
Decision Support System for

Comparison of Price Lists

Helena Hamplová, Jindřich Ivánek, Radim Jiroušek,

Tomáš Kroupa, Radim Lněnička, Milan Studený, Jǐŕı Vomlel

Institute of Information Theory and Automation

Academy of Sciences of the Czech Republic

Pod vodárenskou věž́ı 4

182 08 Prague 8

Czech Republic

{radim,kroupa,lnenicka,studeny,vomlel}@utia.cas.cz

Abstract

A problem of price lists comparison is introduced. This task can be
conceived as an instance of ‘database merging’ or ‘record linkage’ tech-
niques whose aim is to integrate possibly identical data coming from dif-
ferent sources and in different formats. We review some of the existing
approaches and sketch a first prototype of the solution based on a simple
string similarity measure.

1 Introduction

The need for merging data from various sources is evident in many branches of
human activity. For example, a computer retailer, who enters a wholesale mar-
ket with a demand for particular computer components, is offered a lot of price
lists coming from different sources in miscellaneous formats yet all of them hav-
ing one thing in common: they contain many identical computer components
which are described by different data. The everyday’s task of the retailer is then
to identify the same items on the lists in order to select the supplier offering
the lowest price. Clearly, without any kind of automated decision-support tool,
this task is hardly manageable efficiently and thus many of advantageous pur-
chases are unfortunately left unexploited. Therefore, we analyze the problem
just introduced and make first steps towards the solution of automated price
lists comparison. We may view this task as a ‘database merging’ or ‘record
linkage’ as these notions appear frequently in the literature and are referring to
many problem areas where similar problems are encountered: for instance, DNA
analysis, bibliographic records integration etc. — see [3]. Our experiments and
results are based on real data of a computer retailer.

Decision support system for comparison of price lists 33

2 Comparing Price Lists

Let us describe the task in more detail. The retailer is given n price lists Li

from suppliers (in practice, there are tens of them) in the spreadsheet format.
Each list contains usually tens of thousands computer components. In general,
we may assume that not more than only two variables are basically specifying
every component:

• description of the component,

• price of the component.

In many (but not all) price lists a unique identifier of a component is present.
Sometimes, this identifier is equivalent across different price lists - it is a so called
part number attached to every computer component by its producer, but, not
all suppliers use the same identifier1. All price lists are partially structured.
Different price lists have different structure. In the current approach we trans-
form every price list Li to a table having exactly the two columns mentioned
above: description of the component and price. In case that the part number
is present, it must be included in the transformed list as well. In this way,
we obtain n data tables Li and our aim is to obtain an aggregated price list
L which attaches to every component prices of the suppliers distributing this
component. Clearly, utilization of the part number enables correct matching
of the items but in all other cases items must be matched only with respect to
their intuitively understood ‘similarity’. We illustrate the whole situation on
price lists L1, L2 with all prices in Czech crowns.

Figure 1: Price list of Supplier 1

L1

Description Price
Cisco 828 G.SHDSL Router 1E, 1G.SHDSL 13 640
HP LaserJet 3030 Print/Scan/Copy/Fax, Paralel,USB 12 529
HP PL DL360R04 X3.0/1M 1G SA6i iLO 59 453
.

The first two rows of the above tables are identical differing only in descrip-
tion of the components. The router from L2 is described more briefly than in
L1 and we see that all (sub)strings presented in the description of router in L2

are presented in its description in L1. The second row demonstrates another
inconvenience connected with string-based matching of computer items: while
the HP multifunction machine is characterized in English on the first price list,
its description on the second price list is partially in Czech. The third item is
not presented in the second price list.

1It would solve the problem we are addressing if all suppliers used the same identifier.

34 H. HAMPLOVÁ et al.

Figure 2: Price list of Supplier 2

L2

Description Price
Cisco 828 (G.SHDSL) 13 740
LaserJet 3030, tiskárna, kopı́rka, skener, fax 12 199
.

