1)
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yields consistency of (κ1 ⊲ . . . ⊲ κi−1) and κi.

Let us prove

π1 ⊲ . . . ⊲ πn = κ1 ⊲ . . . ⊲ κn

by mathematical induction. Since π1 = κ1 by definition, it is enough to
show that

π1 ⊲ . . . ⊲ πi = κ1 ⊲ . . . ⊲ κi

implies also

π1 ⊲ . . . ⊲ πi+1 = κ1 ⊲ . . . ⊲ κi+1.

In the following computations we will use the fact that due to Lemma 3.2.4

(κ1 ⊲ . . . ⊲ κi)
↓Ki+1∩(K1∪...Ki) ⊲ πi+1 = ((κ1 ⊲ . . . ⊲ κi) ⊲ πi+1)

↓Ki+1

and afterwards we will employ Lemma 3.2.5.

κ1 ⊲ . . . ⊲ κi+1 = κ1 ⊲ . . . ⊲ κi ⊲
(

(κ1 ⊲ . . . ⊲ κi)
↓Ki+1∩(K1∪...Ki) ⊲ πi+1

)

= κ1 ⊲ . . . ⊲ κi ⊲ ((κ1 ⊲ . . . ⊲ κi) ⊲ πi+1)
↓Ki+1

= κ1 ⊲ . . . ⊲ κi ⊲ πi+1 = π1 ⊲ . . . ⊲ πi ⊲ πi+1.
�

Example 4.1.3 From the theoretical point of view the process of perfecti-
zation described by Theorem 4.1.2 is simple. Unfortunately, it does not hold
for its computational complexity. Namely, the process requires marginaliza-
tion of models, which may be multidimensional distributions, represented
by generating sequences. We have already mentioned before that a whole
section will be devoted to this topic (Section 7.1). Nevertheless, just to illus-
trate this process consider the following example. In it we will also see that
a generating sequence consisting of (even only three) pairwise consistent
distributions need not be perfect.

Consider three 3-dimensional distributions presented in Table 4.2. The
reader can easily verify that these distributions are pairwise consistent (i.e.,
π1(x2, x3) = π2(x2, x3), π1(x1) = π3(x1) and π2(x4) = π3(x4)) and that se-
quence π1, π2, π3 is not perfect (hint: since π1 and π2 are consistent it is obvi-
ous that to show that π1, π2, π3 is not a perfect sequence one has to show that
distributions π1 ⊲ π2 and π3 are not consistent; e.g.
(π1 ⊲ π2)(x1 = 0, x4 = 0) = 0.30275, whilst π3(x1 = 0, x4 = 0) = 0.28 –
see also the following computations).
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Table 4.2: 3-dimensional distributions estimated from data

x1 = 0 x1 = 1
π1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 0.18 0.14 0.12 0.14

x3 = 1 0.04 0.18 0.06 0.14

x4 = 0 x4 = 1
π2

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 0.20 0.16 0.10 0.12

x3 = 1 0.06 0.14 0.04 0.18

x1 = 0 x1 = 1
π3

x4 = 0 x4 = 1 x4 = 0 x4 = 1

x5 = 0 0.20 0.08 0.20 0.06

x5 = 1 0.08 0.18 0.08 0.12

In this case, the process of perfectization consists of computation of the
following three distributions

κ1(x1, x2, x3) = π1(x1, x2, x3),

κ2(x2, x3, x4) = κ1(x2, x3) ⊲ π2(x2, x3, x4),

κ3(x1, x4, x5) = (κ1(x1, x2, x3) ⊲ κ2(x2, x3, x4))
↓{1,4} ⊲ π3(x1, x4, x5).

The first step is trivial and also the second one is quite simple:

κ2(x2, x3, x4) = κ1(x2, x3) ⊲ π2(x2, x3, x4)

= π1(x2, x3) ⊲ π2(x2, x3, x4)

= π2(x2, x3) ⊲ π2(x2, x3, x4)

= π2(x2, x3, x4)

However, the third step is much more complicated. Let us compute κ3
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at point (x1 = 0, x4 = 0, x5 = 0). Since

(κ1 ⊲ κ2)
↓{1,4}(x1 = 0, x4 = 0) = (κ1 ⊲ κ2)(x1 = 0, x2 = 0, x3 = 0, x4 = 0)

+(κ1 ⊲ κ2)(x1 = 0, x2 = 0, x3 = 1, x4 = 0)

+(κ1 ⊲ κ2)(x1 = 0, x2 = 1, x3 = 0, x4 = 0)

+(κ1 ⊲ κ2)(x1 = 0, x2 = 1, x3 = 1, x4 = 0)

we have to compute κ1 ⊲ κ2 at these four points:

(κ1 ⊲ κ2)(0, 0, 0, 0) =
π1(0, 0, 0)π2(0, 0, 0)

π2(x2 = 0, x3 = 0)
=

0.18× 0.20

0.30
= 0.12,

(κ1 ⊲ κ2)(0, 0, 1, 0) =
π1(0, 0, 1)π2(0, 1, 0)

π2(x2 = 0, x3 = 1)
=

0.04× 0.06

0.10
= 0.024,

(κ1 ⊲ κ2)(0, 1, 0, 0) =
π1(0, 1, 0)π2(1, 0, 0)

π2(x2 = 1, x3 = 0)
=

0.14× 0.16

0.28
= 0.08,

(κ1 ⊲ κ2)(0, 1, 0, 0) =
π1(0, 1, 1)π2(1, 1, 0)

π2(x2 = 1, x3 = 1)
=

0.18× 0.14

0.32
= 0.07875.

From this we get

(κ1 ⊲ κ2)
↓{1,4}(x1 = 0, x4 = 0) = 0.30275,

and therefore

κ3(0, 0, 0) = (κ1 ⊲ κ2)
↓{1,4}(0, 0) ⊲ π3(0, 0, 0) =

(κ1 ⊲ κ2)
↓{1,4}(0, 0)π3(0, 0, 0)

π3(x1 = 0, x4 = 0)

=
0.30275× 0.20

0.28
= 0.21625.

Table 4.3: κ3

x1 = 0 x1 = 1
κ3

x4 = 0 x4 = 1 x4 = 0 x4 = 1

x5 = 0 0.2162 0.0730 0.1838 0.0676

x5 = 1 0.0865 0.1642 0.0734 0.1352

The distribution κ3 is in Table 4.3 (notice that π3 and κ3 do not differ
too much; their Kullback-Leibler divergence Div(π3‖κ3) = 0.004239). ♦



82 CHAPTER 4. GENERATING SEQUENCES

Having a generating sequence, one should apply Lemma 4.1.1 to verify
whether the sequence is perfect or not. It is rather a strong property and it
may happen that its verification is not easy. Nevertheless, in some special
situations one can see the answer immediately. For example, the reader can
easily prove that an arbitrary sequence of uniform distributions is perfect.
More important situations, when verification of perfectness is simple, are
described in Lemma 4.1.3. It is, in fact, just a reformulation of a classical
result of Kellerer [25] into the language of this text. To formulate it, let
us recall an important concept that is not new to the reader familiar with
decomposable models (see e.g. [10]).

Definition 4.1.2 A sequence of sets K1,K2, . . . ,Kn is said to meet running
intersection property (RIP, in the sequel), if

∀i = 2, . . . , n ∃j(1 ≤ j < i)

(

Ki ∩ (
i−1
⋃

k=1

Kk) ⊆ Kj

)

.

In the field of graphical Markov models the notion of running intersec-
tion property is one of the most important concepts. Therefore, it is not
surprising that we shall also meet with it several times in the following text.
Then, we shall need the following interesting property.

Lemma 4.1.2 If a sequence of sets K1,K2, . . . ,Kn meets RIP, then for
each ℓ ∈ {1, 2, . . . , n} there exists a permutation i1, i2, . . . , in such that ℓ = i1
and Ki1 ,Ki2 , . . . ,Kin meets RIP, too.

Proof. To prove this we shall employ the mathematical induction. Since
the property is trivial for n = 2, it is enough to show that it holds also
for sequences of length n under the assumption that it has been proven for
sequences of length n− 1.

