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Abstract: We consider ¢-divergences and ¢-disparities Dy (Fy, F') of hypothetical
and true distributions Fy and F' on the real line. We are interested in estimation
of Dy(Fp, F) and testing the hypothesis Hy : F' = Fy on the basis of ¢-disparity
statistics Dy, = Dy(py,P,,) Where p, and p,, are discrete distributions obtained
by finite quantizations of Fjy and the empirical distribution F;, corresponding to F'-
distributed i.i.d. sample X1, ..., X,,. The quantization is defined in such a manner
that the components p,; of p,, are the m-spacings Xy.j+m — Xn.;. We prove a limit
law for the statistics Dy y,.
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1 Introduction and auxiliary results

In this paper F(x) denotes an absolutely continuous distribution function on R
with a density f(z) a.s. positive on an interval (a,b) C R and X;,..., X, denote
independent observations distributed by F'(x). We consider the statistical problems
of testing the hypothesis Hg : F' = F{ for a given absolutely continuous distribution
function Fy(z) with a density fo(x) a.s. positive on (a,b) and estimation of the
¢-disparities
fo(z)
7(2)
Here ® denotes the class of all continuous functions ¢(t) : (0,00) — R twice
differentiable locally around ¢ = 1 with ¢”(1) > 0, ¢(1) =0 and ¢(¢) — ¢'(1) (t = 1)
monotone on the intervals (0,1) and (1,00). If ¢ : (0,00) — R is convex with
¢"(1) > 0 and ¢(1) = 0 then it belongs to ® and defines the ¢-divergence of Fy and
F (cf. Csiszar [1] or Liese and Vajda [5]). Otherwise it measures the divergence in
a weaker sense motivated by robustness considerations (cf. Lindsay [6] or Morales
et al. [8]). The hypothesis Hy can be rejected when the estimate of Dy (Fy, F)
based on the observations X1,..., X, exceeds a critical value. Such estimates of
Dy (Fy, F) can also be used for a minimum disparity selection of Fy from a given
hypothetical class.

It is well known that in both the above considered problems we can assume
without loss of generality that the observation space is (0,1] and Fy(z) = = on

Dy(Fy, F) = /abf(:v) ¢ ( ) dz, ¢ € ®. (1.1)
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(0,1]. We shall do this and therefore (1.1) will be reduced to the form

o(Fo, F / f(z ( ) dz, ¢c . (1.2)

Since the distribution function

3\H

z": I(z > X))

is not absolutely continuous, we shall replace Dy(Fo, F,,) by the ¢-disparity of
distributions induced by Fy and F,, on finite partitions P = {Ay,..., Ay} of (0,1].
If we interpret the observation space (0, 1] as a circle of unit circumference then

arbitrary cutpoints
0<ap <+ <ap<1 (1.3)

define a partition P of the circle into k intervals where
Aj=(aj,aj41] for 1<j<k-1 (1.4)

and
Ak = (a;wal] . (15)

In the Euclidean ordering on (0, 1] the A; of (1.4) remain to be intervals but the
set (1.5) becomes the union of intervals

Ay = (ag, 1} U (0,&1] . (1.6)

Restrictions of the distributions Fy(x) = x and F,(x) on P define discrete hypo-
thetical and empirical distributions

Po=(poj:1<j<k) and p, = (pnj:1<j<Kk) (1.7)

respectively, where

Fo(aj+1)—F0(aj)=aj+1—aj for 1 S]Sk‘—l (1 8)
Poj = .
T Fo() - Folaw) + Fola) =1 —ap +ar for j=k
and
Fp(ajt1) — Fola;)  for 1<j<k-—1
Pnj = . (1.9)
1—Fy(ag)+ Fn(ay) for j=Ek.

Selecting the cutpoints (1.3) so that all probabilities p,; are a.s. positive we get
the ¢-disparities

p07pn anj¢ <poj) ) ¢ cd (110)
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as functions of observations Xi,..., X, which may serve as statistics for testing
Ho : F' = Fy as well as for the estimation of the ¢-disparities Dy (Fp, F'). The very
simple formula

k
1
D vaPn - %Z kpo] (1'11)

is obtained if the empirical distribution is uniform,
p,=ur=(1/k,...,1/k). (1.12)

In order to obtain the uniform distributions (1.12) we choose an arbitrary but
fixed m > 1 and restrict ourselves to the products n = ny = mk for k = 1,2,...
The convergences and asymptotic formulas will be considered for £k — oo which
implies also n — oco. Further, we consider the ordered observations

Yl E)(n:l SSYnEXnn
where the inequalities are a.s. strict, and the empirical quantiles

F (o) =inf{z € (0,1): F,(z) > a}

n

of orders a € (0,1). Finally, we take for a fixed 1 <r <m

n

, _ -1 .
a; ) _ -t (W) =Yoi-14r 1<j<k (1.13)

as the cutpoints considered in (1.3). Then we obtain from (1.9) the uniform empir-

ical distribution (1.12) for k¥ = n/m, and from (1.8) the hypothetical distributions

( ) given by the m-spacings

pt(n) =Ymjtr = Ymg-1)4r for1<j<k (1.14)

where
YkarT = n+r = 1 + K‘ (115)

From here and (1.12) we get the ¢-disparity statistics

Dy (Po apn) = Zcb( Yojir — Ym(j,lm)) . (1.16)

Instead of the m different statistics (1.16), each of them employing only ---th
of the available observations, it is convenient to use their average

Dg.n —Z%(po ,pn>— Z¢( Vi — Z-)). (1.17)
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Morales et al. [8] studied the ¢-disparity statistics Dy, as alternatives to the
m-spacings statistics

1< n+1
U¢,n=n2¢>( - (mm—m))
i=1

introduced by Hall ([3]). Both these papers investigated the asymptotics of nDy
and nUg, respectively for m = my, increasing to oo for £ — oo.

