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Some memories of Albert Perez

The first part of this contribution is based on a paper prepared for a
special issue of Kybernetika in honour of Albert Perez.

Perez was a founder of our research group interested in probabilistic
and information-theoretical methods in decision-making.

He was a PhD supervisor of several research workers in the Institute of
Information Theory and Automation.

The content of the first part of this contribution is based on the work
Albert Perez did shortly before he passed away in December 2003.
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Considered situation

Let N be a finite non-empty set of variables,

S a class of subsets of N such that
⋃
S = N, and

M = {PA; A ∈ S} a given system of discrete probability
distributions
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M : P{a,b,c},P{b,c,d ,e,f},P{c,e,g},P{f ,h}
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Basic assumption

We assume that M is strongly consistent by which is meant that there
exists at least one probability distribution P over N which has M as a
system of marginal distributions.

Definition
The symbol KM will denote the system of discrete probability
distributions over N that have the prescribed system of marginals M.

We are interested in special approximations P̂ of P, namely probability
distributions “constructed" from M by means of “multiplication" of
densities in a special way.
We will call these special approximations M-constructs.
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Measuring quality of approximations

To compare the quality of approximations we use the relative entropy
H(P|P̂) as the measure of divergence of an approximation P̂ from P.

The point is that the quality of an approximation P̂ of the considered
type actually does not depend on the choice of P ∈ KM.

This is because, for any P ∈ KM and any M-construct P̂, one has

H(P|P̂) = I(P)− IM(P̂) , (1)

where I(P) is the multiinformation of P and
IM(P̂) is an expression that only depends on P̂ (and not on P).

The value of IM(P̂) will be called the multiinformation content of P̂.
Note that if P̂ ∈ KM then I(P̂) = IM(P̂).
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Possible use in multi-symptom diagnosis making I

Perez’s motivation was to use approximations of this type in
multi-symptom diagnosis making.

Assume that every variable i ∈ N has a non-empty finite set of possible
values Xi .

Let d ∈ N denote a diagnostic variable.

The variables in S ≡ N \ {d} will be called symptom variables.

The decision should be based on an “observed configuration" of
values xS ≡ [xi ]i∈S, where xi ∈ Xi for i ∈ S.

On the basis of xS, we would like to determine the most probable value
of the diagnostic variable:

ŷ 
 argmax{Pd |S(y |xS) ; y ∈ Xd }.
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Possible use in multi-symptom diagnosis making II

The complication is that we do not know the “actual" distribution P.

Thus, we try to replace P by its approximation P̂ constructed from a
given system of marginals M = {PA; A ∈ S} with d ∈ A for every
A ∈ S.
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S = { {a,b, d }, {b, c, d ,e}, { d ,e, f ,g} }
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Two methodological approaches to multi-symptom
diagnosis making

The first approach is based on direct approximation of P. We simply
use an M-construct P̂ instead of P.

The respective estimator (of the value of the diagnostic variable) is
then as follows:

ψ1(xS) = argmax{P̂d |S(y |xS); y ∈ Xd }

≡ argmax{P̂([y , xS]) ; y ∈ Xd } .
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Bayesian approach

The second option is a Bayesian approach. A prior distribution Qd is
given on Xd and one uses Qd · P̂S|d instead of P, where P̂S|d is an
estimate of the respective conditional probability.

More specifically, for any fixed configuration y ∈ Xd , consider the
system of marginals of the “conditional probability" PS|d(?|y):

M[y ] = {PA\{d}|d(?|y) ; A ∈ S}.

On basis of M[y ], the respective approximation P̂[y ] of PS|d(?|y) is
computed. This leads to the following estimator:

ψ2(xS) = argmax{Qd(y) · P̂[y ](xS) ; y ∈ Xd} .
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Dependence structure simplifications
This way of approximating measures from KM was already been
proposed by Perez in the 1970s (and studied in PhD thesis of the
speaker).

Let us choose a total ordering τ : S1, . . . ,Sn, n ≥ 1 of elements of S.
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S1 = {b, c,d ,e, f}, S2 = {f ,h}, S3 = {a,b, c}, S4 = {c,e,g}
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Dependence structure simplifications - example

Let us put put Fj ≡ Sj ∩ (
⋃

k<j Sk ) and Gj ≡ Sj \ Fj for 1 ≤ j ≤ n.
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F1 = ∅
G1 = {b, c,d ,e, f}
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Dependence structure simplifications - example

Let us put put Fj ≡ Sj ∩ (
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Dependence structure simplifications - example

Let us put put Fj ≡ Sj ∩ (
⋃

k<j Sk ) and Gj ≡ Sj \ Fj for 1 ≤ j ≤ n.
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Definition of a dependence structure simplification

By a choice for M and τ we will understand a mapping ϑ which
assigns a conditional density pGj |Fj

on XGj
given XFj consistent with pSj

to every 1 ≤ j ≤ n. Here, XA ≡
∏

i∈A Xi for A ⊆ N.