Consider an arbitrary sequence K1, . . . ,Kn meeting RIP. Choose any
ℓ ∈ {1, 2, . . . , n}. If ℓ < n we can get the required permutation in the
following way: Since also K1, . . . ,Kn−1 meets RIP we can find, thanks to
the inductive assumption, a permutation i1, . . . , in−1, for which ℓ = i1 and
Ki1 , . . . ,Kin−1 meets RIP. Then Ki1 , . . . ,Kin−1 ,Kn must meet this property,
too (for the last term of the sequence it follows from the fact that RIP holds
for K1, . . . ,Kn).

Now, we have to show that there exists a permutation i1, i2, . . . , in of the
required properties with n = i1. For this we shall take advantage of the fact
that there exists j ∈ {1, 2, . . . , n−1} such that Kn∩(K1∪ . . .∪Kn−1) ⊆ Kj .
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j < n and therefore, due to the assumption of induction, there exists a
permutation Ki1 , . . . ,Kin−1 starting with Ki1 = Kj , for which RIP holds
true. Let us show, now, that a sequence Kn,Ki1 , . . . ,Kin−1 meets RIP, too.

Consider k ∈ {2, . . . , n− 1}. For this there exists k̂ < k such that

Kik ∩ (Ki1 ∪ . . . ∪Kik−1
) ⊆ Ki

k̂
.

However, since Kn ∩Kik ⊆ Kj = Ki1 we get also that

Kik ∩ (Kn ∪Ki1 ∪ . . . ∪Kik−1
) ⊆ Ki

k̂

holds true. Thus we have shown that for each ℓ ∈ {1, 2, . . . , n} there exists a
permutation i1, i2, . . . , in such that ℓ = i1 and Ki1 ,Ki2 , . . . ,Kin meets RIP.

�

Lemma 4.1.3 If π1, π2, . . . , πn is a sequence of pairwise consistent oligodi-
mensional probability distributions such that K1, . . . ,Kn meets RIP then this
sequence is perfect.

Proof. The proof is performed by mathematical induction. Since we assume
that all the distributions are pairwise consistent

π1 ⊲ π2 = π1 ⊳ π2,

and the sequence π1, π2 is perfect. Therefore, assuming that the assertion is
valid for m− 1, the proof will be finished by showing it holds also for m.

Consider pairwise consistent π1, π2, . . . , πm, for which K1,K2, . . . ,Km

meet RIP and π1, π2, . . . , πm−1 is perfect. Thus to show that π1, π2, . . . , πm

is perfect it is enough to show that (π1 ⊲ . . . ⊲ πm−1) and πm are consistent.
Since K1, . . . ,Kn meets RIP, Km∩(K1∪ . . .∪Km−1) must be part of Kk

for some k ≤ m− 1. Therefore, Km ∩ (K1 ∪ . . . ∪Km−1) = Km ∩Kk. The
assumption of induction says that, due to Theorem 4.1.1, all πℓ (1 ≤ ℓ < m)
are marginal to π1 ⊲ . . . ⊲ πm−1 and thus

(π1 ⊲ . . . ⊲ πm−1)
↓Km∩(K1∪...∪Km−1) = π↓Km∩Kk

k = π↓Km∩Kk
m ,

where the last equality follows from the fact that πk and πm are assumed
to be consistent. Thus we have shown that (π1 ⊲ . . . ⊲ πm−1) and πm are
consistent, which finishes the proof. �

An arbitrary perfect sequence π1, π2, . . . , πn (with n > 1) can always be
reordered in the way that its permutation πi1 , πi2 , . . . , πin is also perfect.
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Trivially, if π1, π2, π3, . . . , πn is perfect then π2, π1, π3, . . . , πn must be per-
fect, too. To be able to show that all such perfect sequences define the same
multidimensional distribution, we will need the following assertion showing
that perfect sequence models always achieve maximum entropy, in a sense
(it is, in fact, a generalization of Theorem 3.2.1).

Theorem 4.1.3 Denote Ξ = {π1, π2, . . . , πn} a system of oligodimensional
probability distributions. If the sequence π1, π2, . . . , πn is perfect then

H(π1 ⊲ π2 ⊲ . . . ⊲ πn) =
n
∑

i=1

H(πi)−
n
∑

i=2

H(πi(xKi∩(K1∪...∪Ki−1)) ≥ H(κ)

for any

κ ∈ Π(K1∪...∪Kn)(Ξ) =
n
⋂

i=1

Π(K1∪...∪Kn)(πi).

Proof To make the following computations more transparent we will use
the following notation: for each i = 1, . . . , n set Ki is split into two disjoint
parts

Ri = Ki \ (K1 ∪ . . . ∪Ki−1), Si = Ki ∩ (K1 ∪ . . . ∪Ki−1).

(Naturally, R1 = K1 and S1 = ∅.) Using this, we can compute (the sum-
mation is performed only over those points x ∈ XK1∪...∪Kn

for which the
respective probabilities are positive)

H(π1 ⊲ π2 ⊲ . . . ⊲ πn) = −
∑

x

(π1 ⊲ . . . ⊲ πn)(x) log(π1 ⊲ . . . ⊲ πn)(x)

= −
∑

x

(π1 ⊲ . . . ⊲ πn)(x) log
n
∏

i=1

πi(xRi
|xSi

)

= −
n
∑

i=1

∑

x

(π1 ⊲ . . . ⊲ πn)(x) log πi(xRi
|xSi

)

= −
n
∑

i=1

∑

xKi

(π1 ⊲ . . . ⊲ πn)(xKi
) log πi(xRi

|xSi
)

= −
n
∑

i=1

∑

xKi

πi(xKi
) log πi(xRi

|xSi
),

where the last modification is possible because π1, . . . , πn is perfect and
therefore πi is a marginal distribution of π1 ⊲ . . . ⊲ πn (notice that when
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changing summation over x to summation over xKi
we have employed again

the standard trick described in Remark 3.2.2 – see page 43). Therefore,
using point 3 of Lemma 2.3.1 we get

H(π1 ⊲ π2 ⊲ . . . ⊲ πn) =

n
∑

i=1

H(πi(xRi
|xSi

))

=
n
∑

i=1

H(πi(xKi
))−

n
∑

i=2

H(πi(xSi
))

=
n
∑

i=1

H(πi)−
n
∑

i=2

H(πi(xKi∩(K1∪...∪Ki−1))).

(The second summation starts from i = 2 because S1 = ∅.)
Let us, now, compute the Shannon entropy of an arbitrary distribution

κ ∈ Π(K1∪...∪Kn)(Ξ). In this, we shall use the fact that, since R1, R2, . . . , Rn

forms a partition of K1 ∪K2 ∪ . . . ∪Kn, any distribution κ ∈ Π(K1∪...∪Kn)

can be expressed as

κ(x) =
n
∏

i=1

κ(xRi
|xR1∪...∪Ri−1) =

n
∏

i=1

κ(xRi
|xK1∪...∪Ki−1).

Therefore

H(κ) = −
∑

x

κ(x) log κ(x) = −
∑

x

κ(x) log
n
∏

i=1

κ(xRi
|xK1∪...∪Ki−1)

=
n
∑

i=1

∑

x

κ(x) log κ(xRi
|xK1∪...∪Ki−1)

=

n
∑

i=1

H(κ(xRi
|xK1∪...∪Ki−1))

=
n
∑

i=1

(

H(κ(xRi
|xSi

))−MIκ(XRi
;X(K1∪...∪Ki−1)\Si

|XSi
)
)

≤ H(π1 ⊲ π2 ⊲ . . . ⊲ πn).

In the last but one modification we used the relation between conditional en-
tropy and conditional mutual information presented in point 5 of Lemma 2.3.1
(see page 33), and the last inequality follows from nonnegativity of a mutual
information and the assumption that πi(xKi) = κi(xKi) for all i = 1, . . . , n.

�
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Remark 4.1.4 Let us note that a more elegant way how to prove the pre-
ceding assertion can be based on properties of the Iterative proportional
fitting procedure, which will be studied in Section 5.4. We presented above
a rather technical proof, which does not require knowledge introduced in the
next sections. ◦

Now we are ready to prove an important assertion claiming that if a
system of low-dimensional distributions can form a perfect sequence then it
defines (as a perfect sequence) a unique distribution.