The desired aggregation of tables L1 and L2 can be described by an SQL
operation JOIN with a string similarity measure Sim indicating on some scale
the extent to which the descriptions of two items appear to be identical:

SELECT * FROM L1, L2 WHERE Sim(L1.Description, L2.Description) ≤ ε

Realize that the string similarity comparison must be performed in a quite
complex way as it has to deal with abbreviations, synonyms in Czech and English
etc. The previous query should match the first two rows of L1 and L2 in an
ideal manner so that the resulting price list L would be like the one depicted
below. The description of every component is taken from L1.

Figure 3: Aggregated price list

L
Description L1 Price L2 Price
Cisco 828 G.SHDSL Router 1E, 1G.SHDSL 13 640 13 740
HP LaserJet 3030 Print/Scan/Copy/Fax, Paralel,USB 12 529 12 199
HP PL DL360R04 X3.0/1M 1G SA6i iLO 59 453 -
.

3 Comparing Strings

Choice of a proper similarity measure plays a key role in efficiency of algorithms
for comparison of data items consisting of strings. There have been proposed
various string similarity measures. Needless to say, there is no ‘best’ similarity
measure designed to deal with all kinds of applications; rather, a selection of
similarity must be governed by the nature and need of the problem itself. For ex-
ample, comparison of text strings by a spell-checking algorithm must inevitably
count for similarities (or distances, equivalently) of individual characters while,
on the other hand, an algorithm for comparing data items of medical diagnosis
should implement quite the opposite, that is, a higher-level comparison based
on some standardized glossary of medical synonyms and abbreviations.

Decision support system for comparison of price lists 35

Most traditional methods for calculating string similarity can be thus sepa-
rated into two groups:

1. character-based techniques,

2. vector-based techniques.

3.1 Character-based techniques

As for the character-based techniques, the best-known similarity measure is the
so-called string edit distance (SED) — see [2] for a detailed exposition. Roughly
speaking, SED of two strings S1 and S2 is calculated as a minimum number of
edit operations necessary to transform S1 into S2. Edit operations are character
deletion, insertion and substitution; all these operations are assigned certain
costs which can be learned from data. Notice that SED(S1, S2) �=SED(S2, S1)
in general. Calculation of values of SED are performed in quadratic time us-
ing dynamic programming. There exists various extensions of SED devised to
introduce edit operations on a higher-level of whole inseparable collections of
tokens such as synonyms, abbreviations etc. In this way performance of SED
can be slightly enhanced in dealing with more complex tasks — see [3].

3.2 Vector-based techniques

While character-based techniques appear to be useful for estimating distance
between strings that differ due to typing errors, they become very computa-
tionally expensive and less precise for larger strings and terms. If differences
between semantically equivalent strings are expressed by multiple words added,
deleted, substituted or abbreviated, vector-based techniques [4] are more suit-
able. Every string is encoded as an n-dimensional vector of real numbers whose
components are formed by weights of individual tokens (groups of characters)
presented in the string.

The most popular method for computing the weights is the TF-IDF method [5],
where the weight of token x in string S is defined as

w(x, S) =
n(x, S)
n(S)

log
m

m(x)

where n(x, S) is the number of occurrences of token x in string S (often, it is 0
or 1), n(S) is the total number of tokens in string S, m is the total number of
all strings in the data, and m(x) is the number of strings containing token x.
The ratios n(x,S)

n(S) and m
m(x) are called term frequency (TF) and inverse document

frequency, respectively, which explains the name of the TF-IDF method. Clearly,
this method requires a vocabulary of all tokens x appearing in the entire data.

Let d denote the number of different tokens in the entire data. Similarity of

36 H. HAMPLOVÁ et al.

the two strings S1 and S2 is then computed as a normalized scalar product

Sim(S1, S2) =
d∑

i=1

p(xi, S1, S2)

=
d∑

i=1

w(xi, S1) · w(xi, S2)√∑d
i=1 w(xi, S1)2 ·

√∑d
i=1 w(xi, S2)2

With both vectors being rather highly sparse, this computation can be very
efficiently implemented.

