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Abstract

The representation of conditional independence models by perfect se-
quences provides an alternative to Bayesian networks and essential graphs.
The paper discusses properties of perfect sequences that are relevant
with respect to different structures of conditional independence models.
Boundary variables (related to terminal nodes in a directed graph repre-
sentation) are used to find the number of labeled and unlabeled models
and to enumerate parts of the model space. Structuring principles are fur-
ther applied to the evaluation of whole conditional independence models
in learning models from data.

1 Introduction

Conditional independence (CI) models build a rich class of models that describe
probabilistic dependences and independences in complex uncertain domains.
They are defined for a finite set of variables {Xi}i∈N ; in this paper we only
consider variables Xi with finite sets of values Xi. Probability distributions
of these variables are denoted by Greek characters: π, κ, ... (with indices, if
necessary). Subsets of variables (Xi)i∈K (for K ⊆ N) are denoted simply by
XK . Correspondingly, xK denote a combination of the values of the variables
XK (a vector from a corresponding Cartesian product set):

xK ∈ ×
i∈K

Xi = XK .

Thus, for example, a |K|-dimensional probability distribution is denoted by
π(xK), and π(xM ) is (for M ⊂ K) its marginal distribution. Notice that when
considering marginal distributions π(xM ) of π(xK) we do not exclude situations
when M = ∅; in this case π(x∅) = 1.
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The structure of a CI model is specified by a set of triplets XK1⊥⊥XK2 |XK3 ,
where K1,K2, and K3 denote disjoint subsets of N . Each triplet denotes the con-
ditional independence of XK1 and XK2 given XK3 , that is, π(xK1 , xK2 |xK3) =
π(xK1 |xK3) π(xK2 |xK3).

The best known subclass of CI models is that of Bayesian networks. They
represent the structure of CI models by directed acyclic graphs. Bayesian net-
works, though, over-specify CI models because many models can be represented
by different but probabilistically equivalent graphs. Essential graphs [1] avoid
this problem; they represent the structure of CI models by graphs with di-
rected and undirected edges such that every model corresponds to one and only
one graph. Perfect sequences are a non-graphical representation of CI models
[4, 5]. Whereas Bayesian networks and essential graphs decompose the joint
distribution into conditional distributions, perfect sequences represent the joint
distribution by a composition of marginal distributions. The aim of the present
paper is to point to a number of advantages offered by perfect sequences when
they are applied to learning CI models from data.

2 Operator of composition and compositional
models

Fundamental to perfect sequences is the following operator of composition (for
a detailed discussion of the operator see [4, 5]):

Definition 1 (Composition) For two arbitrary distributions π(xK) and κ(xL)
their composition is given by the formula:

π(xK) � κ(xL) =




π(xK)κ(xL)

κ(xK∩L)
if π(xK∩L) � κ(xK∩L), 1

undefined otherwise.

If K and L are disjoint, then κ(xK∩L) = 1 and the right hand side degenerates
to a simple product π · κ. Most often we will deal with consistent distributions
which dominate each other.

Definition 2 (Pairwise consistent distributions) Two distributions, π(xK)
and κ(xL), are pairwise consistent iff

π(xK∩L) = κ(xK∩L).

In this case, if for any xK∩L π(xK∩L) = 0 (and therefore also κ(xK∩L) = 0),
a product of two zeros occurs in the numerator and we take, quite naturally,
0·0
0 = 0.

1π(xK∩L) � κ(xK∩L) means that κ(xK∩L) dominates π(xK∩L). In the finite case, which
is considered in the paper, this simplifies to the condition that for all xK∩L ∈ XK∩L

κ(xK∩L) = 0 =⇒ π(xK∩L) = 0.
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The result of the composition of two distributions is given by the following
theorem proven in [4].

Theorem 1 If π(xK)�κ(xL) is defined, then it is a probability distribution over
XK∪L and its marginal distribution of XK equals π:

(π � κ)(xK) = π(xK).

