Sequential Triangle Strip Generator Based on Hopfield Networks

Jiří Šíma and Radim Lněnička

Abstract

The important task of generating the minimum number of sequential triangle strips (tristrips) for a given triangulated surface model is motivated by applications in computer graphics. This hard combinatorial optimization problem is reduced to the minimum energy problem in Hopfield nets by a linear-size construction. In particular, the classes of equivalent optimal stripifications are mapped one to one to the minimum energy states that are reached by a Hopfield network during sequential computation starting at the zero initial state. Thus the underlying Hopfield network powered by simulated annealing (i.e. Boltzmann machine) which is implemented in a program HTGEN can be used for computing the semi-optimal stripifications. Practical experiments confirm that one can obtain much better results using HTGEN than by a leading stripification program FTSG although the running time of simulated annealing grows rapidly near the global optimum. Nevertheless, HTGEN exhibits empirical linear time complexity when the parameters of simulated annealing (i.e. the initial temperature and the stopping criterion) are fixed, and thus provides the semioptimal offline solutions even for huge models of hundreds of thousands of triangles within reasonable time.

Index Terms

Sequential triangle strip, combinatorial optimization, Hopfield network, minimum energy, simulated annealing.
J.Š.'s research was partially supported by the "Information Society" project 1ET100300517 and the Institutional Research Plan AV0Z10300504. R.L.'s. work was partially supported by Ministry of Education, Youth and Sports of the Czech Republic through the project 1M0572.
J. Šíma (Corresponding author) is with the Institute of Computer Science, Academy of Sciences of the Czech Republic, P.O. Box 5, 18207 Prague 8, Czech Republic. E-mail: sima@cs.cas.cz
R. Lněnička is with the Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, P.O. Box 18, 18208 Prague 8, Czech Republic E-mail: r.lnenicka@centrum.cz

I. SeQuential Triangle Strips

Piecewise-linear surfaces defined by sets of triangles (triangulations) are widely used representations for geometric models. Computing a succinct encoding of a triangulated surface model represents an important problem in graphics and visualization. Current 3D graphics rendering hardware often faces a memory bus bandwidth bottleneck in the processor-to-graphics pipeline. Apart from reducing the number of triangles that must be transmitted it is also important to encode the triangulated surface efficiently. A common encoding scheme is based on sequential triangle strips which avoid repeating the vertex coordinates of shared triangle edges. Triangle strips are supported by several graphics libraries (e.g. IGL, PHIGS, Inventor, OpenGL).

In particular, a sequential triangle strip (hereafter briefly tristrip) of length $m-2$ is an ordered sequence of $m \geq 3$ vertices $\sigma=\left(v_{1}, \ldots, v_{m}\right)$ which encodes the set of $n(\sigma)=m-2$ different triangles $T_{\sigma}=\left\{\left\{v_{p}, v_{p+1}, v_{p+2}\right\} \mid 1 \leq p \leq m-2\right\}$ so that their shared edges follow alternating left and right turns as indicated in Fig. 1 by the dashed line. Thus a triangulation consisting of a single tristrip with n triangles allows transmitting of only $n+2$ (rather than $3 n$) vertices. In general, a triangulated surface model T with n triangles that is decomposed into k tristrips $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{k}\right\}$ requires only $n+2 k$ vertices to be transmitted. A crucial problem is to decompose a triangulated surface model into the fewest tristrips. This stripification problem has recently been proven to be NP-complete in [1] where also a more detailed discussion concerning conventional stripification algorithms can be found including relevant references.

In the present paper, a new method of generating tristrips for a given triangulated surface model T with n triangles is proposed which is based on a linear-time reduction to the minimum energy problem in a Hopfield network \mathcal{H}_{T} which has $O(n)$ units and $O(n)$ connections. This approach has been inspired by a more complicated and incomplete reduction (e.g. sequential cycles were not excluded) introduced in [2] which was supported only by experiments.

The paper is organized as follows. After a brief review of basic definitions concerning Hopfield nets in Section II, the main construction of Hopfield network \mathcal{H}_{T} for a given triangulation T is described in Section III. The correctness of this reduction is formally verified in Section IV by proving a one-to-one correspondence between the classes of equivalent optimal stripifications of T and the minimum energy states reached by \mathcal{H}_{T} during sequential computation starting at the zero initial state (or \mathcal{H}_{T} can be initialized arbitrarily if one asymmetric weight is introduced).

This provides another NP-completeness proof for the minimum energy problem in Hopfield nets.
In addition, \mathcal{H}_{T} combined with simulated annealing (i.e. Boltzmann machine) has been implemented in a program HTGEN which is compared against a leading stripification program FTSG in Section V. Practical experiments show that HTGEN can compute much better stripifications than FTSG although the running time of HTGEN grows rapidly when the global optimum is being approached. Furthermore, we study empirically how to choose the parameters of simulated annealing (i.e. the initial temperature and the stopping criterion) so that the correct stripification with a given number of tristrips is obtained in the shortest time. Moreover, the experiments show the average linear time complexity of HTGEN when the parameters of simulated annealing are fixed. Thus, one can use HTGEN for finding the semioptimal offline solutions even for huge models of hundreds of thousands of triangles within reasonable time.

A preliminary version of this article appeared as extended abstracts [3] and [4] containing a proof sketch and first practical experiments with HTGEN using "grid" models, respectively.

II. The Minimum Energy Problem

In his 1982 paper [5], John Hopfield introduced a very influential associative memory model which has since come to be widely known as the (symmetric) Hopfield network. The fundamental characteristic of this model is its well-constrained convergence behavior as compared to arbitrary asymmetric networks. Part of the appeal of Hopfield nets stems from their connection to the much-studied Ising spin glass model in statistical physics [6], and their natural hardware implementations using electrical networks [7] or optical computers [8]. Hopfield networks have also been applied to the fast approximate solution of combinatorial optimization problems [9], [10].

Formally, a Hopfield network is composed of s computational units or neurons, indexed as $1, \ldots, s$, that are connected into an undirected graph or architecture, in which each connection between unit i and j is labeled with an integer symmetric weight $w(i, j)=w(j, i)$. The absence of a connection within the architecture indicates a zero weight between the respective neurons, and vice versa. Hereafter we assume $w(j, j)=0$ for every $j=1, \ldots, s$. The sequential discrete dynamics of such a network is here considered, in which the evolution of the network state $\mathbf{y}^{(t)}=\left(y_{1}^{(t)}, \ldots, y_{s}^{(t)}\right) \in\{0,1\}^{s}$ is determined for discrete time instants $t=0,1,2, \ldots$ as follows. The initial state $\mathbf{y}^{(0)}$ may be chosen arbitrarily, e.g. $\mathbf{y}^{(0)}=(0, \ldots, 0)$. At discrete time $t \geq 0$,
the excitation of any neuron j is defined as

$$
\begin{equation*}
\xi_{j}^{(t)}=\sum_{i=1}^{s} w(i, j) y_{i}^{(t)}-h(j) \tag{1}
\end{equation*}
$$

including an integer threshold $h(j)$ local to unit j. At the next instant $t+1$, one (e.g. randomly) selected neuron j computes its new output $y_{j}^{(t+1)}=H\left(\xi_{j}^{(t)}\right)$ by applying the Heaviside activation function $H(\xi)$ defined to be 1 for $\xi \geq 0$ and 0 for $\xi<0$, that is, j becomes active when $H\left(\xi_{j}^{(t)}\right)=1$ while j will be passive otherwise. The remaining units do not change their states, i.e. $y_{i}^{(t+1)}=y_{i}^{(t)}$ for $i \neq j$. In this way the new network state $\mathbf{y}^{(t+1)}$ at time $t+1$ is determined.

