Solving ODE with Fuzzy Initial Condition Using Fuzzy Transform

Irina Perfilieva, Dagmar Plšková

Institute for Research and Applications of Fuzzy Modeling University of Ostrava, 30. dubna 22, 701 03 Ostrava 1, Czech Republic irina.perfilieva@osu.cz, dagmar.plskova@osu.cz

DAR 2007, 11th December, 2007

2 Generalized Euler method

ODE with fuzzy initial condition

1040

Fuzzy Partition

Partition of [a, b]

•
$$a = x_1 < x_2 < \cdots < x_n = b$$

•
$$h(n) = \max_{k=1,\dots,n-1} (x_{k+1} - x_k)$$

Fuzzy Partition of [*a*, *b*]

•
$$A_1(x), ..., A_n(x)$$
 - basis functions

•
$$A_k : [a, b] \to [0, 1], \ A_k(x_k) = 1$$

•
$$A_k(x) = 0$$
 if $x \notin (x_{k-1}, x_{k+1})$ where $x_0 = a$ and $x_{n+1} = b$

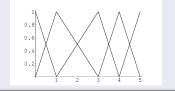
A_k is continuous

• $A_k(x)$ increases on $[x_{k-1}, x_k]$ and decreases on $[x_k, x_{k+1}]$

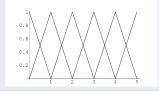
•
$$\sum_{k=1}^{n} A_k(x) = 1$$
 $\forall x \in [a, b]$

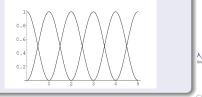
Examples of fuzzy partitions

General fuzzy partition



Uniform fuzzy partitions





Q CV

(日) (日) (日) (日) (日) (日) (日)

F-transform

Definition Let • $f \in L^1(a, b)$ • A_1, \dots, A_n - basis functions on [a, b]• $F_k = \frac{\int_a^b f(x)A_k(x)dx}{\int_a^b A_k(x)dx}, \quad k = 1, ..., n$ $[F_1, \dots, F_n]$ - direct F-transform of f w.r.t. A_1, \dots, A_n

RAFM

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

Inverse F-transform

Definition

•
$$f \in L^1(a, b)$$

- A_1, \ldots, A_n basis functions on [a, b]
- $[F_1, \ldots, F_n]$ corresponding direct F-transform

The function

$$f_{F,n}(x) = \sum_{k=1}^{n} F_k A_k(x)$$

is called the inverse F-transform.

Convergence of Continuous Functions

Theorem (I. Perfilieva 2001)

Let

- $f \in C([a, b]),$
- $\{A_1^n, A_2^n, \dots, A_n^n\}_{n=1}^{\infty}$ sequence of fuzzy partitions
- $h(n) \rightarrow 0$
- ${f_{F,n}}_{n=1}^{\infty}$ corresponding sequence of the inverse F-transforms of *f*

Then

$$f_{F,n} \rightrightarrows f$$
.

2 Generalized Euler method

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

ĐA

Generalized Euler method

Cauchy problem:

$$y'(x) = f(x, y) \qquad y(x_1) = y_1$$

Direct F-transform

$$Y_{1} = y_{1}$$

$$Y_{k+1} = Y_{k} + \hat{F}_{k} \qquad k = 1, ..., n-1.$$

$$\hat{F}_{k} = \frac{\int_{a}^{b} f(x, Y_{k}) A_{k}(x) dx}{\int_{a}^{b} A_{k}(x) dx}$$

Inverse F-transform

$$y_{Y,n} = \sum_{k=1}^{n} Y_k A_k(x)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Formulation

Cauchy problem

•
$$y'(x) = f(x, y)$$

• $y(x_1) = \tilde{Y}_1$, where $\tilde{Y}_1(y_1) = 1$

Two method for modeling of uncertainty development

- multiple solution of ODE with various initial conditions
- using fuzzy relational equations

・ロト・日本・日本・日本・日本

Formulation

Cauchy problem

•
$$y'(x) = f(x, y)$$

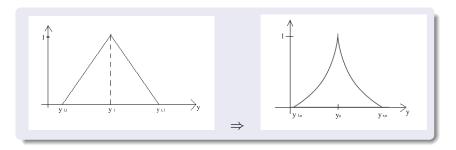
• $y(x_1) = \tilde{Y}_1$, where $\tilde{Y}_1(y_1) = 1$