Theorem 4.1.4 If a sequence π1, π2, . . . , πn and its permutation πi1, πi2,
. . . , πin are both perfect then

π1 ⊲ π2 ⊲ . . . ⊲ πn = πi1 ⊲ πi2 ⊲ . . . ⊲ πin .

Proof Applying previous Theorem 4.1.3 to both these sequences we see that

H(π1 ⊲ π2 ⊲ . . . ⊲ πn) = H(πi1 ⊲ πi2 ⊲ . . . ⊲ πin) = max
κ∈

nT
i=1

Π(K1∪...∪Kn)(πi)

H(κ).

Since the entropy is continuous and strictly convex on the convex and com-

pact set
n
⋂

i=1
Π(K1∪...∪Kn)(πi) it achieves its maximum in a single point and

therefore
π1 ⊲ π2 ⊲ . . . ⊲ πn = πi1 ⊲ πi2 ⊲ . . . ⊲ πin .

�

Remark 4.1.5 Theorem 4.1.3 is only an implication: if there exists a per-
fect sequence formed by the distributions from Ξ = {π1, π2, . . . , πn} then
it achieves the maximum Shannon entropy among the distributions from
Π(K1∪...∪Kn)(Ξ). However, as it can be seen from the following example, it
does not mean that the maximum entropy distribution from Π(K1∪...∪Kn)(Ξ)
must be a compositional model. ◦
Example 4.1.4 It is not difficult to show that for 2-dimensional distribu-
tions from Table 4.4 there exists the only common extension – the distrib-
ution from Table 4.5. (Hint: consider an arbitrary distribution having the
given three marginals and show that none of its probabilities can be greater
than 1

6 , then all the couples of probabilities, which contribute to marginal
probabilities equaling 2

6 – those, which are positive in Table 4.5 – must equal
1
6 .) Therefore, this extension is also the maximum entropy extension.

Since all the considered 2-dimensional distributions are positive, all pos-
sible compositional models constructed from them must also be positive,
which means that the distribution from Table 4.5 cannot be obtained as a
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Table 4.4: 2-dimensional distributions

π1(x1, x2) x1 = 0 x1 = 1

x2 = 0 2
6

1
6

x2 = 1 1
6

2
6

π2(x1, x3) x1 = 0 x1 = 1

x3 = 0 2
6

1
6

x3 = 1 1
6

2
6

π3(x2, x3) x2 = 0 x2 = 1

x3 = 0 1
6

2
6

x3 = 1 2
6

1
6

compositional model of distributions from Table 4.4. ♦

Table 4.5: Extension of the distributions from Table 4.4

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 1
6

1
6 0 1

6

x3 = 1 1
6 0 1

6
1
6

Theorem 4.1.3 gives an instruction how to compute entropy of a distri-
bution represented by perfect sequence model. The next assertion of this
section presents an instruction how to compute informational content of
these distributions.

Theorem 4.1.5 If the sequence π1, π2, . . . , πn is perfect then

IC(π1 ⊲ π2 ⊲ . . . ⊲ πn) =

n
∑

i=1

IC(πi)−
n
∑

i=2

IC(πi(xKi∩(K1∪...∪Ki−1)).
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Proof In the proof, property 7 of Lemma 2.3.1 presented on page 33, Theorem
4.1.3, as well as the fact that all πi are marginals of π1⊲. . .⊲πn, and eventually
property 9 of Lemma 2.3.1 will be used.

IC(π1 ⊲ π2 ⊲ . . . ⊲ πn) =
∑

j∈K1∪...∪Kn

H((π1 ⊲ . . . ⊲ πn)(xj))−H(π1 ⊲ . . . ⊲ πn)

=





n
∑

i=1

∑

j∈Ki\(K1∪...∪Ki−1)

H((π1 ⊲ . . . ⊲ πn)(xj))





−

(

n
∑

i=1

H(πi)−
n
∑

i=2

H(π
↓Ki∩(K1∪...∪Ki−1)
i )

)

= −
n
∑

i=1



H(πi)−
∑

j∈Ki\(K1∪...∪Ki−1)

H((π1 ⊲ . . . ⊲ πn)(xj))





+
n
∑

i=2

H(π
↓Ki∩(K1∪...∪Ki−1)
i )

= −
n
∑

i=1



H(πi)−
∑

j∈Ki

H((π1 ⊲ . . . ⊲ πn)(xj))





−
n
∑

i=2

∑

j∈Ki∩(K1∪...∪Ki−1)

H((π1 ⊲ . . . ⊲ πn)(xj))

+
n
∑

i=2

H(π
↓Ki∩(K1∪...∪Ki−1)
i )

= −
n
∑

i=1



H(πi)−
∑

j∈Ki

H(πi(xj))





+
n
∑

i=2





∑

j∈Ki∩(K1∪...∪Ki−1)

H(πi(xj))−H(π
↓Ki∩(K1∪...∪Ki−1)
i )





=
n
∑

i=1

IC(πi)−
n
∑

i=2

IC(π
↓Ki∩(K1∪...∪Ki−1)
i )

=
n
∑

i=1

IC(πi(xKi\(K1∪...∪Ki−1)|xKi∩(K1∪...∪Ki−1))).

�
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Remark 4.1.6 Computation of the expression

JC(π1, . . . , πn) =
n
∑

i=1
IC(πi)−

n
∑

i=2
IC(π

↓Ki∩(K1∪...∪Ki−1)
i )

=
n
∑

i=1
IC(πi(xKi\(K1∪...∪Ki−1)|xKi∩(K1∪...∪Ki−1)))

(4.1)

is simple because each term of the summation can be computed just from
a respective (oligodimensional) distribution πi. However, it is important
to realize that it equals information content of a generating sequence only
for perfect sequences. If the sequence is not perfect then computation of
the informational content of the respective model is usually more complex
(the process requires computation of a system of marginal distributions).
Roughly speaking, from the algorithmical point of view it is as complex
as realization of the perfectization procedure described in Theorem 4.1.2.
Moreover, for non-perfect sequences the value of expression (4.1) may be
both higher and lower than the corresponding informational content. This
can be easily shown by the reader according to the following hint: Consid-
ering distributions π1(x1), π2(x1) and κ1(x1, x2), κ2(x1, x2) from Table 4.6 it
is obvious that π1, κ1 and π2, κ2 are perfect sequences such that

κ1 = π1 ⊲ κ1 = π1 ⊲ κ2,

κ2 = π2 ⊲ κ2 = π2 ⊲ κ1,

and that JC(π1, κ1) = JC(π2, κ1) and JC(π2, κ2) = JC(π1, κ2). The re-
quired inequalities are then directly received from the fact that IC(κ1) =
0.025 < IC(κ2) = 0.028. ◦

Table 4.6: Distributions π1(x1), π2(x1), κ1(x1, x2), κ2(x1, x2)

κ1 κ2

π1
x2 = 0 x2 = 1

π2
x2 = 0 x2 = 1

x1 = 0 0.1 0.08 0.02 0.9 0.72 0.18

x1 = 1 0.9 0.45 0.45 0.1 0.05 0.05
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4.2 Commutable sets

This section is the exception proving the rule: here we will be interested in
generating sequences whose distributions are connected with the operator of
left composition. Specifically, we will be interested in the sequences defining
a unique distribution regardless their ordering. This is also the reason why
we deal with sets of distribution rather than with their sequences - the
ordering of the distributions will be irrelevant.

Definition 4.2.1 A set of distributions {π1, π2, . . . , πn} is said to be com-
mutable if π1 ⊳ π2 ⊳ . . . ⊳ πn is defined and

π1 ⊳ π2 ⊳ . . . ⊳ πn = πi1 ⊳ πi2 ⊳ . . . ⊳ πin

for all permutations of indices i1, i2, . . . , in.

Let us start discussing properties of commutable sets of oligodimensional
distributions. First, two lemmata will be formulated that are almost direct
consequences of the definition. The first one states that likewise for perfect
sequences, for commutable sets it holds that all πi’s are marginal to π1 ⊳
. . . ⊳ πn.

