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Abstract: We consider φ-divergences and φ-disparities Dφ(F0, F ) of hypothetical
and true distributions F0 and F on the real line. We are interested in estimation
of Dφ(F0, F ) and testing the hypothesis H0 : F = F0 on the basis of φ-disparity
statistics Dφ,n = Dφ(p0, pn) where p0 and pn are discrete distributions obtained
by finite quantizations of F0 and the empirical distribution Fn corresponding to F -
distributed i.i.d. sample X1, . . . , Xn. The quantization is defined in such a manner
that the components pnj of pn are the m-spacings Xn:j+m−Xn:j . We prove a limit
law for the statistics Dφ,n.
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1 Introduction and auxiliary results

In this paper F (x) denotes an absolutely continuous distribution function on R
with a density f(x) a. s. positive on an interval (a, b) ⊆ R and X1, . . . , Xn denote
independent observations distributed by F (x). We consider the statistical problems
of testing the hypothesis H0 : F = F0 for a given absolutely continuous distribution
function F0(x) with a density f0(x) a. s. positive on (a, b) and estimation of the
φ-disparities

Dφ(F0, F ) =
∫ b

a

f(x)φ

(
f0(x)
f(x)

)
dx, φ ∈ Φ. (1.1)

Here Φ denotes the class of all continuous functions φ(t) : (0,∞) 7→ R twice
differentiable locally around t = 1 with φ′′(1) > 0, φ(1) = 0 and φ(t)− φ′(1) (t− 1)
monotone on the intervals (0, 1) and (1,∞). If φ : (0,∞) 7→ R is convex with
φ′′(1) > 0 and φ(1) = 0 then it belongs to Φ and defines the φ-divergence of F0 and
F (cf. Csiszár [1] or Liese and Vajda [5]). Otherwise it measures the divergence in
a weaker sense motivated by robustness considerations (cf. Lindsay [6] or Morales
et al. [8]). The hypothesis H0 can be rejected when the estimate of Dφ(F0, F )
based on the observations X1, . . . , Xn exceeds a critical value. Such estimates of
Dφ(F0, F ) can also be used for a minimum disparity selection of F0 from a given
hypothetical class.

It is well known that in both the above considered problems we can assume
without loss of generality that the observation space is (0, 1] and F0(x) = x on
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(0, 1]. We shall do this and therefore (1.1) will be reduced to the form

Dφ(F0, F ) =
∫ 1

0

f(x) φ

(
1

f(x)

)
dx, φ ∈ Φ. (1.2)

Since the distribution function

Fn(x) =
1
n

n∑
n=1

I(x ≥ Xi)

is not absolutely continuous, we shall replace Dφ(F0, Fn) by the φ-disparity of
distributions induced by F0 and Fn on finite partitions P = {A1, . . . , Ak} of (0, 1].

If we interpret the observation space (0, 1] as a circle of unit circumference then
arbitrary cutpoints

0 < a1 < · · · < ak < 1 (1.3)

define a partition P of the circle into k intervals where

Aj = (aj , aj+1] for 1 ≤ j ≤ k − 1 (1.4)

and
Ak = (ak, a1] . (1.5)

In the Euclidean ordering on (0, 1] the Aj of (1.4) remain to be intervals but the
set (1.5) becomes the union of intervals

Ak = (ak, 1] ∪ (0, a1] . (1.6)

Restrictions of the distributions F0(x) = x and Fn(x) on P define discrete hypo-
thetical and empirical distributions

p0 = (p0j : 1 ≤ j ≤ k) and pn = (pnj : 1 ≤ j ≤ k) (1.7)

respectively, where

p0j =

{
F0(aj+1)− F0(aj) = aj+1 − aj for 1 ≤ j ≤ k − 1

F0(1)− F0(ak) + F0(a1) = 1− ak + a1 for j = k
(1.8)

and

pnj =

{
Fn(aj+1)− Fn(aj) for 1 ≤ j ≤ k − 1

1− Fn(ak) + Fn(a1) for j = k.
(1.9)

Selecting the cutpoints (1.3) so that all probabilities pnj are a. s. positive we get
the φ-disparities

Dφ(p0,pn) =
k∑

j=1

pnjφ

(
p0j

pnj

)
, φ ∈ Φ (1.10)
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as functions of observations X1, . . . , Xn which may serve as statistics for testing
H0 : F = F0 as well as for the estimation of the φ-disparities Dφ(F0, F ). The very
simple formula