In order to formally avoid long constant intermediate computations when only those units are updated that effectively do not change their outputs, a macroscopic time $\tau=0,1,2, \ldots$ is introduced during which all the units in the network are updated. A computation of a Hopfield network converges or reaches a stable state $\mathbf{y}^{\left(\tau^{*}\right)}$ at macroscopic time $\tau^{*} \geq 0$ if $\mathbf{y}^{\left(\tau^{*}\right)}=\mathbf{y}^{\left(\tau^{*}+1\right)}$. The well-known fundamental property of a symmetric Hopfield network is that its dynamics is constrained by the energy function

$$
\begin{equation*}
E(\mathbf{y})=-\frac{1}{2} \sum_{j=1}^{s} \sum_{i=1}^{s} w(i, j) y_{i} y_{j}+\sum_{j=1}^{s} h(j) y_{j} \tag{2}
\end{equation*}
$$

which is a bounded function defined on its state space whose value decreases along any nonconstant computation path (to be precise it is assumed here without loss of generality [11] that $\xi_{j}^{(t)} \neq 0$). It follows from the existence of such a function that starting from any initial state the network converges towards some stable state corresponding to a local minimum of E [5]. Thus the cost function of a hard combinatorial optimization problem can be encoded into the energy function of a Hopfield network which is then minimized in the course of computation. Hence, the minimum energy problem of finding a network state with minimum energy is of special interest. Nevertheless, this problem is in general NP-complete [6] (see also [12] for related results).

A stochastic variant of the Hopfield model called the Boltzmann machine [13] is also considered in which a randomly selected unit j becomes active at time $t+1$, i.e. $y_{j}^{(t+1)}=1$, with probability $P\left(\xi_{j}^{(t)}\right)$ computed by applying the probabilistic activation function $P: \Re \longrightarrow(0,1)$ defined as

$$
\begin{equation*}
P(\xi)=\frac{1}{1+e^{-2 \xi / T^{(\tau)}}} \tag{3}
\end{equation*}
$$

where $T^{(\tau)}>0$ is a so-called temperature at macroscopic time $\tau \geq 0$. This parameter is controlled by simulated annealing, e.g.

$$
\begin{equation*}
T^{(\tau)}=\frac{T^{(0)}}{\log _{2}(1+\tau)} \tag{4}
\end{equation*}
$$

for $\tau>0$ and sufficiently high initial temperature $T^{(0)}$. The simulated annealing is a powerful heuristic method for avoiding the local minima in combinatorial optimization.

III. The Reduction

For the purpose of reduction the following definitions are introduced. Let T be a set of n triangles that represents a triangulated surface model homeomorphic to a sphere in which each edge is incident to at most two triangles. Moreover, choose and fix one of the two possible orientations of this surface. An edge is said to be internal if it is shared by exactly two triangles; otherwise it is a boundary edge. Denote by I and B the sets of internal and boundary edges, respectively, in triangulation T. Furthermore, a sequential cycle is a "cycled tristrip", that is, an ordered sequence of vertices $C=\left(v_{1}, \ldots, v_{m}\right)$ such that $v_{m-1}=v_{1}$ and $v_{m}=v_{2}$ where $m \geq 4$ is even, which encodes the set of $m-2$ different triangles $T_{C}=\left\{\left\{v_{p}, v_{p+1}, v_{p+2}\right\} \mid 1 \leq p \leq m-2\right\}$. Also denote by I_{C} and B_{C} the sets of internal and boundary edges of sequential cycle C, respectively, that is, $I_{C}=\left\{\left\{v_{p}, v_{p+1}\right\} \mid 1 \leq p \leq m-2\right\}$ and $B_{C}=\left\{\left\{v_{p}, v_{p+2}\right\} \mid 1 \leq p \leq m-2\right\}$. An example of the sequential cycle is depicted in Fig. 2 where its internal and boundary edges are indicated by the dashed and dotted lines, respectively. In addition, let \mathcal{C} be the set of all sequential cycles in T.

For each sequential cycle $C \in \mathcal{C}$ one unique representative internal edge $e_{C} \in I_{C}$ can be chosen as follows. Start with any cycle $C \in \mathcal{C}$ and choose any edge from I_{C} to be its representative edge e_{C}. Observe that for the fixed orientation of triangulated surface any internal edge follows either left or right turn corresponding to at most two sequential cycles. Thus denote by C^{\prime} the sequential cycle having no representative edge so far which shares its internal edge $e_{C} \in I_{C} \cap I_{C^{\prime}}$ with C if such C^{\prime} exists; otherwise let C^{\prime} be any sequential cycle with no representative internal edge or stop if all the sequential cycles do have their representative edges. Further choose any edge from $I_{C^{\prime}} \backslash\left\{e_{C}\right\}$ to be the representative edge $e_{C^{\prime}}$ of C^{\prime} and repeat the previous step with C replaced by C^{\prime}. Clearly, each edge represents at most one cycle because set $I_{C^{\prime}} \backslash\left\{e_{C}\right\} \neq \emptyset$ always contains only edges that do not represent any cycle so far. Otherwise, some other sequential cycle $C^{\prime \prime}$
different from C would have obtained its representative edge $e_{C^{\prime \prime}}$ from $I_{C^{\prime}} \cap I_{C^{\prime \prime}}$, and hence a representative edge would have already been assigned to C^{\prime} (immediately after $e_{C^{\prime \prime}}$ was assigned to $C^{\prime \prime}$) before C is considered.

The Hopfield network \mathcal{H}_{T} corresponding to triangulation T will now be constructed. For each internal edge $e=\left\{v_{1}, v_{2}\right\} \in I$ in T we introduce two neurons ℓ_{e} and r_{e} in \mathcal{H}_{T} with the following meaning. The activity of either unit ℓ_{e} (i.e. $y_{\ell_{e}}=1$) or r_{e} (i.e. $y_{r_{e}}=1$) will indicate that e follows the left or right turn, respectively, along some tristrip $\sigma \in \Sigma$ (according to the fixed orientation of T). Let $L_{e}=\left\{e, e_{1}, e_{2}, e_{3}, e_{4}\right\}$ with $e_{1}=\left\{v_{1}, v_{3}\right\}, e_{2}=\left\{v_{2}, v_{3}\right\}, e_{3}=\left\{v_{2}, v_{4}\right\}$, and $e_{4}=\left\{v_{1}, v_{4}\right\}$ be the set of edges of the two triangles $\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{2}, v_{4}\right\}$ that share edge e. Denote by $J_{e}=\left\{\ell_{f}, r_{f} \mid f \in L_{e} \cap I\right\}$ the set of neurons that are associated with the internal edges from L_{e}. Unit ℓ_{e} is connected with all neurons from J_{e} (via negative weights) except for units $r_{e_{2}}$ (if $e_{2} \in I$), ℓ_{e}, and $r_{e_{4}}$ (if $e_{4} \in I$) whose states may encode a tristrip that traverses edge e by the left turn. Such a situation (for $L_{e} \subseteq I$) is depicted in Fig. 3 where the edges shared by consecutive triangles of a tristrip are marked together with the associated active neurons $r_{e_{2}}, \ell_{e}, r_{e_{4}}$. Similarly, unit r_{e} is connected with neurons from J_{e} except for units $\ell_{e_{1}}$ (if $e_{1} \in I$), r_{e}, and $\ell_{e_{3}}$ (if $e_{3} \in I$) which serve to encode the right turn. Thus define the weights

$$
\begin{align*}
& w\left(i, \ell_{e}\right)=w\left(\ell_{e}, i\right)=-7 \quad \text { for } i \in J_{\ell_{e}}=J_{e} \backslash\left\{r_{e_{2}}, \ell_{e}, r_{e_{4}}\right\}, \tag{5}\\
& w\left(i, r_{e}\right)=w\left(r_{e}, i\right)=-7 \quad \text { for } i \in J_{r_{e}}=J_{e} \backslash\left\{\ell_{e_{1}}, r_{e}, \ell_{e_{3}}\right\}
\end{align*}
$$

for each internal edge $e \in I$. Hence, the states of Hopfield network \mathcal{H}_{T} with these negative symmetric weights, which enforce locally the alternation of left and right turns, encode tristrips.