Lemma 4.2.1 If {π1, π2, . . . , πn} is a commutable set of probability distri-
butions then

π1 ⊳ π2 ⊳ . . . ⊳ πn ∈
n
⋂

i=1

Π(K1∪...∪Kn)(πi),

which means that all the distributions {π1, π2, . . . , πn} are marginals of π1 ⊳
π2 ⊳ . . . ⊳ πn.

Proof. The assertion is a direct consequence of the facts that for any j ∈
{1, 2, . . . , n} there are permutations i1, . . . , in in which index j = in is the
last one, and thus πj is a marginal of the distribution

πi1 ⊳ πi2 ⊳ . . . ⊳ πin . �

Remark 4.2.1 The reader should realize that the assertion expresses only
a necessary condition; the opposite assertion does not hold. If this were the
case, all perfect sequences would form commutable sets, because for perfect
sequences all distributions πi are marginals of π1 ⊳ π2 ⊳ . . . ⊳ πn. ◦
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Figure 4.1: Star-like system of sets

Example 4.2.1 Let us present a nontrivial example of a generating se-
quence, which is not perfect, and yet its distributions form a commutable
set. Consider four distributions π1, π2, π3, π4 for which

K1 = {1, 2, 4},

K2 = {2, 3, 5},

K3 = {1, 3, 6},

K4 = {1, 2, 3}.

This situation is illustrated in Figure 4.1.
Let π4 be the distribution from Table 4.7, and all three remaining distrib-

utions π1(x1, x2, x4), π2(x2, x3, x5), π3(x1, x3, x6) be uniform distributions of
the respective sets of variables. The reader can immediately see that the dis-
tributions are pairwise consistent because all their 2-dimensional marginal
distributions are uniform.

First, let us show that the considered distributions really form a com-
mutable set. Since π1, π2 and π3 are uniform, it is obvious that π1 ⊳ π2 ⊳ π3

is also the uniform 6-dimensional distribution. The same holds for any per-
mutation of these three distributions. Therefore

π1 ⊳ π2 ⊳ π3 ⊳ π4 = πi1 ⊳ πi2 ⊳ πi3 ⊳ πi4

holds true for any permutation, for which i4 = 4. Now, applying twice
Lemma 3.4.4 and once Lemma 3.2.2 we get

πi1 ⊳ πi2 ⊳ πi3 ⊳ πi4 = πi1 ⊳ πi2 ⊳ πi4 ⊳ πi3 = πi1 ⊳ πi4 ⊳ πi2 ⊳ πi3

= πi4 ⊳ πi1 ⊳ πi2 ⊳ πi3 .
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Table 4.7: Probability distribution π4

x1 = 0 x1 = 1
π1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 0 1
4

1
4 0

x3 = 1 1
4 0 0 1

4

Therefore, all permutations yield the same 6-dimensional distribution.

Let us now show that the sequence π1, π2, π3, π4 is not perfect.

For uniform distributions π1, π2, π3 the distribution

π1 ⊳ π2 ⊳ π3 = π1 ⊲ π2 ⊲ π3

is obviously also uniform. Since this distribution is from Π(K1∪K2∪K3), and
K4 ⊂ K1 ∪K2 ∪K3 we get

π1 ⊲ π2 ⊲ π3 ⊲ π4 = π1 ⊲ π2 ⊲ π3.

Thus, π1, π2, π3, π4 is not perfect because π4 is not marginal of π1⊳π2⊳π3⊳π4.
♦

Let us repeat once more that it may happen that all the distributions
πi are marginals of π1 ⊳ π2 ⊳ . . . ⊳ πn and still the sequence may be neither
perfect (Example 4.2.1), nor the corresponding set commutable (sequence
π1, π2, π3, π5, π4 of Example 4.2.3). In what follows we will present some
sufficient conditions describing special situations of perfect sequences and
commutable sets, as well as examples illustrating the described theoretical
properties.

Lemma 4.2.2 Let {π1, π2, . . . , πn} be a commutable set of distributions.
When Ki1 ,Ki2 , . . . ,Kin meets RIP then the sequence πi1 , πi2 , . . . , πin is per-
fect.

Proof. Lemma 4.2.1 guarantees the pairwise consistency of the distributions
from {π1, π2, . . . , πn}. Therefore the sequence πi1 , . . . , πin is perfect due to
Lemma 4.1.3. �
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As we shall see in the following theorem, it is not surprising that the set
of distributions from the Example 4.2.1 is commutable. As a matter of fact,
the system of the sets of variables (or their indices) has a special structural
property, by which the commutability is guaranteed.

Definition 4.2.2 A system of sets {K1,K2, . . . ,Kn} is called star-like if
their exists and index ℓ ∈ {1, 2, . . . , n} such that for any couple of different
indices i, j ∈ {1, 2, . . . , n} Ki ∩ Kj ⊆ Kℓ. The set Kℓ is called a centre of
the system.

For examples of star-like systems of sets see Figures 4.1, 4.2 and 4.3. It
is a trivial consequence of the definition that any star-like system of sets
can be ordered to meet RIP. In fact any ordering, in which the centre of the
system is at the first or second position, meets RIP. Thus, if the system of
sets K1,K2, . . . ,Kn is star-like then the distributions π1, π2, . . . , πn, if they
are pairwise consistent, can be reordered into a perfect sequence.

Theorem 4.2.1 If for a set of pairwise consistent distributions {π1, π2,
. . . , πn} the system {K1,K2, . . . ,Kn} is star-like then {π1, π2, . . . , πn} is
commutable.

Proof We will show that any permutation πi1 , πi2 , . . . , πin is either perfect,
or may be transformed into a perfect sequence πj1 , πj2 , . . . , πjn in the way
that

πi1 ⊳ πi2 ⊳ . . . ⊳ πin = πj1 ⊳ πj2 ⊳ . . . ⊳ πjn .

Without loss of generality assume thatK1 ⊇ Ki∩Kj for all couples of dif-
ferent i, j ∈ {1, 2, . . . , n} and consider an arbitrary permutation i1, i2, . . . in.
Let 1 = ik. Apparently, if k ≤ 2 the sequence K1,K2, . . . ,Kn meets RIP. If
k > 2 we can apply Lemma 3.4.4 ((k − 2)-times) getting

(πi1 ⊳ . . . ⊳ πik−2
) ⊳ πik−1

⊳ πik = (πi1 ⊳ . . . ⊳ πik−2
) ⊳ πik ⊳ πik−1

= . . . = πi1 ⊳ ⊳πik ⊳ πi2 ⊳ . . . ⊳ πik−1
.

In both cases we see that πi1⊳. . .⊳πin equals πj1⊳. . .⊳πjn , where the sequence
Kj1 , . . . ,Kjn meets RIP. Therefore, due to Lemma 4.1.3 and Theorem 4.1.4,
for all permutations i1, i2, . . . in the expressions πi1 ⊳ . . . ⊳ πin define the
same multidimensional distribution, which means that {π1, π2, . . . , πn} is
commutable. �

The previous theorem presents a structural condition under which a set
of pairwise consistent distributions is commutable. The same property holds
also for another special systems of sets of variables.
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Figure 4.2: Strongly decomposable star-like system of sets

Definition 4.2.3 A system of sets {K1,K2, . . . ,Kn} is called strongly de-
composable if each its subset can be ordered to meet RIP.

Example 4.2.2 First notice that a star-like system in Figure 4.1 is not
strongly decomposable. As shown in Example 4.2.1, the system can be
ordered to meet RIP, but there is a subsystem (the reader can easily show
that in this case only one) – K2,K3,K4 – which cannot be ordered to meet
RIP.

Nevertheless, it does not mean that star-like systems are not strongly
decomposable. For example the system of four sets in Figure 4.2 is star-
like and simultaneously strongly decomposable. In the next lemma we shall
prove that all strongly decomposable systems can be ordered in the way that
both the whole sequence K1,K2,K3, . . . ,Kn and its “suffix” K2,K3, . . . ,Kn

meet RIP. Let us show in this example that, though the assertion seems to
be rather simple, it is not so obvious.