In this paper we study the asymptotics of the ¢-disparity statistics Dg , for
fixed m > 1. In fact, we extend to m > 1 one of the results proved recently in
Vajda and van der Meulen [9] for m = 1. Our results are based on the paper of
Hall [2] and extend previous results of Khasimov [4], van Es [10], Misra and van
der Meulen [7] and some others cited there.

2 General results

We represent the statistics Dy ,, defined by (1.17) for all ¢ € ® as the sum

Don = Son+Ton (2.1)
where
1 <X n
S = 29 (= Yiem = 1) (2:2)
and .
Tym = % > (o Yirm—10). (2.3)
i=n—m-+1

In the first theorem we show that under mild assumptions about the alternative
density f(z), € (0,1)

Ty =o0p(1) forall ¢ € ®. (2.4)

Our second theorem is based on the equality

~ t
n — Phy,n f m = —_ 2.
Som =S Tor hinlt) =0 (5] (25)
where
_ 1 n—m
Sh,n n L,§=1 h(n( i+m z)) ( 6)

is a statistic of the form studied in Theorem 1 of Hall [2] for h : (0,00) — R.
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Theorem 2.1. Let there exist limits

£0) =tim Z®) S0 and f1) = tim L2 E@

> 0. 2.7
zl0 X z11 1—=x (2.7)

Then the statistics Dy, of (1.17) and Sy of (2.2) are asymptotically equivalent in
the sense that their difference Ty ., satisfies (2.4).

Proof. If the index ¢ in the sum (2.3) is of the form i = n —m +r then we get from
(1.15) foreach 1 <7 <m

YPH»m -Y, =Y. +1- Yn7m+r = Fﬁl(Wr) +1- Fﬁl(anerr)

where

i+ + 2
vt A Zpga’
and Z; are independent standard exponential random variables (see, e.g. Hall [3],
p-208). Since for all fixed r and s under consideration

W, = 1<s<n

Wyr=0p(1), Wh_s=140,(1) and nW,;=0,(1),

it follows from (2.7) and from the law of large numbers for the standard exponen-
F=Y(W,)

F~YW,) = nW,
n W) =n W

= OP(1)7

and similarly
n(1—F " (Waomair)) = Op(1).

Hence for every i between n — m and n
n
¢ (= (Viem — ) = 0p(1)
so that (2.4) follows from the definition of T}, in (2.3). O

In the following theorem we consider the subspace of the functions ¢ € &
satisfying for some &, 1 : (0,00) — R and all s, ¢ > 0 the functional equation

¢(st) = £(s) p(t) + d(s) +n(s) (t — 1) (2.8)

and the linear space H,, of continuous functions h : (0, 00) — R satisfying for some
constants a, ¢ > 0 and 0 < b < m the condition

@) <e(t*+t77). (2.9)

It is easy to verify (cf. Lemma 3.1 in [9]) that the functions £ and 7 satisfying (2.8)

are continuous with
¢&1)=1 and n(1)=0 (2.10)
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and

h(t) € Hypy = h (;) cH,, (2.11)

As examples of functions ¢ € ® N H,, satisfying (2.8) for &, n € H,, one can take

t* —1
t) = @Pu(t) = ———= ith t) =&, (1) =t d t) =n.(t) =0
00 = 0ul) = 5 with €0 =Gal0) =t and 1(t) = a(t)
for a > —m different from 0 and 1 or ¢(t) = n(t) = tlnt and £(t) = t. These
functions define well known ¢-divergences by (1.1),(1.2). The corresponding ¢-
divergence statistics Dy ,, are obtained from (1.17).

In the rest of the paper we consider on (0, 00) the gamma density

tm—le—t
m(t) = ——— 2.12
om(t) = “Fg (212)
defining the linear functional
e t
(h,m) :/ h <) gm(t) dt (2.13)
0 m

on H,,.

Theorem 2.2. Let the density f(x) of F(x) be piecewise continuous and bounded
away from 0 and oo on (0,1). Then for all $ € ® N H,, satisfying (2.8) for some
&, n e H, takes place the stochastic convergence

Dy = po(f) (2.14)

to the constant

1o (f) = (§;m) Dy (Fo, F) 4 (¢, m) (cf. (2.13)). (2.15)

Proof. The distributions under consideration satisfy the assumptions of Theorem 2.1
so that it suffices to prove (2.14) with Dy ,, replaced by Sy, of (2.2). Further, by
Theorem 1 in Hall [2], these distributions and all h € H, satisfy the limit relation

n—m

h(n(Yiem = Y3)) 2 fin(f)

S|

i=1
where

1 e’}
b (t) = 7/ f(x)m+1/ s h(s) e @) dsda.
0 0
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Hence, by (2.2), (2.5) and (2.11), Sg.,, 2 us(f) for

pe(f) = ﬁ /01 fz)m™+t /000 s g (%) e 7@ qsdz
1 1 o0

- M/o f(x)/o g (m;(x))e_tdtdx.

() =< ()2 () o () () (=)

1 1
wolf) = (&m) / f<x>¢(f(2,)) dz + (6, m) + (n,m) / (1 f(a))de
— (em) Dy(Fo, F) + {oum) (cf. (1.2)).
O

The following Corollary extends the results formerly established by Khasimov
[4], van Es [10], Misra and van der Meulen [7] and other cited there concerning esti-
mation of functionals of densities f(x) by means of statistics based on m-spacings.

Corollary 2.3. If f and ¢ satisfy the assumptions of Theorem 2.2 and (£, m)
# 0 then the statistic (Dg,n — (¢, m))/{§, m) consistently estimates the ¢-disparity
Dy(Fy, F).
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