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Briefly. . .

Program on testing hypotheses in exponential models

using Rényi divergences

• classical models independent observations coming from the
identical distribution with a general density form:

pθ(x) = exp(θT (x)− κ(θ))

• sequences of dependent observations, processes
• random fields

OUR TASK: test of a hypothesis about parameter

H0 : θ = θ0 or H0 : θ ∈ Θ0

OUR TEST STATISTICS: derived from Da(pθ̂n
| pθ0); a ∈ R

↑
an estimate of parameter (MLE)
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Principle of testing

DATA coming from an exponential model

• θ̂t
n→∞−→ θ a.s.(Pθ)

• √t(θ̂t − θ) has asymptotically N(0, κ̈−1(θ))

θ̂t = MLE =⇒ test statistics: 2t Da(pθ̂t
| pθ0); a ∈ R

H0 : θ = θ0

Benefit:
for every given example, i.e. given distribution, θ0, size of
observation we can choose between statistics with respect a to
have the best (in some reasonable sense) power
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More examples

1 Brownian motion with unknown drift, Poisson process with
unknown intensity of jumps

Diffusion processes, Counting processes

Random fields - Ising model

Problems:

in ex 2: manage random process in place of κ:
exp{θ′ Tt(Xt)− κ(θ)St(Xt)}
find asymptotic distribution of Renyi statistics, MLE only
numerically)

in generally for continuous time process: observations are
discrete - some discrete analogy of density



More examples



More examples

1 Brownian motion with unknown drift, Poisson process with
unknown intensity of jumps

2* Diffusion processes, Counting processes

Random fields - Ising model

Problems:

in ex 2: manage random process in place of κ:
exp{θ′ Tt(Xt)− κ(θ)St(Xt)}
find asymptotic distribution of Renyi statistics, MLE only
numerically)

in generally for continuous time process: observations are
discrete - some discrete analogy of density



More examples

Brownian motion, Poisson process

exp{θ′ Tt(Xt)− κ(θ)t}



More examples

Diffusion processes, Counting processes

exp{θ′ Tt(Xt)− κ(θ)St(Xt)}



More examples

1 Brownian motion with unknown drift, Poisson process with
unknown intensity of jumps

2* Diffusion processes, Counting processes

3* Random fields - Ising model

u

u
u
u

u
u
u
u

u
u
u
u

u
u
u
u



More examples

1 Brownian motion with unknown drift, Poisson process with
unknown intensity of jumps

2* Diffusion processes, Counting processes

3* Random fields - Ising model

u

u
u
u

u
u
u
u

u
u
u
u

u
u
u
u



More examples

1 Brownian motion with unknown drift, Poisson process with
unknown intensity of jumps

2* Diffusion processes, Counting processes

3* Random fields - Ising model

Problems:

• (2): manage random process St(Xt) from the density:
exp{θ′ Tt(Xt)− κ(θ)St(Xt)}

• (3): find asymptotic distribution of Renyi statistics, MLE only
numerically



More examples

1 Brownian motion with unknown drift, Poisson process with
unknown intensity of jumps

2* Diffusion processes, Counting processes

3* Random fields - Ising model

Problems:

• (2): manage random process St(Xt) from the density:
exp{θ′ Tt(Xt)− κ(θ)St(Xt)}

• (3): find asymptotic distribution of Renyi statistics, MLE only
numerically



More examples

1 Brownian motion with unknown drift, Poisson process with
unknown intensity of jumps

2* Diffusion processes, Counting processes

3* Random fields - Ising model

Problems:

• (2): manage random process St(Xt) from the density:
exp{θ′ Tt(Xt)− κ(θ)St(Xt)}

• (3): find asymptotic distribution of Renyi statistics, MLE only
numerically



Birth process

Xt . . . population size at time t, usually X0 = 1;

each individual gives birth to new individual with rate λ and they
behave independently

denote θ = ln(λ) then

dPθ,t

dP0,t
= exp{θ(Xt − 1)− (eθ − 1)

∫ t

0
Xsds}

we can derive Rényi statistics Da for a ∈ [0, 1]

we can find their asymptotic behaviour

Computation for t=9, hypothesis H0 : λ = 0.5
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