Consider the system K1,K2,K3,K4 from Figure 4.2. The sequence
K1,K2,K4,K3 meets RIP whilst sequence K2,K4,K3 not. On the other
hand, sequence K3,K2,K1 meets RIP and sequence K4,K3,K2,K1 not,
though there exists a sequence meeting RIP, which starts with K4 (it is a
sequence K4,K1,K2,K3). ♦

Lemma 4.2.3 For any strongly decomposable system of sets K1,K2, . . . ,Kn

and any ℓ ∈ {1, . . . , n} there exists a permutation of indices i1, i2, . . . , in such
that i1 = ℓ and both the sequences Ki1 ,Ki2 ,Ki3 , . . . ,Kin and Ki2 ,Ki3 , . . . ,Kin

meet RIP.
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Proof. Without loss of generality assume ℓ = 1. Let us start constructing
the required permutation from an arbitrary ordering of all sets starting with
K1 and meeting RIP. Such an ordering is guaranteed by Lemma 4.1.2. Let
it be K1,K2, . . . ,Kn.

Now, starting with Kn we will group the sets K2, . . . ,Kn into one or
several clusters. At the beginning, each of this sets forms one cluster. Ac-
cording to RIP, there exists jn < n such that

Kn ∩ (K1 ∪ . . . ∪Kn−1) ⊆ Kjn .

If there are more such jn take the highest one and, in case jn > 1, put
Kn and Kjn into one cluster. If jn = 1 do nothing. Then consider ℓ =
n − 1, n− 2, . . . , 2 and at each step find (the highest) jℓ for which the RIP
condition holds true, and, if the respective jℓ > 1, connect the clusters
holding Kℓ and Kjℓ

into one cluster.

After this process we have a partition of sets K2, . . . ,Kn into several, let
us say m, clusters. The set with the lowest index in a cluster will be, in this
proof, called cluster representative. Having m clusters we have a system of
m representatives, which can be ordered to meet RIP, because we assume
that K1,K2, . . . ,Kn is strongly decomposable. Denote the RIP ordering of
these cluster representatives Kj1 ,Kj2 , . . . ,Kjm . Similarly, we will order also
the sets in each cluster to meet RIP; each of this orderings must start with
the cluster representative. Let such an ordering of sets from the k-th cluster
be Kjk

,Kjk,2
,Kjk,3

, . . . ,Kjk,r(k)
.

Then the required permutation Ki1 ,Ki2 , . . . ,Kin is the following:

K1,

Kj1 ,Kj1,2 ,Kj1,3 , . . . ,Kj1,r(1)
,

Kj2 ,Kj2,2 ,Kj2,3 , . . . ,Kj2,r(2)
,

Kj3 ,Kj3,2 ,Kj3,3 , . . . ,Kj3,r(3)
,

...

Kjm ,Kjm,2 ,Kjm,3 , . . . ,Kjm,r(m)
.

What can be said about this construction? Apparently, the system
K1,Kj1 ,Kj2 , . . . ,Kjm is a star-like system. Another property, which can
be seen from the way how clusters were constructed, is that an intersec-
tion of any two sets from different clusters is contained in an intersection of
the respective cluster representatives (and therefore also in K1). These two
properties are sufficient to show that the two required sequences meet RIP.
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First, consider the shorter sequence Ki2 ,Ki3 , . . . ,Kin and any k ∈
{2, 3, . . . , n}. If Kik is one of the cluster representatives then the existence
of j < k required by RIP condition is guaranteed by the fact that the repre-
sentatives were ordered to meet RIP (other “non-representative” sets cannot
interfere with this fact, because intersection of sets from different clusters
are contained in intersection of the respective cluster representatives). If
Kik is a “non-representative” set, then the existence of the needed j < k
follows from the fact that each cluster was ordered to meet RIP (again,
sets from other clusters cannot interfere with it, because intersection of sets
from different clusters are contained in intersection of the respective cluster
representatives).

Considering the longer sequence Ki1 ,Ki2 ,Ki3 , . . . ,Kin can change the
way of seeking for the indices ij required by RIP condition only when the
cluster representatives are considered. However, since K1,Kj1 ,Kj2 , . . . ,Kjm

is a star-like system, starting withK1, which is a centre of the system, cannot
spoil validity of the RIP condition, because any ordering of a star-like system
starting with the centre meets RIP. �

Remark 4.2.2 At the beginning of Example 4.2.2 we mentioned that a
star-like system in Figure 4.1 is not strongly decomposable. The same holds
also for the larger system in Figure 4.3. It is easy to show that all star-
like systems K1, . . . ,Kn can be ordered in the way that the full ordering
and its “suffix” ordering of length n − 1 meet RIP. Nevertheless, Lemma
4.2.3 guarantees that for strongly decomposable systems there are many
such ordering; for each i = 1, . . . , n there exists at least one such ordering
starting with Ki. For star-like systems this property holds for sequences at
which the centre is at the second position. For systems from Figures 4.1
and 4.3 no sequence starting with the centre K4 and K1, respectively, meets
this condition. Therefore the proof of the following Theorem 4.2.2 cannot
be applied to Theorem 4.2.1. ◦

Now, we are ready to prove an important assertion expressing the other
sufficient condition for a system of distribution to be commutable.

Theorem 4.2.2 If for a set of pairwise consistent distributions {π1, π2,
. . . , πn} the system {K1,K2, . . . ,Kn} is strongly decomposable then the con-
sidered set of distributions is commutable.
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Figure 4.3: Star-like system of 7 sets

Proof Assuming that {K1,K2, . . . ,Kn} is strongly decomposable we shall
show that for any permutation of indices i1, i2, . . . , in

πi1 ⊳ πi2 ⊳ . . . ⊳ πin = πj1 ⊲ πj2 ⊲ . . . ⊲ πjn

for some permutation j1, j2, . . . , jn, for which
Kj1 ,Kj2 , . . . ,Kjn meets RIP. Then the commutability of {π1, π2, . . . , πn}
will be a direct consequence of Lemma 4.1.3 and Theorem 4.1.4.

Consider a permutation i1, i2, . . . , in. If n = 2 then, due to Lemma 3.2.2,
π1 ⊳ π2 = π1 ⊲ π2 and the required condition holds true. Therefore, applying
mathematical induction, it is enough to show the required property under
the assumption that it holds for n− 1.

Let us consider permutations of all indices starting with in. Among
them, due to Lemma 4.2.3, there exists a permutation in, j1, . . . , jn−1, such
that Kin ,Kj1 , . . . ,Kjn−1 and Kj1 , . . . ,Kjn−1 meet RIP. We shall show that

πi1 ⊳ πi2 ⊳ . . . ⊳ πin = πin ⊲ πi1 ⊲ πi2 ⊲ . . . ⊲ πin−1 .

Applying the assumption of mathematical induction, we get

πi1 ⊳ πi2 ⊳ . . . ⊳ πin = πin ⊲ (πi1 ⊳ πi2 ⊳ . . . ⊳ πin−1)

= πin ⊲ (πj1 ⊲ πj2 ⊲ . . . ⊲ πjn−1)

= πin ⊲ ((πj1 ⊲ . . . ⊲ πjn−2) ⊲ πjn−1).

Since in, j1, . . . , jn−1 meets RIP,

Kjn−1 ∩ (Kin ∪Kj1 ∪ . . . ∪Kjn−2)
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must be a subset of either Kin or (Kj1 ∪ . . . ∪ Kjn−2), or, in other words,
either

Kin ⊇ ((Kj1 ∪ . . . ∪Kjn−2) ∩Kjn−1),

or

(Kj1 ∪ . . . ∪Kjn−2) ⊇ (Kin ∩Kjn−1)

hold true. Therefore, applying either Lemma 3.4.7 or Corollary 3.4.2, re-
spectively, we get

πin ⊲ (πj1 ⊲ πj2 ⊲ . . . ⊲ πjn−1) = πin ⊲ (πj1 ⊲ . . . ⊲ πjn−2) ⊲ πjn−1

= πin ⊲ ((πj1 ⊲ . . . ⊲ πjn−3) ⊲ πjn−2) ⊲ πjn−1 .