Furthermore, for each representative edge $e_{C}(C \in \mathcal{C})$ define either $j_{C}=\ell_{e_{C}}$ if e_{C} follows the left turn along sequential cycle C, or $j_{C}=r_{e_{C}}$ if e_{C} follows the right turn along C. Let $J=\left\{j_{C} \mid C \in \mathcal{C}\right\}$ be the set containing all such neurons whereas $J^{\prime}=\left\{\ell_{e}, r_{e} \notin J \mid e \in I\right\}$ denotes its complement. The thresholds of neurons associated with internal edges are defined by

$$
h(j)= \begin{cases}-5+2 b_{e(j)} & \text { for } j \in J^{\prime} \tag{6}\\ 1+2 b_{e(j)} & \text { for } j \in J\end{cases}
$$

where $e(j)=e$ denotes the internal edge which unit $j \in\left\{\ell_{e}, r_{e}\right\}$ is associated with, and $b_{e} \leq 2$ is the number of sequential cycles C having e as their boundary edge and satisfying $e \notin L_{e_{C}}$, that is, $b_{e}=\left|\left\{C \in \mathcal{C} \mid e \in B_{C}^{\prime}\right\}\right|$ where $B_{C}^{\prime}=\left(B_{C} \cap I\right) \backslash L_{e_{C}}$.

Nevertheless, the Hopfield network \mathcal{H}_{T} must also avoid the states encoding cycled strips of triangles along the sequential cycles that appear in triangulation T [1]. As follows from the
analysis below (Section IV), such infeasible states would have less energy (2) than those encoding the optimal stripifications. For this purpose, two auxiliary neurons d_{C}, a_{C} are introduced in \mathcal{H}_{T} for each sequential cycle $C \in \mathcal{C}$. Unit d_{C} will compute the disjunction of outputs from all neurons i associated with boundary edges $e(i) \in B_{C}^{\prime}$ of C (i.e. except for the edges of $L_{e_{C}}$). Only if this neuron d_{C} is active, the activation of unit j_{C} associated with representative edge e_{C} will be enabled. Any tristrip may then pass through edge e_{C} along the direction of C only if some boundary edge of C is a part of another tristrip crossing the sequential cycle C. This will ensure that the states of Hopfield network \mathcal{H}_{T} do not encode sequential cycles. In addition, unit a_{C} will balance the contribution of d_{C} to the energy when j_{C} is passive. As depicted in Fig. 4, this is implemented for each sequential cycle $C \in \mathcal{C}$ by the following thresholds and symmetric weights:

$$
\begin{align*}
h\left(d_{C}\right) & =h\left(a_{C}\right)=1 \tag{7}\\
w\left(i, d_{C}\right) & =w\left(d_{C}, i\right)=2 \quad \text { for } e(i) \in B_{C}^{\prime} \tag{8}\\
w\left(d_{C}, j_{C}\right) & =w\left(j_{C}, d_{C}\right)=7, \tag{9}\\
w\left(d_{C}, a_{C}\right) & =w\left(a_{C}, d_{C}\right)=2, \quad w\left(j_{C}, a_{C}\right)=w\left(a_{C}, j_{C}\right)=-2 . \tag{10}
\end{align*}
$$

This completes the construction of Hopfield network \mathcal{H}_{T}.
Moreover, observe that the number of units $s=2|I|+2|\mathcal{C}|=O(n)$ in \mathcal{H}_{T} is linear in terms of triangulation size $n=|T|$ because the number of sequential cycles $|\mathcal{C}|$ can be upper bounded by $2|I|=O(n)$ since each internal edge can belong to at most two cycles. Similarly, the number of connections in \mathcal{H}_{T} can be upper bounded by $7 \cdot 2|I|+2 \cdot 2|I|+3|\mathcal{C}|=O(n)$ according to (5) and (8)-(10) since again each internal edge may appear in B_{C} for at most two $C \in \mathcal{C}$. Clearly, the reduction can also be done within linear time $O(n)$.

IV. The Correctness

The correctness of the reduction introduced in Section III will be verified by proving Theorem 1 below. Let \mathcal{S}_{T} be the set of optimal stripifications with the minimum number of tristrips for T. Define $\Sigma \in \mathcal{S}_{T}$ is equivalent with $\Sigma^{\prime} \in \mathcal{S}_{T}$ if their corresponding tristrips encode the same sets of triangles, i.e. $\Sigma \sim \Sigma^{\prime}$ iff $\left\{T_{\sigma} \mid \sigma \in \Sigma\right\}=\left\{T_{\sigma^{\prime}} \mid \sigma^{\prime} \in \Sigma^{\prime}\right\}$. For example, two equivalent optimal stripifications may differ in a tristrip σ encoding triangles of sequential cycle C (i.e. $T_{\sigma}=T_{C}$)
which is split at two different positions. Moreover, let $[\Sigma]_{\sim}=\left\{\Sigma^{\prime} \in \mathcal{S}_{T} \mid \Sigma^{\prime} \sim \Sigma\right\}$ be the class of optimal stripifications equivalent with $\Sigma \in \mathcal{S}_{T}$ and denote by $\mathcal{S}_{T} / \sim=\left\{[\Sigma]_{\sim} \mid \Sigma \in \mathcal{S}_{T}\right\}$ the partition of \mathcal{S}_{T} into these equivalence classes.

Theorem 1: Let \mathcal{H}_{T} be a Hopfield network corresponding to triangulation T with n triangles and denote by $Y^{*} \subseteq\{0,1\}^{s}$ the set of stable states that can be reached during sequential computation by \mathcal{H}_{T} starting at the zero initial state. Then each state $\mathbf{y} \in Y^{*}$ encodes a correct stripification $\Sigma_{\mathbf{y}}$ of T and has energy

$$
\begin{equation*}
E(\mathbf{y})=5(k-n) \tag{11}
\end{equation*}
$$

where k is the number of tristrips in $\Sigma_{\mathbf{y}}$. In addition, there is a one-to-one correspondence between the classes of equivalent optimal stripifications $[\Sigma]_{\sim} \in \mathcal{S}_{T} / \sim$ having the minimum number of tristrips for T and the states in Y^{*} with minimum energy $\min _{\mathbf{y} \in Y^{*}} E(\mathbf{y})$.

