Neural Network Based Bicriterial Dual Control with Multiple Linearization

Ladislav KRÁL and Miroslav ŠIMANDL

Department of Cybernetics University of West Bohemia Pilsen, Czech Republic

IFAC Workshop Adaptation and Learning in Control and Signal Processing Antalya, TURKEY 26-28 August 2010

Contents

1 Introduction

- **2** Problem statement
- **3** Controller design

4 Example

- adaptive control of nonlinear stochastic systems
- nonlinear functions of the system are considered to be unknown functional adaptive control,

characteristic of functional adaptive control

- nonlinear system is modeled by a universal approximator
- simultaneously optimizing control performance and reducing uncertainty
- avoid the time consuming process of off-line identification of the system

- utilizing of bicriterial dual control methodology brings an excellent control quality (*Šimandl at al, 2005, IFAC World Congress*),
- functional adaptive control extended for MIMO systems (Král and Šimandl, 2008, IFAC World Congress)
- functional adaptive control extended for slowly time variant systems (*Král and Šimandl, 2009, SYSID*)

Goal

To design an alternative bicriterial dual controller by fully utilizing the character of the Gaussian Sum estimator and so to improve quality of control.

Bicriterial dual controller

$$u_k = h\left(y_{k+1}^r, \boldsymbol{I}_k\right)$$

- output y_k should follow reference signal y_k^r
- I_k contains information received up to time k

Bicriterial dual controller – basic idea

The bicriterial dual controller design is based on two separate criteria. Each of those criteria introduces one of opposing aspects between control and estimation: caution and probing.

The caution control component

$$J_k^c = E\left\{ (y_{k+1} - y_{k+1}^r)^2 + q u_k^2 | \mathbf{I}_k \right\}$$
$$u_k^c = \underset{u_k}{\operatorname{argmin}} J_k^c$$

The probing control component

$$J_k^a = -E\left\{ (y_{k+1} - \hat{y}_{k+1})^2 | \mathbf{I}_k \right\}$$

$$\Omega_k = [u_k^c - \delta_k, u_k^c + \delta_k]$$

$$\delta_k = \eta \operatorname{tr}(\mathbf{P}_{k+1})$$

The final control

 $u_k = \underset{u_k \in \Omega_k}{\operatorname{argmin}} J_k^a$

Bicriterial dual controller – cont'd

Bicriterial dual controller

- control law can be obtained analytically **••** low computational demands
- $u_k = h(\eta, y_{k+1}^r, \hat{\Theta}_{k+1}, P_{k+1})$: η designer parameter : y_{k+1}^r - known variable : $\hat{\Theta}_{k+1}, P_{k+1}$ - estimation

Model of the system

- The unknown nonlinear functions $f(\boldsymbol{x}_{k-1})$ and $g(\boldsymbol{x}_{k-1})$ are approximated by Multi-Layer Perceptron (MPL) networks \implies model
- Compromise between complexity and accuracy of the estimator and dual controller

$$\begin{aligned} \hat{y}_{k} &= \hat{f}(\boldsymbol{x}_{k-1}, \boldsymbol{w}^{f}, \boldsymbol{c}^{f}) + \hat{g}(\boldsymbol{x}_{k-1}, \boldsymbol{w}^{g}, \boldsymbol{c}^{g})u_{k-1} \\ \hat{f} &= (\boldsymbol{c}^{f})^{T} \boldsymbol{\phi}^{f}(\boldsymbol{x}_{k-1}, \boldsymbol{w}^{f}) \\ \hat{g} &= (\boldsymbol{c}^{g})^{T} \boldsymbol{\phi}^{g}(\boldsymbol{x}_{k-1}, \boldsymbol{w}^{g}) \end{aligned}$$

$$\boldsymbol{\Theta} = \left[(\boldsymbol{c}^f)^T, (\boldsymbol{w}^f)^T, (\boldsymbol{c}^g)^T, (\boldsymbol{w}^g)^T \right]^T \implies \hat{\boldsymbol{\Theta}}_{k+1}, \, \boldsymbol{P}_{k+1} = ?$$

Neural network - parameter estimation

Neural network model

• Neural network can be rewritten into state space estimation model

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} \hat{m{y}}_{k+1} &= eta_k \ \hat{m{y}}_{k} &= \hat{f}(m{x}_{k-1}, m{w}^f, m{c}^f) + \hat{g}(m{x}_{k-1}, m{w}^g, m{c}^g) u_{k-1} + e_k \end{aligned}$$

- The measurement equation is nonlinear
- It is possible to use non-linear estimation methods Gaussian Sum (GS) Filter
- Prior information about parameters given by pdf in the form of the Gaussian mixture as

$$p(\boldsymbol{\Theta}|\mathbf{I}^k) = \sum_{\ell=1}^{N_0} \alpha_{k+1,\ell} \mathcal{N}\left\{\boldsymbol{\Theta} : \hat{\boldsymbol{\Theta}}_{k+1,\ell}, \mathbf{P}_{k+1,\ell}\right\},\,$$

where $\alpha_i > 0$, $\Sigma_{i=1}^{\ell} \alpha_i = 1$

Main characteristic

- a bank of N parallel running extended Kalman filters (EKF)
- o comes out from the EKF ➡ easy implementation
 ➡ feasible computational demands
- respects features of disturbance
- high quality estimation
- provides probability density function of the parameter estimates

 $p(\boldsymbol{\Theta}_{k+1}|\boldsymbol{I}^k) \Rightarrow \hat{\boldsymbol{\Theta}}_{k+1}, \boldsymbol{P}_{k+1}$

Synthetic benchmark system

$$y_{k} = \frac{1.5y_{k-1}y_{k-2}}{1+y_{k-1}^{2}+y_{k-2}^{2}} + 0.2\sin(y_{k-1}+y_{k-2}) + (\sin(y_{k-1}y_{k-2}) - 1.3)u_{k-1} + e_{k},$$

two controllers were compared

- Cautious (CA)
- Bicriterial dual (BD)

two types of 'design' were used:

- Gaussian Sum filter estimator (GS)
- Multiple Linearization technique (ML)

The quality of control is measured by the mean of sums of square errors between reference value $y_{k+1,j}^r$ and system output $y_{k+1,j}$ over 5.000 trials: $\hat{J} = \frac{1}{5000} \sum_{j=1}^{5000} \sum_{k=1}^{250} (y_{k+1,j} - y_{k+1,j}^r)^2 + q u_{k,j}^2$

controller	\hat{J}	$\operatorname{var}\{\hat{J}\}$
BD-ML	5.55	$3.10\cdot 10^{-4}$
BD	14.9	$2.76\cdot 10^{-2}$
CA-ML	7.34	$1.21\cdot 10^{-3}$
CA	15.72	$2.14 \cdot 10^{-2}$

Ŧ

- ★ The bicriterial dual controller with multiple linearization for the discrete-time stochastic system was presented.
- ★ The model of the system is given by the multilayer perceptron network where unknown parameters are estimated on-line.
- ★ Proposed controller consists of a set of local bicriterial controllers connected with corresponding local estimators.
- ★ Final dual controller exploits of the whole information provided by the Gaussian Sum filter and not just a point estimate.
- * It achieves better control quality in comparison with controller that uses the global point estimate only.