However, regarding that in, j1, . . . , jn−2 meets RIP, too, we can repeat the
previous step getting

πin ⊲ (πj1 ⊲ πj2 ⊲ . . . ⊲ πjn−1) = πin ⊲ (πj1 ⊲ . . . ⊲ πjn−3) ⊲ πjn−2 ⊲ πjn−1 .

In this way we can eliminate all brackets getting eventually that

πin ⊲ (πj1 ⊲ πj2 ⊲ . . . ⊲ πjn−1) = πin ⊲ πj1 ⊲ πj2 ⊲ . . . ⊲ πjn−1 ,

which finishes the proof. �

Example 4.2.3 In this example it will be shown that the assumption in the
previous theorem cannot be weakened in the sense that instead of strong
decomposability of a system {K1,K2, . . . ,Kn} one would assume just an
existence of its ordering meeting RIP.

Let us consider 5 oligodimensional distributions π1, . . . , π5 with a struc-
ture of variables as depicted in Figure 4.4. For the purpose of this example
it will suffice to consider only 5 binary variables which are arguments of the
distributions π1, . . . , π5 according to the following pattern:

K1 = {1, 2, 4}

K2 = {2, 3}

K3 = {1, 3}

K4 = {4, 5}

K5 = {1, 2, 3}
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Figure 4.4: System of sets that can be ordered to meet RIP

It is easy to show that though the sequence K1,K2,K3,K4,K5 does not
meet RIP, it can be reordered so that the running intersection property
holds.

Let us consider distributions, whose values are in Tables 4.8 and 4.9.

Notice that because x4 is an argument of neither π2 nor π3 it is possible
to “isolate” variable x4 from the expression π1 ⊳π2 ⊳π3 in the following sense

π1 ⊳ π2 ⊳ π3 =
π1π2π3

π1(x2)(π1 ⊳ π2)(x1, x2)
=

(π1(x1, x2)π2π3)π1(x4|x1, x2)

π1(x2)(π1(x1, x2) ⊳ π2)(x1, x2)

= (π1(x1, x2) ⊳ π2 ⊳ π3)π1(x4|x1, x2),

and therefore

(π1 ⊳ π2 ⊳ π3)(x1, x2, x4) = (π1 ⊳ π2 ⊳ π3)(x1, x2)π1(x4|x1, x2).

Thus we see that since (π1 ⊳ π2 ⊳ π3)(x1, x2) 6= π1(x1, x2) (cf. Table 4.11)
that also (π1 ⊳ π2 ⊳ π3)(x4) 6= π1(x4). (For the distribution

(π1 ⊳ π2 ⊳ π3)(x1, x2, x4) = (π1 ⊳ π2 ⊳ π3)(x1, x2)π1(x4|x1, x2)

see Table 4.12.)

Computing now

(π1 ⊳ π2 ⊳ π3 ⊳ π4)(x1, x2, x4) = (π1 ⊳ π2 ⊳ π3)(x1, x2)π1(x4|x1, x2) ⊳ π4(x4)
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Table 4.8: 2-dimensional distributions

π2(x2, x3) x2 = 0 x2 = 1

x3 = 0 1
3

1
6

x3 = 1 1
6

1
3

π3(x1, x3) x1 = 0 x1 = 1

x3 = 0 1
6

1
3

x3 = 1 1
3

1
6

π4(x4, x5) x4 = 0 x4 = 1

x5 = 0 1
2 0

x5 = 1 0 1
2

we get the distribution in Table 4.13. From this distribution we see that

(π1 ⊳ π2 ⊳ π3 ⊳ π4)(x4|x1, x2) 6= π1(x4|x1, x2)

and therefore we are not surprised that also

(π1 ⊳ π2 ⊳ π3 ⊳ π4 ⊳ π5)(x4) =
∑

x1,x2

(π1 ⊳ π2 ⊳ π3 ⊳ π4)(x4|x1, x2)π5(x1, x2)

6= π1(x4)

(cf. Table 4.14 for (π1 ⊳ π2 ⊳ π3 ⊳ π4 ⊳ π5)(x1, x2, x4)). This means that π1 is
not a marginal of π1 ⊳ π2 ⊳ π3 ⊳ π4 ⊳ π5 and therefore π1, π2, π3, π4, π5 is not
commutable (otherwise it would be in contradiction with Lemma 4.2.1). ♦

Remark 4.2.3 We have shown that the considered distributions are not
marginals of π1 ⊳ π2 ⊳ π3 ⊳ π4 ⊳ π5 (more precisely π1 is not a marginal of
this distribution), nevertheless, the reader can easily show that they are
marginals of π1 ⊳ π2 ⊳ π3 ⊳ π4 ⊳ π5 ⊳ π1. We will recall this example in Sec-
tion 5.4 where we will speak about Iterative Proportional Fitting Procedure.
Commutable sets are namely those, for which this iterative procedure fin-
ishes independently of the ordering of distributions always after n steps (one
cycle). ◦
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Table 4.9: 3-dimensional distributions

x1 = 0 x1 = 1
π1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x4 = 0 1
9 0 1

6
1
9

x4 = 1 2
9

1
6 0 2

9

x1 = 0 x1 = 1
π5

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 1
6 0 1

6
1
6

x3 = 1 1
6

1
6 0 1

6

Table 4.10: Distribution (π1 ⊳ π2)(x1, x2, x3) of Example 4.2.3.

x1 = 0 x1 = 1
π5

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 4
18

1
18

2
18

2
18

x3 = 1 2
18

2
18

1
18

4
18

Let us, now, highlight a substantial difference between perfect sequences
and commutable sets of probability distributions. For any perfect sequence
π1, . . . , πn its initial subsequence π1, . . . , πk is again perfect. In contrast with
this, from the following example we will see that there are commutable sets
whose subsets are not be commutable.

Example 4.2.4 Consider again four distributions π1, π2, π3, π4 defined for
the same groups of variables as in Example 4.2.1:

K1 = {1, 2, 3},

K2 = {1, 2, 4},

K3 = {2, 3, 5},

K4 = {1, 3, 6}.
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Table 4.11: Distribution (π1 ⊳ π2 ⊳ π3)(x1, x2, x3) of Example 4.2.3.

x1 = 0 x1 = 1
π5

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 4
30

1
30

5
30

5
30

x3 = 1 5
30

5
30

1
30

4
30

Table 4.12: Distribution (π1 ⊳ π2 ⊳ π3)(x1, x2, x4) of Example 4.2.3.

x1 = 0 x1 = 1
π5

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x4 = 0 1
10 0 2

10
1
10

x4 = 1 2
10

2
10 0 2

10

This time, values of distributions π1, π2, π3, π4 are given in Table 4.15.

To show that {π1, π2, π3, π4} is commutable it is enough, due to The-
orem 4.2.1, to show that these distributions are pairwise consistent, which
follows immediately from the consistency of π1 with π2, π3 and π4 (see Table
4.16).

Now, we shall prove by contradiction that {π2, π3, π4} is not commutable.
Assume that {π2, π3, π4} forms a commutable set. Then, due to Lem-

ma 4.2.1, all π2, π3 and π4 are marginal to

κ(x1, x2, x3, x4, x5, x6) = π2(x1, x2, x4) ⊳ π3(x2, x3, x5) ⊳ π4(x1, x3, x6).

Therefore, under this assumption,

κ(x2 = 0, x3 = 0) = π3(x2 = 0, x3 = 0) =
1

3
.

Since

κ(x1 = 0, x2 = 0, x3 = 0) ≤ κ(x1 = 0, x3 = 0) = π4(x1 = 0, x3 = 0) =
1

6
,
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Table 4.13: Distribution (π1 ⊳ π2 ⊳ π3 ⊳ π4)(x1, x2, x4) of Example 4.2.3.

x1 = 0 x1 = 1
π5

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x4 = 0 21
216 0 42

216
21
216

x4 = 1 44
216

44
216 0 44

216

Table 4.14: Distribution (π1 ⊳ π2 ⊳ π3 ⊳ π4 ⊳ π5)(x1, x2, x4) of Example 4.2.3.

x1 = 0 x1 = 1
π5

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x4 = 0 42
390 0 65

390
42
390

x4 = 1 88
390

65
390 0 88

390

and

κ(x1 = 1, x2 = 0, x3 = 0) ≤ κ(x1 = 1, x2 = 0) = π2(x1 = 1, x2 = 0) =
1

6
,

we are sure that

κ(x1 = 0, x2 = 0, x3 = 0) = κ(x1 = 1, x2 = 0, x3 = 0) =
1

6
.