Dφ (p0, pn) =
1
k

k∑

j=1

φ (k p0j) (1.11)

is obtained if the empirical distribution is uniform,

pn = uk = (1/k, . . . , 1/k) . (1.12)

In order to obtain the uniform distributions (1.12) we choose an arbitrary but
fixed m ≥ 1 and restrict ourselves to the products n = nk = mk for k = 1, 2, . . .
The convergences and asymptotic formulas will be considered for k → ∞ which
implies also n →∞. Further, we consider the ordered observations

Y1 ≡ Xn:1 ≤ · · · ≤ Yn ≡ Xn:n

where the inequalities are a. s. strict, and the empirical quantiles

F−1
n (α) = inf {x ∈ (0, 1) : Fn(x) ≥ α}

of orders α ∈ (0, 1). Finally, we take for a fixed 1 ≤ r ≤ m

a
(r)
j = F−1

n

(
m(j − 1) + r

n

)
= Ym(j−1)+r, 1 ≤ j ≤ k (1.13)

as the cutpoints considered in (1.3). Then we obtain from (1.9) the uniform empir-
ical distribution (1.12) for k = n/m, and from (1.8) the hypothetical distributions
p

(r)
0 given by the m-spacings

p
(r)
0j = Ymj+r − Ym(j−1)+r for 1 ≤ j ≤ k (1.14)

where
Ymk+r ≡ Yn+r = 1 + Yr. (1.15)

From here and (1.12) we get the φ-disparity statistics

Dφ

(
p

(r)
0 , pn

)
=

m

n

k∑

j=1

φ
( n

m
(Ymj+r − Ym(j−1)+r)

)
. (1.16)

Instead of the m different statistics (1.16), each of them employing only 1
m -th

of the available observations, it is convenient to use their average

Dφ,n =
1
m

m∑
r=1

Dφ

(
p

(r)
0 , pn

)
=

1
n

n∑

i=1

φ
( n

m
(Yi+m − Yi)

)
. (1.17)



4 Prague Stochastics 2006

Morales et al. [8] studied the φ-disparity statistics Dφ,n as alternatives to the
m-spacings statistics

Uφ,n =
1
n

n∑

i=1

φ

(
n + 1

m
(Yi+m − Yi)

)

introduced by Hall ([3]). Both these papers investigated the asymptotics of nDφ,n

and nUφn respectively for m = mk increasing to ∞ for k →∞.
In this paper we study the asymptotics of the φ-disparity statistics Dφ,n for

fixed m ≥ 1. In fact, we extend to m > 1 one of the results proved recently in
Vajda and van der Meulen [9] for m = 1. Our results are based on the paper of
Hall [2] and extend previous results of Khasimov [4], van Es [10], Misra and van
der Meulen [7] and some others cited there.

2 General results

We represent the statistics Dφ,n defined by (1.17) for all φ ∈ Φ as the sum

Dφ,n = Sφ,n + Tφ,n (2.1)

where

Sφ,n =
1
n

n−m∑

i=1

φ
( n

m
(Yi+m − Yi)

)
(2.2)

and

Tφ,n =
1
n

n∑

i=n−m+1

φ
( n

m
(Yi+m − Yi)

)
. (2.3)

In the first theorem we show that under mild assumptions about the alternative
density f(x), x ∈ (0, 1)

Tφ,n = op(1) for all φ ∈ Φ. (2.4)

Our second theorem is based on the equality

Sφ,n = S̃hm,n for hm(t) = φ

(
t

m

)
(2.5)

where

S̃h,n =
1
n

n−m∑

i=1

h (n (Yi+m − Yi)) (2.6)

is a statistic of the form studied in Theorem 1 of Hall [2] for h : (0,∞) 7→ R.
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Theorem 2.1. Let there exist limits

f(0) = lim
x↓0

F (x)
x

> 0 and f(1) = lim
x↑1

1− F (x)
1− x

> 0. (2.7)

Then the statistics Dφ,n of (1.17) and Sφ,n of (2.2) are asymptotically equivalent in
the sense that their difference Tφ,n satisfies (2.4).

Proof. If the index i in the sum (2.3) is of the form i = n−m+ r then we get from
(1.15) for each 1 ≤ r ≤ m

Yi+m − Yi = Yr + 1− Yn−m+r = F−1(Wr) + 1− F−1(Wn−m+r)

where
Ws =

Z1 + · · ·+ Zs

Z1 + · · ·+ Zn+1
, 1 ≤ s ≤ n

and Zi are independent standard exponential random variables (see, e. g. Hall [3],
p. 208). Since for all fixed r and s under consideration

Wr = op(1), Wn−s = 1 + op(1) and nWs = Op(1),

it follows from (2.7) and from the law of large numbers for the standard exponen-
tial Zi

nF−1(Wr) = nWr
F−1(Wr)

Wr
= Op(1),

and similarly
n

(
1− F−1(Wn−m+r)

)
= Op(1).