We next consider a system of n low-dimensional distributions π1(xK1), . . .,
πn(xKn

). When the composition operator is applied iteratively to this sequence,
it constructs multidimensional distribution. More precisely, the formula π1�π2�
. . . � πn, if it is defined, determines a joint distribution of the variables XN (in
case that N = K1∪K2∪. . .∪Kn). Because the operator � is neither commutative
nor associative, we apply the operators from left to right only, i.e.,

π1 � π2 � π3 � . . . � πn = (. . . ((π1 � π2) � π3) � . . . � πn).

Therefore, in order to construct a compositional model (that is, a multidimen-
sional distribution, which is composed from low-dimensional ones) it is suffi-
cient to determine a sequence – we will call it a generating sequence – of low-
dimensional distributions. Thus, a generating sequence π1, π2, . . . , πn defines
the multidimensional distribution

π1 � π2 � . . . � πn,

which is an |N |-dimensional distribution of over XN .

3 Perfect and efficient perfect sequences

The subclass of generating sequences most powerful to represent multidimen-
sional distributions are perfect sequences.

Definition 3 (Perfect sequence) A generating sequence of probability distri-
butions π1, π2, . . . , πn is called perfect if π1 � . . . � πn is defined and

π1 � π2 = π2 � π1,

π1 � π2 � π3 = π3 � (π1 � π2),
...

π1 � π2 � . . . � πn = πn � (π1 � π2 � . . . � πn−1).

From this definition one can hardly see the importance of perfect sequences.
This importance becomes clearer from the following characterization theorem
(for its proof see [5]).

Theorem 2 A sequence of distributions π1, π2,. . . ,πn is perfect iff all the dis-
tributions from this sequence are marginals of the distribution (π1 �π2 � . . . �πn).



68 G. D. KLEITER, R. JIROUŠEK

In the following paragraphs we will deal also with properties of the structure
of perfect sequences. Where appropriate we will point to the parallel properties
in graph representations. For the properties to be discussed it is convenient to
treat perfect sequences as lists of sets that obey certain “syntactical” rules. In
this context we call Ki a factor. Since there is a bijection between indices and
variables, it is convenient not to distinguish them. So we will speak, for exam-
ple, of variables in a factor, and write {1}, {2}, {1, 2, 3}, {3, 4} as a shorthand
notation for π1(x{1}) � π2(x{2}) � π3(x{1,2,3}) � π4(x{3,4}).

A perfect sequence, or the corresponding sequence of factors, is an efficient
perfect sequence (EP sequences), if it fulfills the subset condition.

Definition 4 (Efficient perfect sequence) A perfect sequence π1(xK1), . . .,
πn(xKn

). is an efficient perfect sequence, if the sequence K1,, . . . , Kn, fulfills
the subset condition which holds if for all Ki and Kj, 1 ≤ i < j ≤ m,

(Ki ⊂ Kj) ⇒ ∃Kk(1 ≤ k < j, k �= i)(Kk ∩ Kj �= ∅) .

Example 1 The sequence {1}, {2}, {1, 3}, {1, 4}, {2, 3, 5} does not fulfill the sub-
set condition because {1} is a subset of {1, 3} and there is no third factor left
of {1, 3} with a non-empty intersection with it; {2}, {1, 3}, {1, 4}, {2, 3, 5}, how-
ever, fulfills the subset condition.

Each factor appearing in a sequence consists of a head and a tail.

Definition 5 (Head and tail) In each factor of a perfect sequence the set of
variables that appears the first time (when the sequence is read from left to right)
is called the “head” and the set of remaining variables is called the “tail” of the
factor.

Example 2 In the sequence {1}, {2}, {1, 2, 3}, {1, 2, 4}, {3, 5} the heads are over-
lined.

We write the head on the right, the tail on the left hand side of each factor.
The subset condition now can be expressed simply by saying that no factor
on the left hand side is identical to a tail of another factor on the right hand
side. An EP sequence in which all factors consist of heads only, corresponds
to a partition of the N variables and each factor corresponds to an undirected
completely connected component. If the sequence consists of only one factor,
then the model does not contain any independence. If the sequence consists
of factors having one variable only, then all variables are independent and it
corresponds to the edgeless graph.