Thus, because

κ(x1 = 0, x2 = 0, x3 = 0) = κ(x1 = 0, x3 = 0) = π4(x1 = 0, x3 = 0) =
1

6
,

we get

κ(x1 = 0, x2 = 1, x3 = 0) = 0,

which contradicts with the obvious fact that π2 ⊳ π3 ⊳ π4 is strictly posi-
tive (namely, all π2, π3, π4 are positive). Therefore {π2, π3, π4} cannot be
commutable.

♦
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Table 4.15: Probability distributions π1, π2, π3, π4

x1 = 0 x1 = 1
π1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

x3 = 0 1
6 0 1

6
1
6

x3 = 1 1
6

1
6 0 1

6

x4 = 0 x4 = 1
π2

x1 = 0 x1 = 1 x1 = 0 x1 = 1

x2 = 0 1
6

1
12

1
6

1
12

x2 = 1 1
12

1
6

1
12

1
6

x5 = 0 x5 = 1
π3

x3 = 0 x3 = 1 x3 = 0 x3 = 1

x2 = 0 1
6

1
12

1
6

1
12

x2 = 1 1
12

1
6

1
12

1
6

x6 = 0 x6 = 1
π4

x3 = 0 x3 = 1 x3 = 0 x3 = 1

x1 = 0 1
12

1
6

1
12

1
6

x1 = 1 1
6

1
12

1
6

1
12

Even in case that a subset of a commutable set is also commutable it does
not mean that this commutable subset defines a distribution marginal to
the distribution defined by a larger commutable set. More exactly: consider

πi ∈ Π(Ki), i = 1, . . . , n; if both {π1, . . . , πn} and {π1, . . . , πk} (for some
1 ≤ k < n) are commutable then it may happen that

(π1 ⊳ . . . ⊳ πn)(K1∪...∪Kk) 6= π1 ⊳ . . . ⊳ πk.

An example of this situation are sets {π1, π2, π3, π4} and {π2, π3, π4} from
Example 4.2.1. Both these sets are commutable and both define 6-dimensional
distributions of variables X1, X2, . . . , X6. Whilst the distribution π2 ⊳π3 ⊳π4
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Table 4.16: 2-dimensional marginal distributions of π1

π1(x1, x2) x1 = 0 x1 = 1

x2 = 0 2
6

1
6

x2 = 1 1
6

2
6

π1(x1, x3) x1 = 0 x1 = 1

x3 = 0 1
6

2
6

x3 = 1 2
6

1
6

π1(x2, x3) x2 = 0 x2 = 1

x3 = 0 2
6

1
6

x3 = 1 1
6

2
6

is uniform, the distribution

κ = π1 ⊳ π2 ⊳ π3 ⊳ π4

is the one for which

κ(x1, x2, . . . , x6) =

{

1
32 if x1 + x2 + x3 is odd,

0 otherwise.

There may still be one more question regarding commutable sets of dis-
tributions. All the examples of commutable sets presented up to now had
one common property: the distributions could be reordered in the way that
the new permutation was perfect. The natural question arises whether there
always exists an ordering of a commutable set that forms a perfect sequence.
As it will be shown in the following example, the answer to this question is
negative.

Example 4.2.5 All the variables in this example are binary with values
{0, 1}. We shall consider three 6-dimensional distributions, each of which
will be an independent product of three 2-dimensional distributions:

π1(x11, x12, x22, x23, x33, x34) = µ(x11, x12)κ(x22, x23)µ(x33, x34),

π2(x12, x13, x23, x24, x31, x32) = κ(x12, x13)µ(x23, x24)µ(x31, x32),

π3(x13, x14, x21, x22, x32, x33) = µ(x13, x14)µ(x21, x22)κ(x32, x33),
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where distribution µ is a uniform distribution and

κ(y, z) =

{

1
2 iff y + z = 1,

0 otherwise.

It is not difficult to show that distributions π1, π2, π3 are pairwise consis-
tent. Distributions π1 and π3 share only variables x12 and x23 and both the
respective 2-dimensional marginal distributions are for this pair of variables
uniform. Similarly, distributions π2 and π3 have common arguments x13, x32

and π1, π3 share x22, x33. Again, all the respective 2-dimensional marginal
distributions are uniform.

Notice that in this case

π1 ⊳ π2 = (µ(x11, x12) ⊳ κ(x12, x13))(κ(x22, x23) ⊳ µ(x23, x24))

(µ(x33, x34) ⊳ µ(x31, x32))

because

π2(x13, x24, x31, x32|x12, x23) = κ(x13|x12)µ(x24|x23)µ(x31, x32).

Analogously

π1 ⊳ π2 ⊳ π3 = (µ(x11, x12) ⊳ κ(x12, x13) ⊳ µ(x13, x14))

(κ(x22, x23) ⊳ µ(x23, x24) ⊳ µ(x21, x22))

(µ(x33, x34) ⊳ µ(x31, x32) ⊳ κ(x32, x33)).

Thus π1 ⊳ π2 ⊳ π3 is a product of three terms, each of which is a composition
of three 2-dimensional distributions. Moreover, each of these terms is a
composition of distributions whose variables form a star-like system, and
therefore, due to Theorem 4.2.1, one can see that {π1, π2, π3} is commutable.

Now, we shall show that πi1 , πi2 , πi3 is not perfect for any permutation
i1, i2, i3. However, since the situation is symmetric, in a sense (each distrib-
ution πi is a product of a uniform distribution with κ), it is enough to show
it for π1, π2, π3.

Similarly to application of the operator of left composition, using oper-
ator ⊲ leads to the product of three terms

π1 ⊲ π2 ⊲ π3 = (µ(x11, x12) ⊲ κ(x12, x13) ⊲ µ(x13, x14))

(κ(x22, x23) ⊲ µ(x23, x24) ⊲ µ(x21, x22))

(µ(x33, x34) ⊲ µ(x31, x32) ⊲ κ(x32, x33)).
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From this we see that
(π1 ⊲ π2 ⊲ π3)(x32, x33)

is a uniform distribution, which is not true for π3. This means that π3

cannot be a marginal distribution of π1 ⊲ π2 ⊲ π3 and therefore π1, π2, π3 is
not perfect. ♦

Remark 4.2.4 In the following text we will also speak about commutable
sequences. By this we will understand a generating sequence whose elements
form a commutable set. ◦

4.3 Flexible sequences

Definition 4.3.1 A generating sequence π1, π2, . . . , πn is called flexible if
for all j ∈ K1 ∪ . . . ∪Kn there exists a permutation i1, i2, . . . , in such that
j ∈ Ki1 and

πi1 ⊲ πi2 ⊲ . . . ⊲ πin = π1 ⊲ π2 ⊲ . . . ⊲ πn.

In other words, flexible sequences are those, which can be reordered in many
ways so that each variable can appear among arguments of the first distri-
bution. It does not mean, however, that each distribution appears at the
beginning of the generating sequence. If this would be the case, then flexible
sequences would be just a subclass of perfect sequences (since each distribu-
tion would be a marginal of the composed distribution – see Lemma 4.3.2).

Example 4.3.1 Obviously, any triplet of distributions π1(x1, x2), π2(x1, x3),
π3(x2, x3), for which π1 and π2 are consistent is flexible, since in this case

π1(x1, x2) ⊲ π2(x1, x3) ⊲ π3(x2, x3) = π2(x1, x3) ⊲ π1(x1, x2) ⊲ π3(x2, x3).

