${ }^{1}$

Fuzzy transforms - a new bases for image fusion

Martina Dañková \& Irina Perfilieva
University of Ostrava
Institute for Research and Applications of Fuzzy Modeling
Ostrava, Czech Republic
martina.dankova@osu.cz

Radek Valášek

Problem specification

- What?

Image fusion -
" k" partially distorted images
\Downarrow
one "good" image

- Tool?
- Wavelet transform
- Fuzzy transform

- How (Principle)?

F-transform: Let $f(x)$ be given at nodes $x_{1}, \ldots, x_{l} \in[a, b]$, and $\mathbb{A}=\left\{A_{i}(x)\right\}_{i=1}^{n}$ be Ruspini's partition. The vector of real numbers $\left[F_{1}, \ldots, F_{n}\right]$ is a discrete F -transform of f if

$$
F_{i}=\frac{\sum_{j=1}^{l} f\left(x_{j}\right) A_{i}\left(x_{j}\right)}{\sum_{j=1}^{l} A_{i}\left(x_{j}\right)}
$$

where $1 \leq i \leq n$ and $n<l$.

Inverse F-transform: Let $\left[F_{1}, \ldots, F_{n}\right]$ be the F-transform of $f(x)$ w.r.t. A. Then

$$
T_{f, n}(x)=\sum_{i=1}^{n} F_{i} A_{i}(x)
$$

is called the inverse F-transform.

Removing noise by F-transform

Lemma1:

\mathbb{A} - a uniform fuzzy partition on $[a, b], h=(b-a) /(n-1))$.
$s(x)$ - continuous periodical function on [a, b] with period $2 h$ such that

$$
s\left(x_{k}-x\right)=-s\left(x_{k}+x\right), \quad x \in\left[x_{k-1}, x_{k+1}\right] .
$$

Then F_{i} are equal to zero and noise $s(x)$ is removable.

Description of fusion using fuzzy transform

- $f_{T, 0}(x)$ stands for arithmetic mean of $f(x)$ and error function $e_{0}=f(x)-f_{T, 0}(x)$.
- For $i \geq 1$,

$$
f_{T, i}(x)=T_{e_{i-1}, 2^{i}},
$$

represents fuzzy transform of e_{i-1} in 2^{i} nodes and

$$
e_{i}(x)=e_{i-1}(x)-f_{T, i}(x) .
$$

- Fusion function operates over the coefficients of fuzzy transforms of $f_{1_{T, i}}, \ldots, f_{p_{T, i}}$ in each level and it is defined by

$$
\kappa(x, y)= \begin{cases}y, & |x| \leq|y| \\ x, & \text { otherwise } .\end{cases}
$$

- Fused function is given by

$$
F_{T}(x)=\bar{f}_{T, 1}(x)+\bar{f}_{T, 2}(x)+\bar{f}_{T, 3}(x)+\ldots=\sum_{i=0}^{\infty} \bar{f}_{T, i}(x)
$$

where

$$
\bar{f}_{T, i}(x)=\sum_{i \in I} F_{i} A_{i}(x)
$$

for each i and $F_{1}, \ldots, F_{2^{i}}$ are determined on the basis of coefficients of fixed fuzzy transformations $f_{1_{T, i}}, \ldots, f_{p_{T, i}}$ using κ.

Another F-transform

A residuated lattice on L is an algebra

$$
\begin{equation*}
\mathcal{L}=\langle L, \vee, \wedge, *, \rightarrow, 0,1\rangle \tag{1}
\end{equation*}
$$

with four binary operations and two constants such that

- $\mathcal{L}=\langle L, \vee, \wedge, 0,1\rangle$ is a lattice with the largest element 1 and the least element 0 w.r.t. the lattice ordering \leq,
- $\mathcal{L}=\langle L, *, 1\rangle$ is a commutative semigroup with the unit element 1, i.e. $*$ is commutative, associative, and $1 * x=x$ for all $x \in L$,
- * and \rightarrow form an adjoint pair, i.e.

$$
\begin{equation*}
z \leq(x \rightarrow y) \quad \text { iff } \quad x * z \leq y \quad \text { for all } x, y, z \in L \tag{2}
\end{equation*}
$$

F-transform on \mathcal{L} : Let $f(x):[a, b] \rightarrow L$ be given at nodes $x_{1}, \ldots, x_{l} \in[a, b]$, and $\mathbb{A}=\left\{A_{i}(x)\right\}_{i=1}^{n}$ be partition on $[a, b]$ such that $\bigvee_{i} A_{i}(x)=1$ for all $x \in[a, b]$. The vector $\left[F_{1}, \ldots, F_{n}\right] \in L^{n}$ is a discrete F -transform of f if

$$
F_{i}=\bigwedge_{j=1}^{l} A_{i}\left(x_{j}\right) \rightarrow f\left(x_{j}\right)
$$

where $1 \leq i \leq n$ and $n<l$.

Inverse F-transform: Let $\left[F_{1}, \ldots, F_{n}\right]$ be the F -transform on \mathcal{L} of $f(x)$ w.r.t. \mathbb{A}. Then

$$
T_{f, n}(x)=\bigvee_{i=1}^{n} F_{i} * A_{i}(x)
$$

is called the inverse F-transform.
the coefficients carry a different information -

- weighted arithmetical means (fuzzy sets represents weights)
- minima on the respective fuzzy subset
- maxima on the respective subset

M
M

Thank you for the attention.