Proof: Stripification $\Sigma_{\mathbf{y}}$ is decoded from $\mathbf{y} \in Y^{*}$ as follows. Denote by $I_{0}=\{e \in I \mid$ $\left.y_{\ell_{e}}=y_{r_{e}}=0\right\}$ the set of internal edges $e \in I$ whose associated neurons ℓ_{e}, r_{e} are both passive and let $I_{1}=I \backslash I_{0}$ be its complement. Let $\Sigma_{\mathbf{y}}$ contain each ordered sequence $\sigma=\left(v_{1}, \ldots, v_{m}\right)$ of $m \geq 3$ vertices that encodes $n(\sigma)=m-2$ different triangles $\left\{v_{p}, v_{p+1}, v_{p+2}\right\} \in T$ for $1 \leq p \leq m-2$, such that their edges $e_{0}=\left\{v_{1}, v_{3}\right\}, e_{m}=\left\{v_{m-2}, v_{m}\right\}$, and $e_{p}=\left\{v_{p}, v_{p+1}\right\}$ for $1 \leq p \leq m-1$ satisfy $e_{0}, e_{1}, e_{m-1}, e_{m} \in I_{0} \cup B$ and $e_{2}, \ldots, e_{m-2} \in I_{1}$. Notice that $\sigma \in \Sigma_{\mathbf{y}}$ with $n(\sigma)=1$ encodes a single triangle with all its edges in $I_{0} \cup B$. It will be proven that $\Sigma_{\mathbf{y}}$ corresponding to any stable state $\mathbf{y} \in Y^{*}$ is a correct stripification of T.

We will first observe that every neuron $j \in J^{\prime} \cup J$ associated with an internal edge is passive if there is an active unit $i \in J_{j}$ (see (5) for the definition of J_{j}). Indeed, for each unit $j \in J^{\prime} \cup J$ the number of positive weights (8) contributing to its excitation ξ_{j} is at most $b_{e(j)} \leq 2$ and these are subtracted within threshold $h(j)$ according to (6). Hence, even if all the units $i \in J_{j}$ are passive, $\xi_{j} \leq 5$ for $j \in J^{\prime}$ due to (6) whereas $\xi_{j} \leq 6$ for $j \in J$ may include positive weight (9). Thus, any active unit $i \in J_{j}$ contributing to ξ_{j} via negative weight (5) ensures that unit j is passive. By the construction of \mathcal{H}_{T}, this guarantees that sets $T_{\sigma}, \sigma \in \Sigma_{\mathbf{y}}$, are pairwise disjoint, and that each $\sigma \in \Sigma_{\mathbf{y}}$ encodes a set of different triangles whose shared edges follow alternating left and right turns.

Further, it must also be checked that stripification $\Sigma_{\mathbf{y}}$ covers all triangles in T, that is, $\bigcup_{\sigma \in \Sigma_{\mathbf{y}}} T_{\sigma}=T$. According to the definition of $\Sigma_{\mathbf{y}}$ it suffices to prove that there is no sequential
cycle $C=\left(v_{1}, \ldots, v_{m}\right)$ (recall $v_{m-1}=v_{1}, v_{m}=v_{2}$) such that $e_{p}=\left\{v_{p}, v_{p+1}\right\} \in I_{1}$ for all $p=1, \ldots, m-2$. On the contrary suppose that such C exists, which implies $B_{C} \cap I \subseteq I_{0}$. It follows that unit $j_{C} \in J$ associated with $e_{C}=e_{q}$ for some $1 \leq q \leq m-2$ could not be activated during sequential computation of \mathcal{H}_{T} starting at the zero state (i.e. $y_{j_{C}}^{(t)}=0$ for any $t \geq 0$) since its positive threshold $h\left(j_{C}\right)$ defined in (6) can only be reached by the weight (9) from d_{C}. However, d_{C} computes the disjunction of outputs from neurons i associated with $e(i) \in B_{C}^{\prime} \subseteq I_{0}$ according to (7) and (8), which are passive in the course of computation. Hence, $y_{d_{C}}^{(t)}=0$ for $t \geq 0$ making also unit a_{C} passive. Thus $e_{q} \in I_{0}$, which is a contradiction. This completes the $\operatorname{argument}$ for $\Sigma_{\mathbf{y}}$ to be a correct stripification of T.

Furthermore, assume that $\Sigma_{\mathbf{y}}$ contains k tristrips. From the definition of $\Sigma_{\mathbf{y}}$, each tristrip $\sigma \in \Sigma_{\mathbf{y}}$ is encoded using $n(\sigma)-1$ edges from I_{1}. Hence, the number of active units in $J^{\prime} \cup J$ is

$$
\begin{equation*}
\left|I_{1}\right|=\sum_{\sigma \in \Sigma_{\mathbf{y}}}(n(\sigma)-1)=n-k \tag{12}
\end{equation*}
$$

We will show that each active neuron $j \in J^{\prime} \cup J$ is accompanied with a contribution of -5 to the energy (2) which gives (11) according to (12). Assume that a neuron $j \in J^{\prime} \cup J$ is active which implies $y_{i}=0$ for all units $i \in J_{j}$. Moreover, neuron j is connected to $b_{e(j)}$ units d_{C} for $C \in \mathcal{C}$ such that $e(j) \in B_{C}^{\prime}$, which are active since the underlying disjunctions include active j. Consider first the case when active neuron j is from J^{\prime} which produces the following contribution to the energy:

$$
\begin{equation*}
-\frac{1}{2} b_{e(j)} w\left(d_{C}, j\right)-\frac{1}{2} b_{e(j)} w\left(j, d_{C}\right)+h(j)=-b_{e(j)} w\left(d_{C}, j\right)+h(j)=-5 \tag{13}
\end{equation*}
$$

according to (2), (6), and (8). Similarly, active neuron $j=j_{C_{1}}$ from J for some $C_{1} \in \mathcal{C}$ assumes active unit $d_{C_{1}}$ and makes $a_{C_{1}}$ passive due to (7) and (10), which contributes to the energy by

$$
\begin{equation*}
-b_{e(j)} w\left(d_{C}, j\right)-w\left(d_{C_{1}}, j_{C_{1}}\right)+h(j)+h\left(d_{C_{1}}\right)=-5 . \tag{14}
\end{equation*}
$$

In addition, unit a_{C} for any $C \in \mathcal{C}$ balances the contribution of active neuron d_{C} to the energy when j_{C} is passive, that is,

$$
\begin{equation*}
-w\left(a_{C}, d_{C}\right)+h\left(d_{C}\right)+h\left(a_{C}\right)=0 \tag{15}
\end{equation*}
$$

according to (7) and (10).
For the converse, we will show that for any optimal stripification $\Sigma \in \mathcal{S}_{T}$ there is one state $\mathbf{y} \in Y^{*}$ of \mathcal{H}_{T} such that $\Sigma \in\left[\Sigma_{\mathbf{y}}\right]_{\sim}$. An optimal stripification Σ^{\prime} equivalent to Σ is used to
determine this state \mathbf{y} so that $\Sigma^{\prime}=\Sigma_{\mathbf{y}}$. For each tristrip $\sigma \in \Sigma$ that encodes triangles $T_{\sigma}=T_{C}$ of some sequential cycle $C \in \mathcal{C}$, define the corresponding tristrip $\sigma^{\prime}=\left(v_{1}, \ldots, v_{m}\right) \in \Sigma^{\prime}$ so that $T_{\sigma^{\prime}}=T_{\sigma}$ and σ^{\prime} starts and terminates with representative edge $e_{C}=\left\{v_{1}, v_{2}\right\}=\left\{v_{m-1}, v_{m}\right\}$. Then within the state \mathbf{y}, let neuron ℓ_{e} or r_{e} for $e \in I$ be active iff there exists a tristrip $\sigma=\left(v_{1}, \ldots, v_{m}\right) \in \Sigma^{\prime}$ such that its edge $\left\{v_{p}, v_{p+1}\right\}=e$ for some $2 \leq p \leq m-2$ follows the left or right turn, respectively. In addition, let unit d_{C} for $C \in \mathcal{C}$ be active iff there is an active neuron i associated with $e(i) \in B_{C}^{\prime}$ whereas unit a_{C} be active iff d_{C} is active and j_{C} is passive. Clearly, \mathbf{y} is a stable state of \mathcal{H}_{T}. It must still be proven that \mathbf{y} can be reached during sequential computation by \mathcal{H}_{T} starting at the zero initial state, that is, $\mathbf{y} \in Y^{*}$.