In the TF-IDF method the importance of tokens is given by their relative
frequencies and thus cannot be learned from training data. If training data are
available it may be often beneficial to use a classifier that would use the values
of p(xi) = p(xi, S1, S2), i = 1, . . . , d as the classifier features. The parameters
of the classifier are learned from training data. Based on the parameters and
feature values the classifier can decide whether two strings S1 and S2 are similar
or not, or can order strings according to their similarity to a given string (which
is sufficient in most applications).

3.3 Our technique

The technique adopted in our algorithm can be thought of as a mixture of the
two basic approaches. We measure the similarity Sim(S1, S2) of two strings
S1, S2 by the total length of substrings of S1 that are substrings of string S2.
We do not require the substrings of S1 to be disjoint, which means that parts
of substrings of S1 longer than two are counted several times.

input : strings S1 and S2

output: similarity Sim(S1, S2)

s = 0;
for i = 1 to length(S1) − 1 do

R = S1[i];
j = 2;
fl = TRUE;
while j ≤ length(S1) − i + 1 and fl = TRUE do

R = R + S1[i + j − 1];
if R is a substring of S2 then s = s + j;
else fl = FALSE;
j = j + 1;

end
end
Sim(S1, S2) = s

Algorithm 1: Computation of Similarity

Decision support system for comparison of price lists 37

4 Results

We have performed tests with five price lists. The first price list was referential,
which means that all other price lists were compared with this price list only.

We have selected 277 components from the referential price list. In every
other list we found a component that had the highest similarity measured by
similarity defined in Section 3.3. All results were evaluated by a human expert.

The results obtained are summarized in Table 1. The column Items contains
the total number of components in price lists i = 2, 3, 4, 5. Precision is the ratio
100 · (t/m), where t is the number of components classified correctly as identical
and n = 277 is the total number of components in the referential list. Note that
there are large differences between the total number of components in these price
lists. Not all components from the referential list can be found in the other lists.
Therefore, we further disregarded all components whose similarity has been
evaluated to less than 10% of the maximal possible similarity, i.e., similarity of
an identical string. The column TLE (Too Low Evaluation) Precision describes
the precision after disregarding all components with low similarity. Finally,
PN (Part Number) Matching states the percentage of items classified by our
algorithm as identical, that have the same part number.

Table 1: Results – Comparison with Price List 1

Price List Items Precision TLE Precision PN Matching
2 9 670 19,49% 81,25% 9,75%
3 7 941 19,49% 86,84% 13,72%
4 24 076 55,96% 92,05% 33,94%
5 22 182 40,43% 94,74% 23,83%

It should be mentioned that higher values in the column TLE Precision are
less significant, since, most components obtained TLE. For instance, only 16
components from price list 2 did not obtain TLE.

It is evident that results achieved so far are not satisfactory and there is room
for further improvements. For instance, our technique underestimates similarity
of two strings if they contain the same substrings that are just permuted. It is
illustrated by the following example. The component described as

HP Color LaserJet 2820mfp, A4 tisk/kop/skener

in the referential list was incorrectly linked to the item

HP 3y Nbd Color LaserJet 45/46 xx Hw Supp,

while the correct matching

LaserJet Color 2820 All-in-One A4

has a lower similarity.

38 H. HAMPLOVÁ et al.

Acknowledgments

The authors gratefully acknowledge the support by the grant 1M6798555601 of
the Ministry of Education, Youth and Sports of the Czech Republic.

References

[1] Bilenko M. and Mooney R. J. (2003), Adaptive duplicate detection using
learnable string similarity measures, In Proc. of the Ninth ACM SIGKDD
Int. Conference on Knowledge Discovery and Data Mining(KDD-2003),
Washington DC, pp. 39–48.

[2] Ristad E. S. and Yianilos P. N. (1997), Learning string edit distance. Re-
search report CS-TR-532-96, Department of Computer Science, Princeton
University, Princeton, NJ.

[3] Zhu Joanne J. and Ungar L. H. (2000), String edit analysis for merging
databases, KDD Workshop.

[4] Salton G., Wong A., and Yang C. S. (1975), A vector space model for
automatic indexing. Communications of the ACM, 18(11):613–620.

[5] Salton G. and Buckley C. (1988). Term weighting approaches in automatic
text retrieval. Information Processing and Management, 24(5):513–523.