Definition
By a dependence structure simplification (DSS) for M determined by
an ordering τ (and a choice ϑ) will be understood the probability
measure Pτ,ϑ on XN whose density pτ,ϑ is given by

pτ,ϑ(x) =
n∏

j=1

pGj |Fj
(xGj

|xFj ) for everyx ∈ XN . (2)
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Remark on the definition

REMARK

Note that if pA > 0 on XA for every A ∈ S the the choice ϑ is unique
and the respective DSS only depends on M and τ . Then

pτ (x) =
n∏

j=1

pSj
(xSj

)

pFj (xFj )
for anyx ∈ XN , (3)

where p∅(x∅) ≡ 1 by a convention.
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An example of a DSS

S1 = {b, c,d ,e, f}, S2 = {f ,h}, S3 = {a,b, c}, S4 = {c,e,g}

The formula (2) gives

pτ = p{b,c,d ,e,f} · ph|f · pa|bc · pg|ce .

More detailed way of writing it as follows:

pτ (xa, xb, xc , xd , xe, xf , xg , xh) = p{b,c,d ,e,f}(xb, xc , xd , xe, xf )

·ph|f (xh|xf )

·pa|bc(xa|xb, xc)

·pg|ce(xg |xc , xe) .
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The multiinformation content of a DSS

Lemma

The formula for the multiinformation content of a DSS Q = Pτ,ϑ is as
follows:

IM(Q) =
∑
A∈S

I(PA)−
n∑

j=2

I(PFj ) . (4)

Observe that it only depends on the ordering τ , not on the choice ϑ.
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Optimal dependence structure simplifications

Perez was interested in the problem of finding an optimal DSS.

Definition
Let M = {PA; A ∈ S} be a strongly consistent collection of probability
measures and DM denotes the class of DSS approximations. We say
that Q ∈ DM is optimal relative to P ∈ KM if

H(P|Q) = min {H(P|Q′); Q′ ∈ DM} .

It follows from formula (1) that a DSS Q is optimal iff it maximizes
IM(Q) given by (4). In particular, the optimality of a DSS does not
depend on a choice of P ∈ KM
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Explicit expression: non-normalized version

This is way of approximation was proposed by Perez in 2003.

Given n ∈ N, let us denote

sg(n) =

{
+1 if n is even,
−1 if n is odd.

Definition
Let M = {PA; A ∈ S} be a strongly consistent collection of probability
measures. We put

Exe (x) =
∏

∅6=A⊆S

p⋂
A(x⋂

A)−sg(|A|) for everyx ∈ XN , (5)

where we accept the convention that 0−1 ≡ 0.
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Explicit expression: normalized version

Definition
The norm (of an explicit expression Exe ) is the number

c =
∑

x∈XN

Exe (x)

It will be denoted by |Exe |. Moreover, we put

Exe(x) = c−1 · Exe (x) for every x ∈ XN . (6)

Exe is a density of a probability measure on XN , denoted by Pexe.

If we base our estimator on direct approximation of P by means of the explicit
expression P̂ = Pexe, then it is not necessary to compute the norm |Exe |. In this
particular case, one has

ψ1(xS) = argmax{Exe ([y , xS]) ; y ∈ Xd } .
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Explicit expression - example

g

4

2
1

3

b

a
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S

As p∅ ≡ 1 we limit our attention to classes A ⊆ S with
⋂
A 6= ∅.

|A| = 1: S1 = {a,b, c}, S2 = {b, c,d ,e, f}, S3 = {c,e,g}, S4 = {f ,h}
|A| = 2: S1 ∩ S2 = {b, c}, S1 ∩ S3 = {c}, S2 ∩ S3 = {c,e}, S2 ∩ S4 = {f}
|A| ≥ 3: only S1 ∩ S2 ∩ S3 = {c} is non-empty

Exe (x) =
p{a,b,c} · p{b,c,d ,e,f} · p{c,e,g} · p{f ,h}

p{b,c} · p{c} · p{c,e} · p{f}
·

p{c}

1
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Explicit expression - example
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After cancellation of the term p{c} we get:

Exe (x) =
p{a,b,c} · p{b,c,d ,e,f} · p{c,e,g} · p{f ,h}

p{b,c} · p{c,e} · p{f}

Hence,
|Exe | =

∑
x∈XN

Exe (x) = 1 ⇒ Exe = Exe .
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The multiinformation content of an explicit expression

Lemma
The formula for the multiinformation content of the normalized explicit
expression approximation is as follows:

IM(Pexe) = − ln |Exe |+
∑

B∈S↓
ν(B) · I(PB) , (7)

where S↓ = {B; B ⊆ A ∈ S } and

ν(B) =
∑

{−sg(|A|) ; ∅ 6= A ⊆ S,
⋂
A = B} for anyB ∈ S↓ . (8)
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Multiinformation content of an explicit expression -
example
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In the preceding example we have:

IM(Pexe) = I(P{a,b,c}) + I(P{b,c,d ,e,f}) + I(P{c,e,g}) + I(P{f ,h})

−I(P{b,c})− I(P{c,e})− I(P{f})

Note that ln |Exe | = 0 and ν({c}) = 0.
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Conclusions of the first part
The original Perez’s conjecture was that the explicit expression
approximation is always better than any DSS approximation in the
sense of the multiinformation content. We gave examples that, in
general, none of these two methods is better than the other.

However, these approximations often coincide, for example if there
exists an ordering τ of S satisfying the running intersection property :

∀ j > 2 ∃ ` < j Fj ≡ Sj ∩ (
⋃
k<j

Sk ) ⊆ S` . (9)

Note that the chosen distribution is then in concordance with the
maximum entropy principle.

Perez was also interested in the question whether, in the considered
situation with prescribed marginals, the maximum entropy principle
coincides with his barycenter principle. We gave an example that it
need not be the case.
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