Finding Solution of Coalition Games by Bargainining Schemes

Tomáš Kroupa

Department of Decision-Making Theory Institute of Information Theory and Automation Academy of Sciences of the Czech Republic

in collaboration with:

Dan Butnariu Department of Mathematics University of Haifa Israel

Coalition Games

(von Neumann, Morgenstern; 1953)

- models of interacting decision-makers that focus on the behavior of groups of players
- every coalition acts as an collective decision maker in the name of its members

A coalition game is specified by

- a set of players
- a set of coalitions
- a payoff of every coalition

A solution of a game is a predicted set of payoffs distributed among players.

Games with Fuzzy Coalitions

(J.-P. Aubin, 1974)

```
N = \{1, ..., n\} set of players a = (a_1, ..., a_n) \in [0, 1]^n fuzzy coalition a \in \{0, 1\}^n crisp coalition (subset of N)
```

Games with Fuzzy Coalitions

(J.-P. Aubin, 1974)

```
N = \{1, ..., n\} set of players a = (a_1, ..., a_n) \in [0, 1]^n fuzzy coalition a \in \{0, 1\}^n crisp coalition (subset of N)
```

Definition

A game (with fuzzy coalitions) is a function

$$v:[0,1]^n\to\mathbb{R}$$
 with $v(0)=0$.

Core of Game

 $x \in \mathbb{R}^n$ vector of individual payoffs $\langle a, x \rangle$ payoff of the fuzzy coalition a

Core of Game

$$x \in \mathbb{R}^n$$
 vector of individual payoffs $\langle a, x \rangle$ payoff of the fuzzy coalition a

Definition (Aubin; 1974)

Let v be a game. The core of v is the set

$$\mathbf{C}(v) = \left\{ x \in \mathbb{R}^n \mid \langle 1, x \rangle = v(1) \text{ and } \langle a, x \rangle \ge v(a), \ \forall a \in [0, 1]^n \setminus \{1\} \right\}$$

Put

$$C_a(v) = \begin{cases} \{x \in \mathbb{R}^n \mid \langle a, x \rangle \ge v(a)\}, & \text{if } a \in [0, 1]^n \setminus \{1\}, \\ \{x \in \mathbb{R}^n \mid \langle 1, x \rangle = v(1)\}, & \text{if } a = 1. \end{cases}$$

Then

$$\mathbf{C}(v) = \bigcap_{a \in [0,1]^n} C_a(v)$$

Characterizations of Core

Theorem (Aubin, 1981)

Let v be a PH and superadditive game. If v is continuously differentiable at 1, then $\mathbf{C}(v) \neq \emptyset$ and

$$\mathbf{C}(v) = \{\nabla v(1)\}.$$

Theorem (Tijs et al., 2003)

Let v be a game such that for every $a, b, d, b + d \in [0, 1]^n$:

$$a \leq b \quad \Rightarrow \quad v(a+d)-v(a) \leq v(b+d)-v(b).$$

Then $\mathbf{C}(v) \neq \emptyset$ and

$$\mathbf{C}(v) = \bigcap_{a \in \{0,1\}^n} C_a(v).$$

Examples of Cores

$$N = \{1, 2\}$$

Example (empty core)

$$u(a_1, a_2) = \begin{cases} 0, & a_1 + a_2 \leq 1, \\ 1, & otherwise. \end{cases}$$

 $\mathbf{C}(u)=\emptyset$ since the hyperplane $x_1+x_2=1$ misses $\frac{2}{3}x_1+\frac{2}{3}x_2\geq 1$.

Examples of Cores

$$N = \{1, 2\}$$

Example (empty core)

$$u(a_1, a_2) = \begin{cases} 0, & a_1 + a_2 \leq 1, \\ 1, & otherwise. \end{cases}$$

 $\mathbf{C}(u) = \emptyset$ since the hyperplane $x_1 + x_2 = 1$ misses $\frac{2}{3}x_1 + \frac{2}{3}x_2 \ge 1$.

Example (polyhedral core)

$$w(a_1, a_2) = \begin{cases} 0, & a_1 + a_2 \leq 1, \\ a_1 + a_2 - 1, & otherwise. \end{cases}$$

$$\mathbf{C}(w) = \bigcap_{a \in \{0,1\}^2} C_a(w) = \{x \in [0,1]^2 \mid x_1 + x_2 = 1\}$$

Examples of Cores (contd.)

$$N = \{1, \ldots, n\}$$

Example

 $(f_j)_{j\in J}$. . . family of concave and PH functions $\mathbb{R}^n o\mathbb{R}$

$$v(a) = \inf \{ f_j(a) \mid j \in J \}, \quad \forall a \in \mathbb{R}^n$$

The game $v \upharpoonright [0,1]^n$ is PH, superadditive, and

$$\mathbf{C}(v) \neq \emptyset$$

Core Difficulties

- checking nonemptiness of C(v) is hard...
- ... even when the core C(v) is polyhedral:

$$n=20 \quad \Rightarrow \quad \bigcap_{a\in\{0,1\}^{20}} C_a(v)$$

 a game is played as a one-shot affair: all fuzzy coalitions come up with their demands simultaneously

Bargaining Schemes

Idea:

- let fuzzy coalitions repeatedly bargain for a final payoff
- capture the bargaining power of individual fuzzy coalitions

Definition

Let v be a game. A bargaining scheme for the core $\mathbf{C}(v)$ is an iterative procedure generating a sequence (x^k) of payoffs converging to $\mathbf{C}(v)$.