Two method for modeling of uncertainty development

- multiple solution of ODE with various initial conditions
- using fuzzy relational equations

(日)

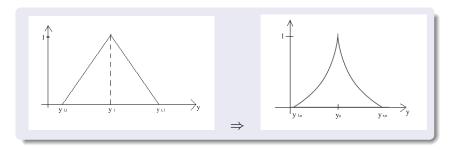
Motivation example



First method - multiple solution of ODE with various initial conditions

- Advantages modeling of fuzzy set shape
- Disadvantages large number of operations

Motivation example



First method - multiple solution of ODE with various initial conditions

- Advantages modeling of fuzzy set shape
- Disadvantages large number of operations

First method - multiple solution of ODE with various initial conditions

Algorithm

- partition of interval $[y_{l,1}, y_{r,1}] : y_{l,1} = y_{11} < \ldots < y_{m1} = y_{r,1}$
- mapping of membership degrees: $y_{i1} \mapsto \tilde{Y}_1(y_{i1}) \equiv z_i$

- solving Cauchy problem with initial conditions $y(x_1) = y_{i1}$ \implies matrix of values $M \in \mathbb{R}$, $(M)_{ij} = y_{ij}$

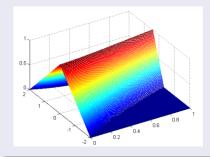
construction of uncertainty development in a nodal point x_j,
 j = 1,..., n:

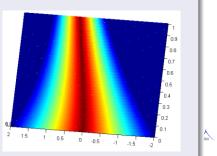
$$\tilde{Y}_j(y_{ij}) = z_i, \quad i = 1, \ldots, m$$

First method

Example

 $y'(x) = \sqrt{x} - y$ $y(0) = \tilde{Y}_1, \qquad \tilde{Y}_1(0) = 1$





◆□▶ ◆□▶ ◆豆▶ ◆豆▶ → 豆 → のへで

Second method - using fuzzy relational equations

Second method - Advantages x Disadvantages

- Advantages low number of operation
- Disadvantages low number of information about uncertainty development

▲□▶▲□▶▲□▶▲□▶ □ のQで

Second method - using fuzzy relational equations

Algorithm

solving ODE with initial conditions:

$$y(x_1) = y_{l1}$$
 $y(x_1) = y_1$ $y(x_1) = y_{r1}$

 $\implies y_{l1}, y_{l2}, \dots, y_{ln} \qquad y_1, y_2, \dots, y_n \qquad y_{r1}, y_{r2}, \dots, y_{rn}$

• creating fuzzy set \tilde{Y}_k , k = 1, ..., n so that

$$ilde{Y}_k(y_{lk}) = ilde{Y}_k(y_{rk}) = 0 \qquad ilde{Y}_k(y_k) = 1$$

Second method - using fuzzy relational equations

Algorithm

solving fuzzy relational equation

$$A_1 \circ R = \tilde{Y}_1$$

$$A_n \circ R = \tilde{Y}_n$$

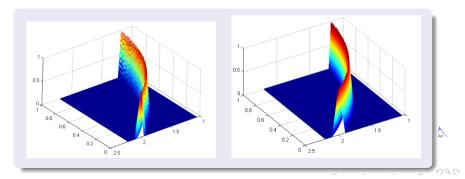
- $\check{R}(x,v) = \bigvee_{i=1}^{n} (A_i(x) * \tilde{Y}_i(v))$ $R(x,v) = \sum_{i=1}^{n} (A_i(x) \cdot \tilde{Y}_i(v))$
- uncertainty development is given by $R(\underline{x}, v)$ in a point $\underline{x} \in [a, b]$

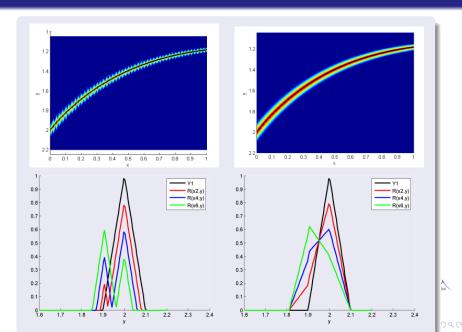
Example

Example

$$y'(x) = \sqrt{x} - y$$

 $y(0) = \tilde{Y}_1, \qquad \tilde{Y}_1(2) = 1$





Thank you for your attention

(ロ)、(型)、(E)、(E)、 E、 の(の)