4 Boundary variables

In a directed graph a node is a terminal node if it has no children. In a Bayesian
network (where the direction of arcs is not always fixed because of probabilis-
tically equivalent models) a node may be a terminal node in one graph repre-
sentation but not in another one. In a Bayesian network a node is a terminal
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Figure 1: (a) Essential graph (corresponding EP sequence Sa = {1, 2}, {2, 3});
the filled vertices 1 and 3 are boundary variables. (b), Sb = {1, 2}, {2, 3}), (c),
Sc = {2, 1}, {2, 3}), and (d), Sd = {3, 2}, {2, 1}) are the three probabilistically
equivalent Bayesian networks of (a). In none of these three structures vertex 2
is a terminal node. It therefore is not a boundary variable and not filled in (a).
1 and 3 are terminal nodes in at least one of the Bayesian networks (b), (c) or
(d). They therefore are marked as boundary variables in (a).

node—we will say a boundary variable in the present paper—if it admits at
least one probabilistically equivalent graph representation in which it is a ter-
minal node. In [9] the concept of a terminal node (sink) was applied to essential
graphs. In Figure 1, for example, the nodes 1 and 3 are boundary variables. In
an EP sequence boundary variables are very easy to identify.

Definition 6 (Boundary variable) A variable that appears only one time in
the whole sequence is a boundary variable.

In a complete essential graph all vertices are boundary variables. Likewise, all
vertices in an edgeless graph are boundary variables.

As it will be shown in the next section, boundary variables may be omitted
in the process of model construction. After the deletion of boundary variables,
however, new variables may appear that are in the boundary now because factors
consisting of tails only should be removed. This leads us to the concept of
boundary layers recursively defined as follows.

Definition 7 (Boundary layer) Let S1 be a perfect sequence. Its boundary
layer 1 consists of the set of all boundary variables of S1. Si is obtained by
deleting all boundary variables from Si−1. Boundary layer i of the sequence S1

consists of the set of all boundary variables of Si.

We order the variables of a perfect sequences such that variables which are
members of a higher layer are before (left of) variables which are members of a
lower layer. The variables are thus partially ordered by the boundary layers.

Example 3 The sequence {2}, {3}, {1, 4}, {1, 3, 4, 5}, {2, 3, 4, 6} has two bound-
ary layers, {5, 6} and {1, 2, 3, 4}.

4.1 Deletion of boundary variables

In this section we shall show one of the reasons why we are interested in bound-
ary variables. For this we need the following two assertions proven in [4] and
[5], respectively.
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Theorem 3 Let M be such that K ∩ L ⊆ M ⊆ L; then

π(xK) � κ(xL) = (π(xK) � κ(xM )) � κ(xL).

Theorem 4 If K1 ⊇ (K2 ∩ K3) then

π1 � π2 � π3 = π1 � π3 � π2.

If a variable X� is a boundary variable (in layer 1) than it need not to be
taken into account in the process of model construction. If � ∈ Kk and � �∈
K1 ∪ . . . ∪ Kk−1 ∪ Kk+1 ∪ . . . ∪ Kn then, due to Theorem 3,

π1(xK1) � . . . � πk(xKk
) = π1(xK1) � . . . � πk(xKk\{�}) � πk(xKk

),

and therefore also

π1(xK1) � . . . � πk(xKk
) � πk+1(xKk+1)

= π1(xK1) � . . . � πk(xKk\{�}) � πk(xKk
) � πk+1(xKk+1)

= π1 � . . . � πk−1 � π
[�]
k � πk � πk+1.

Since � �∈ Kk+1, it is obvious that

K1 ∪ . . . ∪ Kk−1 ∪ (Kk \ {�}) ⊇ (Kk ∩ Kk+1),

and therefore applying Theorem 4 we get

π1 � . . . � πk+1 = π1 � . . . � πk−1 � π
[�]
k � πk+1 � πk.

Similarly, � �∈ Kk+2 and therefore

K1 ∪ . . . ∪ Kk−1 ∪ (Kk \ {�}) ∪ Kk+1 ⊇ (Kk ∩ Kk+2),

and thus Theorem 4 yields

π1 � . . . � πk+2 = π1 � . . . � πk−1 � π
[�]
k � πk+1 � πk+2 � πk.