Define a directed graph $\mathcal{G}=(\mathcal{C}, \mathcal{A})$ whose vertices are sequential cycles $C \in \mathcal{C}$ and $\left(C_{1}, C_{2}\right) \in$ \mathcal{A} is an edge of \mathcal{G} iff $e_{C_{1}} \in B_{C_{2}}^{\prime}$. Let \mathcal{C}^{\prime} be the set of all the vertices $C \in \mathcal{C}$ with $y_{j_{C}}=1$ that belong to directed cycles in \mathcal{G}. For a contradiction, suppose that all the units i associated with $e(i) \in \bigcup_{C \in \mathcal{C}^{\prime}} B_{C}^{\prime} \backslash E_{\mathcal{C}^{\prime}}$ where $E_{\mathcal{C}^{\prime}}=\left\{e_{C} \mid C \in \mathcal{C}^{\prime}\right\}$, are passive, that is $y_{i}=0$. Notice that for each $C \in \mathcal{C}^{\prime}$ also the units i associated with $e(i) \in B_{C} \cap L_{e_{C}}$ are passive due to active j_{C}. Thus, such a stable state cannot be reached during any sequential computation by \mathcal{H}_{T} starting at the zero initial state, which means $\mathbf{y} \notin Y^{*}$. This is because neuron $j_{C_{1}}$ for any $C_{1} \in \mathcal{C}^{\prime}$ can only be activated by corresponding unit $d_{C_{1}}$ whose activation depends solely on an active neuron $j_{C_{2}}$ for another $C_{2} \in \mathcal{C}^{\prime}$ within a directed cycle of \mathcal{G} (i.e. $\left.\left(C_{2}, C_{1}\right) \in \mathcal{A}\right)$ since the remaining neurons associated with the edges from $B_{C_{1}}^{\prime} \backslash E_{\mathcal{C}^{\prime}}$ which represent the inputs for disjunction computed by $d_{C_{1}}$, are passive. Since $\Sigma_{\mathbf{y}}$ is the optimal stripification, the underlying tristrips follow internal edges of sequential cycles $C \in \mathcal{C}^{\prime}$ as much as possible being interrupted only by edges from $\bigcup_{C \in \mathcal{C}^{\prime}} B_{C} \backslash E_{\mathcal{C}^{\prime}}$.

In addition, any tristrip $\sigma \in \Sigma_{\mathbf{y}}$ crossing some sequential cycle $C_{1} \in \mathcal{C}^{\prime}$, that is, $\emptyset \neq T_{\sigma} \cap T_{C_{1}} \neq$ T_{σ}, has one its end within this cycle C_{1} because σ enters C_{1} only through its boundary edge $e_{C_{2}} \in B_{C_{1}}^{\prime}$ with $y_{j_{C_{2}}}=1$, which is the only representative edge of a sequential cycle $C_{2} \in \mathcal{C}^{\prime}$ necessarily containing σ, i.e. $T_{\sigma} \subseteq T_{C_{2}}$. We will prove that any sequential cycle $C \in \mathcal{C}^{\prime}$ contains at least two tristrips $\sigma_{1}, \sigma_{2} \in \Sigma_{\mathbf{y}}$, that is $T_{\sigma_{1}} \subseteq T_{C}$ and $T_{\sigma_{2}} \subseteq T_{C}$. Let $C_{1}, C_{2} \in \mathcal{C}^{\prime}$ be sequential cycles such that $\left(C_{1}, C\right),\left(C, C_{2}\right) \in \mathcal{A}$ form two consecutive edges within a directed cycle in \mathcal{G} (possibly $C_{1}=C_{2}$). The tristrip $\sigma \in \Sigma_{\mathbf{y}}$ containing representative edge $e_{C_{1}} \in B_{C}^{\prime}$ interrupts sequential cycle C (i.e. $\emptyset \neq T_{\sigma} \cap T_{C} \neq T_{\sigma}$) whose remaining triangles in $T_{C} \backslash T_{\sigma}$ could still be linked together in one tristrip $\sigma_{1} \in \Sigma_{\mathbf{y}}$ so that $T_{\sigma_{1}}=T_{C} \backslash T_{\sigma}$. However, such tristrip σ_{1}
enters sequential cycle C_{2} (i.e. $\emptyset \neq T_{\sigma_{1}} \cap T_{C_{2}} \neq T_{\sigma_{1}}$) via representative edge $e_{C} \in B_{C_{2}}^{\prime}$ implying $e_{C} \notin I_{C_{1}}$, and thus terminates in C_{2} which cuts σ_{1} in two parts. Hence, there must be at least two tristrips $\sigma_{1}, \sigma_{2} \in \Sigma_{\mathbf{y}}$ such that $T_{\sigma_{1}}, T_{\sigma_{2}} \subseteq T_{C}$.

Thus, a stripification $\Sigma_{\mathbf{y}}^{\prime}$ with fewer tristrips can be constructed from $\Sigma_{\mathbf{y}}$ by introducing only one tristrip $\sigma^{*} \in \Sigma_{\mathbf{y}}^{\prime}$ such that $T_{\sigma^{*}}=T_{C}$ (e.g. $y_{j_{C}}=0$) instead of the two tristrips $\sigma_{1}, \sigma_{2} \in \Sigma_{\mathbf{y}}$, and by shortening any tristrip $\sigma \in \Sigma_{\mathbf{y}}$ that crosses and thus ends within sequential cycle C to $\sigma^{\prime} \in \Sigma_{\mathbf{y}}^{\prime}$ so that $T_{\sigma^{\prime}} \cap T_{C}=\emptyset$, which does not increase the number of tristrips. This contradicts the assumption that $\Sigma_{\mathbf{y}}$ is the optimal stripification, and hence $\mathbf{y} \in Y^{*}$. Obviously, the class of equivalent optimal stripifications $\left[\Sigma_{\mathbf{y}}\right]_{\sim}$ with the minimum number of tristrips corresponds uniquely to the state $\mathbf{y} \in Y^{*}$ having the minimum energy $\min _{\mathbf{y} \in Y^{*}} E(\mathbf{y})$ according to (11).

Note that the reduction in Theorem 1 together with the fact that the optimal stripification problem is NP-complete [1] provides another NP-completeness proof for the minimum energy problem in Hopfield networks (cf. [6], [12]). In addition, the restriction to the zero initial network state in Theorem 1 can sometimes be inconvenient, e.g. in stochastic computation. Without this constraint, however, \mathcal{H}_{T} may reach infeasible states. In particular, initially active unit j_{C} can activate d_{C} in spite of $y_{i}=0$ for all $e(i) \in B_{C}^{\prime}$, which admits sequential cycle C. Nevertheless, this can be secured by introducing the asymmetric weight $w\left(d_{C}, j_{C}\right)=7$ whereas $w\left(j_{C}, d_{C}\right)=0$, cf. (9). This revision, which is implemented in program HTGEN and used for experiments in Section V , does not break the convergence of \mathcal{H}_{T} to states $\mathbf{y} \in Y^{*}$.