Hence for every i between n−m and n

φ
( n

m
(Yi+m − Yi)

)
= Op(1)

so that (2.4) follows from the definition of Tφ,n in (2.3).

In the following theorem we consider the subspace of the functions φ ∈ Φ
satisfying for some ξ, η : (0,∞) 7→ R and all s, t > 0 the functional equation

φ(st) = ξ(s) φ(t) + φ(s) + η(s) (t− 1) (2.8)

and the linear space Hm of continuous functions h : (0,∞) 7→ R satisfying for some
constants a, c > 0 and 0 < b < m the condition

|h(t)| ≤ c
(
ta + t−b

)
. (2.9)

It is easy to verify (cf. Lemma 3.1 in [9]) that the functions ξ and η satisfying (2.8)
are continuous with

ξ(1) = 1 and η(1) = 0 (2.10)
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and

h(t) ∈ Hm ⇒ h

(
t

m

)
∈ Hm. (2.11)

As examples of functions φ ∈ Φ ∩Hm satisfying (2.8) for ξ, η ∈ Hm one can take

φ(t) = φα(t) =
tα − 1

α(α− 1)
with ξ(t) = ξα(t) = tα and η(t) = ηα(t) = 0

for α > −m different from 0 and 1 or φ(t) = η(t) = t ln t and ξ(t) = t. These
functions define well known φ-divergences by (1.1), (1.2). The corresponding φ-
divergence statistics Dφ,n are obtained from (1.17).

In the rest of the paper we consider on (0,∞) the gamma density

gm(t) =
tm−1e−t

Γ(m)
(2.12)

defining the linear functional

〈h, m〉 =
∫ ∞

0

h

(
t

m

)
gm(t) dt (2.13)

on Hm.

Theorem 2.2. Let the density f(x) of F (x) be piecewise continuous and bounded
away from 0 and ∞ on (0, 1). Then for all φ ∈ Φ ∩Hm satisfying (2.8) for some
ξ, η ∈ Hm takes place the stochastic convergence

Dφ,n
p→ µφ(f) (2.14)

to the constant

µφ(f) = 〈ξ, m〉Dφ(F0, F 〉+ 〈φ,m〉 (cf. (2.13)). (2.15)

Proof. The distributions under consideration satisfy the assumptions of Theorem 2.1
so that it suffices to prove (2.14) with Dφ,n replaced by Sφ,n of (2.2). Further, by
Theorem 1 in Hall [2], these distributions and all h ∈ Hm satisfy the limit relation

1
n

n−m∑

i=1

h (n(Yi+m − Yi))
p→ µ̃h(f)

where

µ̃h(t) =
1

Γ(m)

∫ 1

0

f(x)m+1

∫ ∞

0

sm−1h(s) e−sf(x) dsdx.
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Hence, by (2.2), (2.5) and (2.11), Sφ,n
p→ µφ(f) for

µφ(f) =
1

Γ(m)

∫ 1

0

f(x)m+1

∫ ∞

0

sm−1φ
( s

m

)
e−sf(x) dsdx

=
1

Γ(m)

∫ 1

0

f(x)
∫ ∞

0

tm−1φ

(
t

mf(x)

)
e−t dtdx.

By (2.8),

φ

(
t

mf(x)

)
= ξ

(
t

m

)
φ

(
1

f(x)

)
+ φ

(
t

m

)
+ η

(
t

m

)(
1

f(x)
− 1

)

so that

µφ(f) = 〈ξ, m〉
∫ 1

0

f(x)φ

(
1

f(x)

)
dx + 〈φ,m〉+ 〈η,m〉

∫ 1

0

(1− f(x)) dx

= 〈ξ, m〉Dφ(F0, F ) + 〈φ,m〉 (cf. (1.2)).

The following Corollary extends the results formerly established by Khasimov
[4], van Es [10], Misra and van der Meulen [7] and other cited there concerning esti-
mation of functionals of densities f(x) by means of statistics based on m-spacings.

Corollary 2.3. If f and φ satisfy the assumptions of Theorem 2.2 and 〈ξ,m〉
6= 0 then the statistic (Dφ,n − 〈φ,m〉)/〈ξ, m〉 consistently estimates the φ-disparity
Dφ(F0, F ).
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