In this way we can proceed further until we get

π1 � . . . � πn = π1 � . . . � πk−1 � π
[�]
k � πk+1 � . . . � πn � πk.

To summarize these steps: If � ∈ Kk and � �∈ K1∪. . .∪Kk−1∪Kk+1∪. . .∪Kn

then π1 � . . .�πn is perfect if and only if π1 � . . .�πk−1 �π
[�]
k �πk+1 � . . .�πn �πk is

perfect and both these sequences generate the same model. If the latter sequence
is perfect then, obviously, π1�. . .�πk−1�π

[�]
k �πk+1�. . .�πn and πk are consistent

and therefore π1 � . . . �πk−1 �π
[�]
k �πk+1 � . . . �πn �πk is perfect, too. This means

that if there are boundary variables in the system π1(xK1), π2(xK2), . . . , πn(xKn
)

we can marginalize these variables out and neglect them during a process of a
model construction.
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5 Applications

5.1 Enumerating the model space

Comparing, evaluating, and learning models requires knowledge about the set
of possible models. EP sequences and the boundary layers introduced in the
previous sections facilitates the enumeration and counting methods of labeled
and unlabeled model structures.

We treat the labeled structures first. For the ease of comparing sequences the
following coding scheme is used. We encode each factor by the sum of powers
of 2 of the labels (the natural numbers 1, . . . , |N |) of the variables it contains.
Thus, we obtain 6, 8, 22 for the sequence {1, 2}, {3}, {1, 2, 4}. This integer code
allows to order sequences lexicographically. We read the sequence backwards,
from right to left, and say that a sequence S1 is lexicographically greater than
S2 if—when both sequences are rank ordered by the size of the integer codes
of the factors—the greatest factor code that is different in both sequences is in
S1. An EP sequence is maximal if its integer code is lexicographically maximal.
Ordering variables according to layers and maximal EP sequences introduces a
(linear) standard order for variables in EP sequences and essential graphs. The
standard order guarantees that the sequences (or the corresponding graphs) of
equivalent models always are identical (or look the same). This helps to compare
different networks.

With the help of the standard order we find the number of labeled models.

Theorem 5 (Number of labelings of a given EP sequence) Let S be a
EP sequence with N variables and r boundary layers and σi, i = 1, . . . , r vari-
ables in each layer. Let P be the set of σ1! σ2 ! . . . σr! permutations generated by
permuting the variables within each of the boundary layers. If M is the subset
of P in which all its permutations generate the standard order, then the number
of labellings is

|N |!
|M|

The theorem is an immediate consequence of the Burnside lemma [13].

Example 4 Figure 2 shows the twenty possible unlabeled essential graphs to-
gether with the number of possible labellings. The boundary variables belong-
ing to the same layers are marked by the same symbols. For example, model
(19) in Figure 2 has 6 labellings as the sequence {1}, {2}, {1, 2, 3, 4} admits four
permutations giving rise to the standard order with the integer code 2, 4, 30.
The permutations are (1, 2, 3, 4), (2, 1, 3, 4), (1, 2, 4, 3), and (2, 1, 4, 3). Because
4!/4 = 6 we have 6 differently labeled models.

We now turn to the enumeration and number of unlabeled EP sequences.
For this a method based on perfect sequences was described in [9]. The method
counts the number of representatives (standard orders) for certain subsets of