V. Experiments

A. Program HTGEN

An ANSI C program HTGEN has been created to automate the reduction from Theorem 1 including the simulation of Hopfield network \mathcal{H}_{T} using simulated annealing (4). The input for HTGEN is an object file (in the Wavefront .obj format [14]) describing triangulated surface model T by a list of geometric vertices with their coordinates followed by a list of triangular faces each composed of three vertex reference numbers. The program generates corresponding \mathcal{H}_{T} which then computes stripification $\Sigma_{\mathbf{y}}$ of T. This is extracted from final stable state $\mathbf{y}=\mathbf{y}^{\left(\tau^{*}\right)} \in Y^{*}$ of \mathcal{H}_{T} at macroscopic time τ^{*} into an output .objf format file containing a list of tristrips together with vertex data (the .objf format [15] is a variant of the Wavefront .obj format which includes
a data type for tristrips). The user may control the Boltzmann machine by specifying the initial temperature $T^{(0)}$ in (4) and the stopping criterion ε given as the maximum percentage of unstable units at the end of stochastic computation (the input values of ε are given in percents, e.g. $\varepsilon=0.1$ stands for 0.1%).

The experiments with HTGEN program were performed on a notebook HP Compaq nx6110 1.6 GHz with 512 MB RAM, running Linux operating system. The running time, which is stated in seconds below, represents a real time exploited for overall computation including the system overhead but not including the time needed for the construction of Hopfield network \mathcal{H}_{T} (which did not exceed one second in most cases).

B. Used Models

We have conducted experiments with HTGEN program using 3D geometric models represented via polygonal meshes from several repositories, mostly from [17]. The detailed characteristics of models (number of vertices, number of triangles, number of sequential cycles) together with those of corresponding Hopfield nets (number of neurons, number of connections) used in experiments are summarized in Table I. In particular, we have used a suite of 13 datasets that all represent a single asteroid differing only in the level of details corresponding to the size of the mesh, cf. Fig. 5. The smallest dataset of this suite consists of 216 triangles while the largest of 299600 triangles. As for another models from [17], we have made experiments with a space shuttle dataset consisting of 616 triangles, two airplane datasets-f-16 and cessna-and a lung dataset; the sizes of these last three models vary from 4592 to 7446 triangles. Furthermore, we have worked with a triceratops dataset depicted in Fig. 6 (5660 triangles), which is by Viewpoint Animation Engineering and is available at [16], with a man figure dataset, Roman, (20904 triangles) from [18], and with a Stanford bunny dataset (69451 triangles) and a dragon dataset (871414 triangles), which are provided by [19]. In some cases, we had to convert a dataset into the .obj format or to triangulate a polygonal mesh. For the triangulation, we have used a part of the source code of a software package LODestar [20].

C. The Number of Trials

The resulting numbers of tristrips obtained using HTGEN and the corresponding running times were averaged over several trials of simulated annealing. In order to justify the presented results
of our experiments below we have first explored the issue of how the achieved stripification quality (i.e. the best number of tristrips) depends on the number of performed trials of simulated annealing. For each of three selected models, asteroid2.5k (2418 triangles), asteroid10k (9828 triangles), and Roman (20904 triangles), fifteen experiments have been conducted, each for a fixed number of trials, and the results are summarized in Table II. For example, during ten trials the best numbers of tristrips, 244, 929, and 2442, respectively, were obtained for the underlying three models while 223, 939, and 2380 were computed within hundred trials, and 211, 915, and 2380 were achieved after thousand trials. It appears that after several trials the stripification quality does not substantially increase with the increasing number of trials and one can consider the results that are averaged over 10 to 30 trials to be reasonably reliable.

D. The Choice of Initial Temperature $T^{(0)}$ and Stopping Criterion ε

In the following experiment we have investigated the dependence of the resulting number of tristrips and the corresponding running time on both the initial temperature $T^{(0)}$ and the stopping criterion ε. The asteroid40k model (39624 triangles) is used to illustrate these dependencies and the results are averaged over 10 trials. In particular, rows and columns in Tables III-VI correspond to different values of $T^{(0)}$ and ε, respectively. Here we present only a selected window of the whole picture while much more experiments have actually been conducted for wider domains and more detailed scales of $T^{(0)}$ and ε (Table VI is cut since the time needed for computing the underlying missing values exceeded reasonable limits). Furthermore, each cell in these tables shows the average number of tristrips over 10 trials, the minimum number of tristrips achieved in the best trial, the average real running time in seconds, and the average macroscopic time, respectively, for corresponding $T^{(0)}$ and ε. It appears that for a fixed initial temperature $T^{(0)}$ (corresponding to a row in the tables) the running time increases with decreasing ε while the quality of resulting stripifications improves at the same time. Similarly for a fixed ε (corresponding to a column in the tables) one can achieve better stripification results by increasing $T^{(0)}$ at the cost of additional running time.

In addition, "contour lines" connecting the cells in the tables that represent approximately the same quality of stripification are marked in the tables. In particular, each contour line separates the cells of the table into two groups. All the cells with the average number of tristrips lesser than the number associated with the contour line belong to one group, while the other group
consists of the cells whose average number of tristrips is greater than or equal to this number. We can observe from the shape of these contour lines that a required number of tristrips need not be achieved at all for ε greater than some upper threshold while this number is obtained already for some small $T^{(0)}$ if ε is below some lower threshold. The transition between these two extremes seems to be continuous while smaller initial temperatures $T^{(0)}$ are sufficient for smaller ε. The shortest running time is usually achieved within this transition region closer to the lower threshold of ε where the contour line stagnates at some level of $T^{(0)}$ (see the cells with numbers in boldface; for each contour line only one minimum with the greatest ε is marked although the minimum time measured with precision in seconds is actually achieved in more cases). Hence, ε can be chosen to be not much above the lower threshold where the contour line corresponding to the minimum number of tristrips saturates and the quality of stripifications scales with $T^{(0)}$ (see the column corresponding to $\varepsilon=1$ in Table IV). Based on these observations suitable values for ε and $T^{(0)}$ can be chosen empirically so that HTGEN achieves semioptimal stripifications within reasonable running time.

E. The Average Time Complexity

We have also measured empirically how the computational time used by HTGEN depends on the model size, i.e. the number of triangles. For various fixed values of initial temperature $T^{(0)}$ and stopping criterion ε the Boltzmann machine converged within almost constant number of macroscopic time steps for the asteroid model whose sizes were scaled from 216 up to 198930 triangles (except for small sizes). This is illustrated in Tables VII, VIII, and IX where the results are presented for $T^{(0)}=5, \varepsilon=0.1, T^{(0)}=9, \varepsilon=0.3$, and $T^{(0)}=13, \varepsilon=0.5$, respectively. Since by construction the execution of one macroscopic step depends linearly on the number of triangles in the model, these experiments provide an evidence for the average linear time complexity of HTGEN. When this empirical time complexity is confronted with the fact that the stripification problem is NP-complete in general [1], this suggests there must be a rigorous efficient approximation algorithm for this problem.

F. Comparing with FTSG

Program HTGEN has been compared against a leading practical system FTSG version 1.31 that computes online stripifications [1]. Experiments have been conducted using 6 models (shuttle, f-

16, triceratops, lung, cessna, bunny) whose sizes vary from 616 to 69451 triangles. The results by HTGEN were averaged over 30 trials. Suitable parameters ε and $T^{(0)}$ of HTGEN were chosen for each model separately using the heuristics proposed in Section V-D so that the resulting stripifications consist of as few tristrips as possible at the cost of reasonable amount of time. Also FTSG was run with its best options (i.e. the best combination of four relevant options -bfs, -dfs, -alt, and -sgi in addition to two implicitly used options -opt and -sync) that led to the least number of tristrips in the resulting stripification. The results of these experiments are summarized in Table X which shows that one can achieve much better results by HTGEN than by using FTSG with its most successful options (typically -dfs, -alt) although the running time of HTGEN grows rapidly when the global optimum is being approached. Moreover, for the f-16 and triceratops models the stripification results obtained by HTGEN and FTSG are graphically depicted in Figures 7, 8, and 9, 10, respectively, where the superiority of HTGEN over FTSG in the average length of tristrips is clearly visible. As concerns the time complexity, system HTGEN cannot compete with real-time program FTSG providing the stripifications within a few tens of milliseconds. Nevertheless, HTGEN can be useful if one is interested in the stripification with a small number of tristrips which may be computed at the preprocessing stage.