Let us stress that sequence π1, π2, π3, as well as sequence π2, π1, π3, is flexible
regardless the values of distribution π3. Therefore, if

π3(x2, x3) = (π1(x1, x2) ⊲ π2(x1, x3))
↓{2,3}

then both π1, π2, π3 and π2, π1, π3 are also perfect, which is not true in op-
posite case because of Theorem 4.1.1. Thus we see that not all flexible
sequences are perfect. It is also easy to show that there exist perfect se-
quences, which are not flexible (for example, the reader can easily prove
that perfectized the sequence κ1, κ2, κ3 from Example 4.1.3 is not flexible).

♦
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Flexibility of generating sequences will be used in computational algo-
rithms, especially when computing conditional distributions in Section 7.2.
Let us mention for the reader familiar with Bayesian networks that flexi-
ble sequences play for compositional models the same role as decomposable
models for Bayesian networks. Namely, local computations ([29]) are based
on the fact that cliques of a decomposable graph can always be ordered in
the way that the ordering meets RIP and the sequence starts with an ar-
bitrarily pre-selected clique. Therefore, we will study properties of flexible
sequences also in Section 5.3, which is devoted to investigation of relation
of compositional and decomposable models. At this place we present only a
couple of basic properties and examples illuminating relation between flexi-
ble and perfect sequences. The first one shows that if a generating sequence
meets the condition of Lemma 4.1.3 then this sequence is not only perfect
but also flexible.

Lemma 4.3.1 If π1, π2, . . . , πn is a sequence of pairwise consistent oligodi-
mensional probability distributions such that K1, . . . ,Kn meets RIP then this
sequence is flexible.

Proof The assertion is a direct consequence of Lemma 4.1.2, according to
which we can find a permutation meeting RIP and starting with an arbitrary
Kℓ. Then it is enough to realize that, due to Lemma 4.1.3, all the RIP per-
mutations yield perfect sequences, which define according to Theorem 4.1.4
the same multidimensional distribution. �

Remark 4.3.1 Notice that there exist non-trivial flexible sequences π1(xK1),
π2(xK2), . . . , πn(xKn

), for which no permutation Ki1 ,Ki2 , . . . ,Kin meets
RIP – see e.g. Example 4.3.2. (Trivially, any sequence of uniform distri-
butions is flexible.) ◦
Remark 4.3.2 It should be stressed that, when speaking about a flexible
sequence, the ordering of distributions is substantial in spite of the fact that
it allows a number of different reorderings not changing the resulting multidi-
mensional distribution. Notice, however, that from a system of distributions
one can create different flexible sequences - see the following Example. ◦
Example 4.3.2 Consider three pairwise consistent distributions {π1(x1, x2),
π2(x2, x3), π3(x3, x4)} and assume that X2 6⊥⊥ X3[π2]. Obviously, three sets
{1, 2}, {2, 3} and {3, 4} can be ordered in 3! = 6 ways, four of which meet
RIP:

{1, 2} {2, 3} {3, 4}, {2, 3} {1, 2} {3, 4},

{2, 3} {3, 4} {1, 2}, {3, 4} {2, 3} {1, 2}.
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All the corresponding sequences, which are perfect due to Lemma 4.1.3, de-
fine the same distribution and therefore all of them are flexible. Nevertheless,
the generating sequences corresponding to the remaining two permutations

{1, 2} {3, 4} {2, 3}, {3, 4} {1, 2} {2, 3}

are also flexible (though not perfect! – to verify it show that π2 is not a
marginal of the resulting 4-dimensional distribution) because both of them
define the same distribution

π1 ⊲ π3 ⊲ π2 = π3 ⊲ π1 ⊲ π2 = π1π3,

and each variable appears among the arguments of the first distribution in a
sequence. Thus we have shown that from the considered three distributions
one can set up two different 4-dimensional distributions, each of which is
defined by a flexible sequence. Additionally, let us remark that the consid-
ered set {π1, π2, π3} is also commutable defining the same distribution as the
flexible perfect sequence π1, π2, π3. On the other hand side, flexible sequence
π1, π3, π2 has a special (for the first sight may be rather strange) property:
Its distributions form a commutable set {π1, π3, π2} but this defines the dis-
tribution, which differs from the distribution defined by the flexible sequence
π1, π3, π2:

π1 ⊳ π3 ⊳ π2 6= π1 ⊲ π3 ⊲ π2.

♦

The next assertion introduces a simple sufficient condition under which
a flexible sequence is also perfect.

Lemma 4.3.2 If for all i = 1, . . . , n of a flexible sequence π1, . . . , πn there
exists an index

j ∈ Ki \ (K1 ∪ . . . ∪Ki−1 ∪Ki+1 ∪ . . . ∪Kn)

then this sequence is perfect, too.

Proof In other words, the assumption says that each set Ki contains at
least one index, which is not included in any other set Kj . Therefore, the
assumption of flexibility in this case requires that for each πi there must
exist a permutation of indices such that πi = πi1 and

πi1 ⊲ . . . ⊲ πin = π1 ⊲ . . . ⊲ πn

and therefore all πi are marginal distributions of π1 ⊲ . . . ⊲ πn. From this,
perfectness of π1, . . . , πn is guaranteed by Theorem 4.1.1. �
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In the following example we will show that the requirement for a gener-
ating sequence to be both perfect and flexible is rather strong, and in many
situations such sequences can be simplified. Somehow these sequences re-
semble the decomposable models and therefore, as already said above, we
will learn more about perfect flexible sequences in Section 5.3.

Example 4.3.3 Consider a situation when K1 = {1, 2}, K2 = {2, 3}, K3 =
{3, 4}, K4 = {1, 4, 5} (see Figure 4.5 and assume that the sequence

π1(x1, x2), π2(x2, x3), π3(x3, x4), π4(x1, x4, x5)

is perfect and flexible. We will show that in this case at least one of the
distributions π1, π2 or π3 can be deleted without changing the distribution
represented by this flexible perfect sequence.

Since x5 appears among the arguments of only π4, due to flexibility of
the considered sequence there must exist an ordering π4, πi1 , πi2 , πi3 such
that

π4 ⊲ πi1 ⊲ πi2 ⊲ πi3 = π1 ⊲ π2 ⊲ π3 ⊲ π4.

Whatever the permutation i1, i2, i3 is,

Ki3 ⊂ K4 ∪Ki1 ∪Ki2 ,

and therefore
π4 ⊲ πi1 ⊲ πi2 ⊲ πi3 = π4 ⊲ πi1 ⊲ πi2 .

Now, it is an easy task to show that π4, πi1 , πi2 is perfect and flexible. Per-
fectness is an immediate consequence of the perfectness of the original se-
quence π1, π2, π3, π4 (all the distributions are marginals of the distribution
π1⊲π2⊲π3⊲π4 = π4⊲πi1 ⊲πi2). Regarding the flexibility we will consider two
separate situations. If i1 = 2, then flexibility is guaranteed by the fact that
K4∪K2 = {1, 2, 3, 4, 5} and π4 ⊲π2 ⊲πi2 = π2 ⊲π4 ⊲πi2 because of consistency
of π2 and π4 (Lemma 3.2.2). Moreover, in this situation Ki2 ⊂ K4 ∪K2 and
therefore π4 ⊲ π2 = π4 ⊲ π2 ⊲ πi2 .

If i1 6= 2, then K4,Ki1 ,Ki2 meets RIP and the flexibility follows from
Lemma 4.1.2, which says that there are RIP orderings starting with an
arbitrary set, and Theorem 4.1.4, according to which all these RIP orderings
define the same distribution. ♦
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Figure 4.5: System of index sets from Example 4.3.3
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[15] Jiroušek, R. (1998). Graph Modelling without Graphs. In Proc. of the
17th Int. Conf. on Information Processing and Management of Un-
certainty in Knowledge-based Systems IPMU’98, Paris (B. Bouchon-
Meunier, R.R. Yager, eds.). Editions E.D.K. Paris, pp. 809-816.

[16] R. Jiroušek, Marginalization in composed probabilistic models. In:
Proc. of the 16th Conf. Uncertainty in Artificial Intelligence UAI’00
(C. Boutilier and M. Goldszmidt eds.), Morgan Kaufmann Publ., San
Francisco, California, 2000, pp. 301-308.
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[33] J. Vomlel, Methods probabilistic knowledge of integration. PhD. thesis.
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