72 G. D. KLEITER, R. JIROUŠEK

1 2 3 4

(1) � � � � 1 {1, 2, 3, 4}

(2) � �� � 6 {1, 2, 3}, {1, 2, 4}

(3) � � �� 12 {1, 2}, {1, 3, 4}

(4) � � � � 4 {1}, {2, 3, 4}

(5) � � �� 12 {2}, {1, 3}, {1, 4}

(6) � � � � 6 {1}, {2}, {3, 4}

(7) � � � � 1 {1}, {2}, {3}, {4}

(8) � �� � 12 {1}, {2}, {3}, {1, 2, 4}

(9) � �� � 12 {1, 2}, {1, 3}, {2, 4}

(10) � � � � 3 {1, 2}, {3, 4}

(11) � � �� 4 {1, 2}, {1, 3}, {1, 4}

(12) ��� �� � 24 {1}, {2}, {1, 2, 3}, {2, 3, 4}

(13) ��� �� � 12 {1}, {2}, {1, 2, 3}, {3, 4}

(14) �� � � 12 {1, 2}, {1, 3}, {1, 2, 3, 4}

(15) �� � � 12 {1}, {2, 3}, {1, 2, 3, 4}

(16) � �� � 24 {1}, {2, 3}, {1, 2, 4}

(17) �� � � 4 {1}, {2}, {3}, {1, 2, 3, 4}

(18) �� �� � 12 {1, 2}, {1, 3}, {2, 3, 4}

(19) � �� � 6 {1}, {2}, {1, 2, 3, 4}

(20) � �� � 6 {1}, {2}, {1, 2, 3}, {1, 2, 4}

185

Figure 2: The twenty possible unlabeled essential graphs for n = 4, compare
[1]. •,�, and ◦ indicate vertices in boundary layer 1, 2, and 3, respectively.
The first column at the right hand side of the graphs contains the number of
possible labellings, the second column the perfect sequences corresponding to
the graphs.
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the model space. The subsets are generated by first selecting partitions of vari-
ables (corresponding to sequences containing heads only) and then by inserting
systematically all possible tail variables.

Enumeration methods allow to establish statistics of many interesting fea-
tures of models in the model space, such as the distribution component frequen-
cies, the distribution of the number of edges etc.

5.2 Learning and evaluating models

Usually there is considerable prior knowledge about the CI model we want to
learn from data. We expect that the variables are interrelated on an intermediate
level, or that the number of factors is not extremely small or large. If we were, for
example, convinced that all variables were independent, we would not analyze
them together. Accordingly, the prior probability of such a model is small. The
highly typical model structures might be evaluated differently when compared
to rather infrequent and special structures.

Moreover, search procedures will profit from reasonable subdivisions of the
model space. They are useful for traversing the model space. Prior probabilities
can be an efficient guide in the search process.

Perfect sequences can be employed in several different way for traversing
the model space for learning models from data. One method is to starts with
searching for the best partition of the |N | variables, i.e., factors with empty tails
or, equivalently, completely connected components with undirected edges only.
The process continues by inserting variables into tails and proceeds by adding
more and more boundary layers. A different strategy starts from a cover of the
set of all variable and proceeds by inserting and deleting factors and variables.

Learning requires local decisions about the dependence or independence of
variables. Mutual information is a well founded measure of dependence. The
statistical properties of mutual information were studied by Hutter [3], substan-
tially improving an earlier proposal of the authors [7, 8]. They allow us to find
the posterior probabilities that the mutual information in an individual factor
in a perfect sequence is greater than a given threshold.

The local evaluation of factors, though, is not sufficient, a global criterion
to evaluate the quality of a whole model is required. One of the best criteria
for evaluating perfect sequence models is a Kullback-Leibler divergence of the
model distributions from the unknown distribution, which generated data. It
was already shown by Perez [12] that for a specific class of multidimensional
probabilistic models this divergence minimizes for the distribution, which maxi-
mizes its informational content. This holds independently of the data generating
distribution. This nice property holds also for perfect sequence models under
the assumption that the low-dimensional distributions, from which the model is
composed, are all marginals of the unknown generating distribution. Under this
assumption, our goal is thus to maximize informational content of the model,
which is defined for

κ(xN ) = π(xK1) � . . . � πn(xKn
)
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by the expression

IC(κ(xN )) =
∑

xN∈XN

κ(xN ) log
κ(xN )∏

i∈N

κ(xi)
.

If π1, . . . , πn is a perfect sequence, this value can easily be computed

IC(κ(xN )) =
n∑

j=1

IC(πj(xKj
)) −

n∑
j=2

IC(πj(xTj
)),

where Tj denotes the tail of the factor Kj

Tj = Kj ∩ (K1 ∪ . . . ∪ Kj−1) .

Information content may be used as a global criterion to evaluate a whole perfect
sequence model. Its statistical properties might be investigated on similar lines
as Hutter [3] did with respect to mutual information.
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