G. Huge Models

In the last experiment whose results are presented in Table XI, program HTGEN has been tested on huge models (asteroid300k, dragon) with hundreds of thousands of triangles, for which only 3 trials were performed for $\varepsilon=0.3$ and $T^{(0)}=10$. It appears that the stripifications better than those obtained using FTSG with its optimal options (e.g. 133072 tristrips within 7 seconds for the dragon model) were still achieved in doable time frame.

VI. Conclusion

In the present paper we have proposed a new heuristic method for generating sequential triangle strips for a given triangulated surface model which represents an important hard (NPcomplete) problem in computer graphics and visualization. In particular, we have reduced this stripification problem to the minimum energy problem in Hopfield networks and formally proven that there is a one-to-one correspondence between the optimal stripification representatives and the minimum energy states reachable by the Hopfield net from the initial zero state. This result
is not only important from the theoretical point of view providing an interesting relation between two combinatorial problems of different types but the method is also practically applicable since the construction of the Hopfield net uses only a linear number of units and connections.

Thus we have implemented the reduction in the program HTGEN including the simulated annealing which computes the semioptimal stripifications. We have conducted plenty of practical experiments which confirmed that HTGEN can generate smaller numbers of tristrips than those obtained by a leading stripification program FTSG although the running time of HTGEN grows rapidly near the global optimum. Particularly, HTGEN cannot compete with the real-time program FTSG providing the stripifications within a few milliseconds. Nevertheless, HTGEN can be used to generate almost optimal stripifications when one is satisfied by offline solutions at the preprocessing stage. In addition, HTGEN exhibits empirical linear time complexity for fixed parameters of simulated annealing, and the stripifications were computed using HTGEN even for huge models of hundreds of thousands of triangles in reasonable time. This suggests that a rigorous approximation algorithm with a high performance guarantee might exist for the stripification problem whose design represents an important open problem. Another challenge for further research is to generalize the method for sequential strips with zero-area triangles which are also supported in practical graphics systems.

Acknowledgment

The authors would like to thank Prof. Joseph S.B. Mitchell for providing them with the FTSG program for testing purposes.

REFERENCES

[1] R. Estkowski, J. S. B. Mitchell, and X. Xiang, "Optimal decomposition of polygonal models into triangle strips," in Proceedings of the SCG 2002 Eighteenth Annual Symposium on Computational Geometry. New York: ACM Press, 2002, pp. 254-263.
[2] D. Pospíšil and F. Zbořil, "Building triangle strips using Hopfield neural network," in Proceedings of the ECI 2004 Sixth International Scientific Conference. Košice (Slovakia): University of Technology, 2004, pp. 394-398.
[3] J. Šíma, "Optimal triangle stripifications as minimum energy states in Hopfield nets," in Proceedings of the ICANN'2005 Fifteenth International Conference on Artificial Neural Networks. Berlin: Springer-Verlag, LNCS 3696, 2005, pp. 199-204.
[4] J. Šíma, "Generating sequential triangle strips by using Hopfield nets," in Proceedings of the ICANNGA'2005 Seventh International Conference on Adaptive and Natural Computing Algorithms. Vienna: Springer-Verlag, 2005, pp. 25-28.
[5] J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities," Proceedings of the National Academy of Sciences USA, vol. 79, no. 8, 1982, pp. 2554-2558.
[6] F. Barahona, "On the computational complexity of Ising spin glass models," Journal of Physics A: Mathematical and General, vol. 15, no. 10, 1982, pp. 3241-3253.
[7] J. J. Hopfield, "Neurons with graded response have collective computational properties like those of two-state neurons," Proceedings of the National Academy of Sciences USA, vol. 81, no. 10, 1984, pp. 3088-3092.
[8] N. H. Farhat, D. Psaltis, A. Prata, and E. Paek, "Optical implementation of the Hopfield model," Applied Optics, vol. 24, no. 10, 1985, pp. 1469-1475.
[9] A. Cichocki and R. Unbehauen, Neural Networks for Optimization and Signal Processing. Chichester: John Wiley \& Sons, 1993.
[10] J. J. Hopfield and D. W. Tank, "Neural' computation of decision in optimization problems," Biological Cybernetics, vol. 52, no. 3, 1985, pp. 141-152.
[11] I. Parberry, Circuit Complexity and Neural Networks. Cambridge, MA: The MIT Press, 1994.
[12] J. Šíma and P. Orponen, "General-purpose computation with neural networks: A survey of complexity theoretic results." Neural Computation, vol. 15, no. 12, 2003, pp. 2727-2778.
[13] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, "A learning algorithm for Boltzmann machines," Cognitive Science, vol. 9, no. 1, 1985, pp. 147-169.
[14] (1997). The Graphics File Formats Page [Online]. Available: http://www.dcs.ed.ac.uk/home/mxr/gfx/3d/OBJ.spec
[15] (1998). File Format Section of the Stripe homepage [Online]. Available: http://www.cs.sunysb.edu//stripe/
[16] (2003). The OBJ Format Library on the homepage of X. Hu, the website of Dept. of Computer \& Information Sciences of University of Alabama at Birmingham, USA. [Online]. Available: http://www.cis.uab.edu/info/grads/hux/Data/obj.html
[17] (2004). Local OBJ Model Repository on the homepage of A. Gooch, the website of Northwestern University, Evanston, IL, USA. [Online]. Available: http://www.cs.northwestern.edu/ago820/cs351/Models/OBJmodels/
[18] (2006). The 3D Cafe website. [Online]. Available: http://www.3dcafe.com/
[19] (2006). The Level of Detail for 3D Graphics website. [Online]. Available: http://lodbook.com/models/
[20] R. Sainitzer and H. Buchegger. (1996). LODestar, Level of Detail Generator for VRML. [Online]. Available: http://www.cg.tuwien.ac.at/research/vr/lodestar/Download/

Fig. 1. Tristrip (1,2,3,4,5,6,3,7,1)

Fig. 2. Sequential Cycle (1,2,3,4,5,6,1,2)

Fig. 3. The Construction of \mathcal{H}_{T} Related to $e \in I$

Fig. 4. The Construction of \mathcal{H}_{T} Related to $C \in \mathcal{C}$

Fig. 5. The Asteroid1k Model (950 Triangles)

Fig. 6. The Triceratops Model (5660 Triangles)