Enlarged Core

```
\mathfrak A Lebesgue measurable subsets of [0,1]^n \mu complete probability measure on \mathfrak A
```

 $\mu(A)$ measures the "bargaining power" of the fuzzy coalitions in A

Enlarged Core

- Lebesgue measurable subsets of $[0,1]^n$ μ complete probability measure on $\mathfrak A$
- $\mu(A)$ measures the "bargaining power" of the fuzzy coalitions in A

Definition

Enlarged core of v with respect to μ is the set

$$\mathbf{C}_{\mu}(\mathbf{v}) = \bigcup_{\substack{A \in \mathfrak{A}: \\ \mu(A) = 1}} \bigcap_{a \in A} C_a(\mathbf{v}).$$

Always $\mathbf{C}(v) \subseteq \mathbf{C}_{\mu}(v)$.

Characterization of Enlarged Core

$$A_x = \{a \in [0,1]^n \mid x \in C_a(v)\}$$
 coalitions accepting the payoff x

Theorem

Let v be a game and μ be a complete probability measure on \mathfrak{A} . If v is Lebesgue measurable, then $A_x \in \mathfrak{A}$ for every $x \in \mathbb{R}^n$, and

$$\mathbf{C}_{\mu}(v) = \{x \in \mathbb{R}^n \mid \mu(A_x) = 1\}.$$

Theorem

Let v be a continuous game and μ be a complete probability measure on $\mathfrak A$ such that, for every $A \in \mathfrak A$, $\mu(A) > 0$ whenever A is open or $1 \in A$. Then

$$\mathbf{C}(v) = \mathbf{C}_{\mu}(v).$$

Cimmino Type Bargaining Scheme

$$P_{ax}: \mathbb{R}^{n} \to \mathbb{R}^{n}$$
 the projection of x onto $C_{a}(v)$

The amalgamated projection $P : \mathbb{R}^n \to \mathbb{R}^n$ is given by

Cimmino Type Bargaining Scheme

$$P_{ax}: \mathbb{R}^{n} \to \mathbb{R}^{n}$$
 the projection of x onto $C_{a}(v)$

The amalgamated projection $P : \mathbb{R}^n \to \mathbb{R}^n$ is given by

$$\mathbf{P}x = \int_{[0,1]^n} (P_{\mathsf{a}}x) \, d\mu(\mathsf{a}), \quad \forall x \in \mathbb{R}^n$$

Definition

The Cimmino type bargaining scheme in the game v is the following rule of generating sequences (x^k) in \mathbb{R}^n :

$$x^0 \in \mathbb{R}^n$$
 and $x^{k+1} = \mathbf{P}x^k$, $\forall k \in \mathbb{N}_0$

Define

$$\mathbf{g}(x) = \frac{1}{2} \int_{[0,1]^n} ||P_a x - x||^2 d\mu(a), \quad x \in \mathbb{R}^n.$$

Theorem

The mapping \mathbf{g} is

- nonnegative and everywhere finite
- convex
- continuously differentiable with $\nabla \mathbf{g}(x) = x \mathbf{P}x$

Theorem (Recovering a point in the enlarged core)

Let (x^k) be a sequence generated by the Cimmino type bargaining scheme starting from an arbitrary point $x^0 \in \mathbb{R}^n$.

• If (x^k) is bounded, then the limit

$$x^* = \lim_{k \to \infty} x^k$$

exists, x^* is a minimizer of \mathbf{g} and $\mathbf{g}(x^*) = \lim_{k \to \infty} \mathbf{g}(x^k)$. Moreover, if $\mathbf{g}(x^*) = 0$, then $x^* \in \mathbf{C}_{\mu}(v)$

Moreover, if
$$\mathbf{g}(x^*)=0$$
, then $x^*\in \mathbf{C}_{\mu}(v)$

Theorem (Recovering a point in the enlarged core)

Let (x^k) be a sequence generated by the Cimmino type bargaining scheme starting from an arbitrary point $x^0 \in \mathbb{R}^n$.

• If (x^k) is bounded, then the limit

$$\mathbf{x}^* = \lim_{k \to \infty} \mathbf{x}^k$$

exists, x^* is a minimizer of \mathbf{g} and $\mathbf{g}(x^*) = \lim_{k \to \infty} \mathbf{g}(x^k)$. Moreover, if $\mathbf{g}(x^*) = 0$, then $x^* \in \mathbf{C}_{\mu}(v)$

• If (x^k) is unbounded or $\mathbf{g}(x^*) \neq 0$, then $\mathbf{C}_{\mu}(v) = \emptyset$ and thus $\mathbf{C}(v) = \emptyset$.

Theorem (Recovering a point in the core)

Let v be a continuous game and μ be a complete probability measure on $\mathfrak A$ such that, for every $A \in \mathfrak A$,

 $\mu(A) > 0$ whenever A is open or $1 \in A$.

If (x^k) is a bounded sequence generated by the Cimmino type bargaining scheme with $\mathbf{g}(x^*) = 0$, then

$$x^* \in \mathbf{C}(v)$$

$$\mathbf{C}(u) = \emptyset, \ \mu = \frac{1}{2}\lambda + \frac{1}{2}\delta_1$$

$$\mathbf{C}(u) = \emptyset, \ \mu = \frac{1}{2}\lambda + \frac{1}{2}\delta_1$$

 $g(x^*) \approx 0.0222879$

$$n = 1000$$

Further Directions

- prove that the convergence of Cimmino algorithm is preserved under numerical integration
- accelerate the convergence via relaxed Cimmino algorithm:

$$x^0 \in \mathbb{R}^n$$
 and $x^{k+1} = \alpha_k x^k + (1 - \alpha_k) \mathbf{P}_k x^k$,

where $(\alpha_k) \in (0,1]^{\mathbb{N}}$ and (μ_k) is a sequence of complete probability measures on \mathfrak{A}