Fig. 7. Program: HTGEN, Model: F-16, Number of Tristrips: 312

Fig. 8. Program: FTSG, Model: F-16, Number of Tristrips: 478

Fig. 9. Program: HTGEN, Model: Triceratops, Number of Tristrips: 557

Fig. 10. Program: FTSG, Model: Triceratops, Number of Tristrips: 960

TABLE I
Characteristics of Models Used in Experiments

Model	Triangulated Mesh T			Hopfield Network \mathcal{H}_{T}	
	Number of Vertices	Number of Triangles	Number of Seq. Cycles	Number of Neurons	Number of Connections
asteroid250	110	216	20	688	3544
asteroid500	223	442	12	1350	5445
asteroid1k	477	950	18	2886	11757
asteroid2.5k	1211	2418	30	7314	30039
asteroid5k	2422	4840	43	14606	60237
asteroid10k	4916	9828	62	29608	122476
asteroid20k	9902	19800	89	59578	246971
asteroid40k	19814	39624	126	119124	494550
asteroid60k	29798	59592	155	179086	743981
asteroid80k	39782	79560	179	239038	993437
asteroid100k	49649	99294	200	298282	1239987
asteroid200k	99467	198930	284	597358	2484945
asteroid300k	149802	299600	349	899498	3742939
shuttle	476	616	0	1528	4490
f-16	2344	4592	9	13794	48643
cessna	6763	7446	10	16882	46083
lung	3121	6076	4	18064	63116
triceratops	2832	5660	2	16984	59532
Roman	10473	20904	0	62548	218426
bunny	34834	69451	1	208132	727951
dragon	437645	871414	334	2610640	9144021

TABLE II
Best Number of Tristrips vs. Number of Trials

Number of Trials	Best Number of Tristrips		
	asteroid2.5k	asteroid10k	Roman
10	244	929	2442
20	227	929	2425
30	228	897	2410
40	221	941	2405
50	228	938	2403
60	224	905	2408
70	219	908	2392
80	223	918	2412
90	220	945	2401
100	223	939	2380
200	214	935	2364
400	219	893	2395
600	208	905	2372
800	217	895	2364
1000	211	915	2380

TABLE III

The Dependence on the Parameters of Simulated Annealing

$$
\varepsilon=6,7, \ldots, 20, \quad \mathbf{T}^{(0)}=2,4, \ldots, 40
$$

Asteroid40K (39624 TriAngles), 10 TriALS
(Each Cell Contains Average Number of Tristrips, Best Number of Tristrips, Average Computation Time, and Average Macroscopic Time, Respectively)

TABLE IV
The Dependence on the Parameters of Simulated Annealing

$$
\varepsilon=1,1.5, \ldots, 6, \quad \mathbf{T}^{(0)}=1.5,3, \ldots, 30
$$

AStEROID40K (39624 TRIANGLES), 10 TRIALS
(Each Cell Contains Average Number of Tristrips, Best Number of Tristrips, Average Computation Time, and Average Macroscopic Time, Respectively)

TABLE V

The Dependence on the Parameters of Simulated Annealing

$$
\varepsilon=0.2,0.3, \ldots, \mathbf{1}, \quad \mathbf{T}^{(0)}=1,2, \ldots, 20
$$

Asteroid40K (39624 Triangles), 10 Trials
(Each Cell Contains Average Number of Tristrips, Best Number of Tristrips, average Computation Time, and Average Macroscopic Time, Respectively)

TABLE VI
The Dependence on the Parameters of Simulated Annealing

$$
\varepsilon=0.02,0.04, \ldots, 0.2, \quad \mathbf{T}^{(0)}=1,2, \ldots, 20
$$

Asteroid 40 K (39624 Triangles), 10 Trials
(Each Cell Contains Average Number of Tristrips, Best Number of Tristrips, Average Computation Time, and Average Macroscopic Time, Respectively)

TABLE VII

Empirical Average Time Complexity
100 Trials, $\quad \varepsilon=0.1, \quad T^{(0)}=5$

Model	Number of Triangles	Best Number of Tristrips	Average Number of Tristrips	Average Tristrip Length	Average Comp. Time (s)	Average Macro. Time
asteroid250	216	31	39	6.97	0.06	79.98
asteroid500	442	67	82	6.60	0.06	45.14
asteroid1k	950	151	171	6.29	0.22	59.69
asteroid2.5k	2418	397	429	6.09	0.76	62.67
asteroid5k	4840	808	853	5.99	2.03	67.43
asteroid10k	9828	1633	1711	6.02	5.45	68.17
asteroid20k	19800	3342	3435	5.92	15.32	70.26
asteroid40k	39624	6720	6868	5.90	45.51	70.41
asteroid60k	59592	10090	10327	5.91	84.39	69.51
asteroid80k	79560	13525	13757	5.88	132.88	70.35
asteroid100k	99294	16995	17176	5.84	184.62	70.07
asteroid200k	198930	34109	34400	5.83	520.39	70.25

TABLE VIII
Empirical Average Time Complexity
80 TRIALS, $\varepsilon=0.3, T^{(0)}=9$

Model	Number of Triangles	Best Number of Tristrips	Average Number of Tristrips	Average Tristrip Length	Average Comp. Time (s)	Average Macro. Time
asteroid250	216	18	27	12.00	0.11	159.35
asteroid500	442	43	58	10.28	0.14	88.54
asteroid1k	950	86	114	11.05	0.40	106.62
asteroid2.5k	2418	255	280	9.48	1.38	113.84
asteroid5k	4840	518	556	9.34	3.51	116.59
asteroid10k	9828	1052	1114	9.34	9.20	114.76
asteroid20k	19800	2148	2237	9.22	24.82	114.45
asteroid40k	39624	4347	4451	9.12	73.09	113.53
asteroid60k	59592	6550	6690	9.10	136.74	112.86
asteroid80k	79560	8650	8898	9.20	212.34	113.06
asteroid100k	99294	10884	1110	9.12	296.31	112.94
asteroid200k	198930	21994	22257	9.04	818.58	111.65

TABLE IX
Empirical Average Time Complexity
50 TRiALS, $\varepsilon=0.5, T^{(0)}=13$

Model	Number of Triangles	Best Number of Tristrips	Average Number of Tristrips	Average Tristrip Length	Average Comp. Time (s)	Average Macro. Time
asteroid250	216	12	21	18.00	0.28	392.76
asteroid500	442	26	43	17.00	0.28	180.60
asteroid1k	950	72	88	13.19	0.72	191.00
asteroid2.5k	2418	188	208	12.86	2.38	199.72
asteroid5k	4840	355	405	13.63	6.04	199.76
asteroid10k	9828	762	808	12.90	16.18	200.94
asteroid20k	19800	1535	1605	12.90	44.86	204.48
asteroid40k	39624	3047	3204	13.00	127.64	197.92
asteroid60k	59592	4653	4784	12.81	239.30	198.16
asteroid80k	79560	6217	6365	12.80	370.70	197.16
asteroid100k	99294	7802	7965	12.73	517.62	197.08
asteroid200k	198930	15595	15923	12.76	1424.80	194.98

TABLE X
Comparing HTGEN against FTSG

Model	Number of Triangles	HTGEN (30 Trials)					FTSG	
		ε	$T^{(0)}$	Best Number of Tristrips	Average Comp. Time (s)	Average Macro. Time	Options	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Tristrips } \end{aligned}$
shuttle	616	0.12	17	95	2.70	1588.67	-dfs -alt	145
f-16	4592	0.6	26	312	197.57	7192.13	-dfs -alt	478
triceratops	5660	0.2	20	557	286.33	7915.13	-bfs	960
lung	6076	0.14	19	613	428.03	10940.00		857
cessna	7446	0.5	19	1249	241.17	6712.93	-dfs -alt	1459
bunny	69451	0.7	23	4404	4129.93	2748.20	-dfs -alt	6191

TABLE XI
Huge Models
3 TRIALS, $\varepsilon=0.3, T^{(0)}=10$

Model	Number of Triangles	Best Number of Tristrips	Average Comp. Time	Average Macro. Time	Memory Usage
asteroid300k dragon	299600	29702	32 min 56 s	147.33	139 MB
871414	130106	4 h 25 min 50 s	235.00	390 MB	

